/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkBlitRow_opts_DEFINED
#define SkBlitRow_opts_DEFINED
#include "Sk4px.h"
#include "SkColorPriv.h"
#include "SkMSAN.h"
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "SkColor_opts_SSE2.h"
#endif
namespace SK_OPTS_NS {
// Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp.
// It's not quite perfect, but it's never wrong in the interesting edge cases,
// and it's quite a bit faster than blend_perfect.
//
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
static inline
void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
unsigned invA = 255 - SkGetPackedA32(color);
invA += invA >> 7;
SkASSERT(invA < 256); // We've should have already handled alpha == 0 externally.
Sk16h colorHighAndRound = Sk4px::DupPMColor(color).widenHi() + Sk16h(128);
Sk16b invA_16x(invA);
Sk4px::MapSrc(count, dst, src, [&](const Sk4px& src4) -> Sk4px {
return (src4 * invA_16x).addNarrowHi(colorHighAndRound);
});
}
static inline
void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
SkASSERT(alpha == 0xFF);
sk_msan_assert_initialized(src, src+len);
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
while (len >= 16) {
// Load 16 source pixels.
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
const auto alphaMask = _mm_set1_epi32(0xFF000000);
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (_mm_testz_si128(ORed, alphaMask)) {
// All 16 source pixels are transparent. Nothing to do.
src += 16;
dst += 16;
len -= 16;
continue;
}
auto d0 = (__m128i*)(dst) + 0,
d1 = (__m128i*)(dst) + 1,
d2 = (__m128i*)(dst) + 2,
d3 = (__m128i*)(dst) + 3;
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (_mm_testc_si128(ANDed, alphaMask)) {
// All 16 source pixels are opaque. SrcOver becomes Src.
_mm_storeu_si128(d0, s0);
_mm_storeu_si128(d1, s1);
_mm_storeu_si128(d2, s2);
_mm_storeu_si128(d3, s3);
src += 16;
dst += 16;
len -= 16;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
src += 16;
dst += 16;
len -= 16;
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
while (len >= 16) {
// Load 16 source pixels.
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
const auto alphaMask = _mm_set1_epi32(0xFF000000);
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
_mm_setzero_si128()))) {
// All 16 source pixels are transparent. Nothing to do.
src += 16;
dst += 16;
len -= 16;
continue;
}
auto d0 = (__m128i*)(dst) + 0,
d1 = (__m128i*)(dst) + 1,
d2 = (__m128i*)(dst) + 2,
d3 = (__m128i*)(dst) + 3;
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
alphaMask))) {
// All 16 source pixels are opaque. SrcOver becomes Src.
_mm_storeu_si128(d0, s0);
_mm_storeu_si128(d1, s1);
_mm_storeu_si128(d2, s2);
_mm_storeu_si128(d3, s3);
src += 16;
dst += 16;
len -= 16;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
src += 16;
dst += 16;
len -= 16;
}
#elif defined(SK_ARM_HAS_NEON)
while (len >= 4) {
if ((src[0] | src[1] | src[2] | src[3]) == 0x00000000) {
// All 16 source pixels are transparent. Nothing to do.
src += 4;
dst += 4;
len -= 4;
continue;
}
if ((src[0] & src[1] & src[2] & src[3]) >= 0xFF000000) {
// All 16 source pixels are opaque. SrcOver becomes Src.
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
src += 4;
dst += 4;
len -= 4;
continue;
}
// Load 4 source and destination pixels.
auto src0 = vreinterpret_u8_u32(vld1_u32(src+0)),
src2 = vreinterpret_u8_u32(vld1_u32(src+2)),
dst0 = vreinterpret_u8_u32(vld1_u32(dst+0)),
dst2 = vreinterpret_u8_u32(vld1_u32(dst+2));
// TODO: This math is wrong.
const uint8x8_t alphas = vcreate_u8(0x0707070703030303);
auto invSA0_w = vsubw_u8(vdupq_n_u16(256), vtbl1_u8(src0, alphas)),
invSA2_w = vsubw_u8(vdupq_n_u16(256), vtbl1_u8(src2, alphas));
auto dstInvSA0 = vmulq_u16(invSA0_w, vmovl_u8(dst0)),
dstInvSA2 = vmulq_u16(invSA2_w, vmovl_u8(dst2));
dst0 = vadd_u8(src0, vshrn_n_u16(dstInvSA0, 8));
dst2 = vadd_u8(src2, vshrn_n_u16(dstInvSA2, 8));
vst1_u32(dst+0, vreinterpret_u32_u8(dst0));
vst1_u32(dst+2, vreinterpret_u32_u8(dst2));
src += 4;
dst += 4;
len -= 4;
}
#endif
while (len-- > 0) {
// This 0xFF000000 is not semantically necessary, but for compatibility
// with chromium:611002 we need to keep it until we figure out where
// the non-premultiplied src values (like 0x00FFFFFF) are coming from.
// TODO(mtklein): sort this out and assert *src is premul here.
if (*src & 0xFF000000) {
*dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
}
src++;
dst++;
}
}
} // SK_OPTS_NS
#endif//SkBlitRow_opts_DEFINED