// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_
#define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "third_party/base/numerics/safe_math_impl.h"
namespace pdfium {
namespace base {
namespace internal {
// CheckedNumeric<> implements all the logic and operators for detecting integer
// boundary conditions such as overflow, underflow, and invalid conversions.
// The CheckedNumeric type implicitly converts from floating point and integer
// data types, and contains overloads for basic arithmetic operations (i.e.: +,
// -, *, / for all types and %, <<, >>, &, |, ^ for integers). Type promotions
// are a slightly modified version of the standard C arithmetic rules with the
// two differences being that there is no default promotion to int and bitwise
// logical operations always return an unsigned of the wider type.
//
// You may also use one of the variadic convenience functions, which accept
// standard arithmetic or CheckedNumeric types, perform arithmetic operations,
// and return a CheckedNumeric result. The supported functions are:
// CheckAdd() - Addition.
// CheckSub() - Subtraction.
// CheckMul() - Multiplication.
// CheckDiv() - Division.
// CheckMod() - Modulous (integer only).
// CheckLsh() - Left integer shift (integer only).
// CheckRsh() - Right integer shift (integer only).
// CheckAnd() - Bitwise AND (integer only with unsigned result).
// CheckOr() - Bitwise OR (integer only with unsigned result).
// CheckXor() - Bitwise XOR (integer only with unsigned result).
// CheckMax() - Maximum of supplied arguments.
// CheckMin() - Minimum of supplied arguments.
//
// The unary negation, increment, and decrement operators are supported, along
// with the following unary arithmetic methods, which return a new
// CheckedNumeric as a result of the operation:
// Abs() - Absolute value.
// UnsignedAbs() - Absolute value as an equal-width unsigned underlying type
// (valid for only integral types).
// Max() - Returns whichever is greater of the current instance or argument.
// The underlying return type is whichever has the greatest magnitude.
// Min() - Returns whichever is lowest of the current instance or argument.
// The underlying return type is whichever has can represent the lowest
// number in the smallest width (e.g. int8_t over unsigned, int over
// int8_t, and float over int).
//
// The following methods convert from CheckedNumeric to standard numeric values:
// AssignIfValid() - Assigns the underlying value to the supplied destination
// pointer if the value is currently valid and within the range
// supported by the destination type. Returns true on success.
// ****************************************************************************
// * WARNING: All of the following functions return a StrictNumeric, which *
// * is valid for comparison and assignment operations, but will trigger a *
// * compile failure on attempts to assign to a type of insufficient range. *
// ****************************************************************************
// IsValid() - Returns true if the underlying numeric value is valid (i.e. has
// has not wrapped and is not the result of an invalid conversion).
// ValueOrDie() - Returns the underlying value. If the state is not valid this
// call will crash on a CHECK.
// ValueOrDefault() - Returns the current value, or the supplied default if the
// state is not valid (will not trigger a CHECK).
//
// The following wrapper functions can be used to avoid the template
// disambiguator syntax when converting a destination type.
// IsValidForType<>() in place of: a.template IsValid<Dst>()
// ValueOrDieForType<>() in place of: a.template ValueOrDie()
// ValueOrDefaultForType<>() in place of: a.template ValueOrDefault(default)
//
// The following are general utility methods that are useful for converting
// between arithmetic types and CheckedNumeric types:
// CheckedNumeric::Cast<Dst>() - Instance method returning a CheckedNumeric
// derived from casting the current instance to a CheckedNumeric of
// the supplied destination type.
// MakeCheckedNum() - Creates a new CheckedNumeric from the underlying type of
// the supplied arithmetic, CheckedNumeric, or StrictNumeric type.
//
// Comparison operations are explicitly not supported because they could result
// in a crash on an unexpected CHECK condition. You should use patterns like the
// following for comparisons:
// CheckedNumeric<size_t> checked_size = untrusted_input_value;
// checked_size += HEADER LENGTH;
// if (checked_size.IsValid() && checked_size.ValueOrDie() < buffer_size)
// Do stuff...
template <typename T>
class CheckedNumeric {
static_assert(std::is_arithmetic<T>::value,
"CheckedNumeric<T>: T must be a numeric type.");
public:
using type = T;
constexpr CheckedNumeric() {}
// Copy constructor.
template <typename Src>
constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs)
: state_(rhs.state_.value(), rhs.IsValid()) {}
template <typename Src>
friend class CheckedNumeric;
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to CheckedNumerics to make them easier to use.
template <typename Src>
constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit)
: state_(value) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// This is not an explicit constructor because we want a seamless conversion
// from StrictNumeric types.
template <typename Src>
constexpr CheckedNumeric(
StrictNumeric<Src> value) // NOLINT(runtime/explicit)
: state_(static_cast<Src>(value)) {}
// IsValid() - The public API to test if a CheckedNumeric is currently valid.
// A range checked destination type can be supplied using the Dst template
// parameter.
template <typename Dst = T>
constexpr bool IsValid() const {
return state_.is_valid() &&
IsValueInRangeForNumericType<Dst>(state_.value());
}
// AssignIfValid(Dst) - Assigns the underlying value if it is currently valid
// and is within the range supported by the destination type. Returns true if
// successful and false otherwise.
template <typename Dst>
constexpr bool AssignIfValid(Dst* result) const {
return IsValid<Dst>() ? ((*result = static_cast<Dst>(state_.value())), true)
: false;
}
// ValueOrDie() - The primary accessor for the underlying value. If the
// current state is not valid it will CHECK and crash.
// A range checked destination type can be supplied using the Dst template
// parameter, which will trigger a CHECK if the value is not in bounds for
// the destination.
// The CHECK behavior can be overridden by supplying a handler as a
// template parameter, for test code, etc. However, the handler cannot access
// the underlying value, and it is not available through other means.
template <typename Dst = T, class CheckHandler = CheckOnFailure>
constexpr StrictNumeric<Dst> ValueOrDie() const {
return IsValid<Dst>() ? static_cast<Dst>(state_.value())
: CheckHandler::template HandleFailure<Dst>();
}
// ValueOrDefault(T default_value) - A convenience method that returns the
// current value if the state is valid, and the supplied default_value for
// any other state.
// A range checked destination type can be supplied using the Dst template
// parameter. WARNING: This function may fail to compile or CHECK at runtime
// if the supplied default_value is not within range of the destination type.
template <typename Dst = T, typename Src>
constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const {
return IsValid<Dst>() ? static_cast<Dst>(state_.value())
: checked_cast<Dst>(default_value);
}
// Returns a checked numeric of the specified type, cast from the current
// CheckedNumeric. If the current state is invalid or the destination cannot
// represent the result then the returned CheckedNumeric will be invalid.
template <typename Dst>
constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
return *this;
}
// This friend method is available solely for providing more detailed logging
// in the the tests. Do not implement it in production code, because the
// underlying values may change at any time.
template <typename U>
friend U GetNumericValueForTest(const CheckedNumeric<U>& src);
// Prototypes for the supported arithmetic operator overloads.
template <typename Src>
CheckedNumeric& operator+=(const Src rhs);
template <typename Src>
CheckedNumeric& operator-=(const Src rhs);
template <typename Src>
CheckedNumeric& operator*=(const Src rhs);
template <typename Src>
CheckedNumeric& operator/=(const Src rhs);
template <typename Src>
CheckedNumeric& operator%=(const Src rhs);
template <typename Src>
CheckedNumeric& operator<<=(const Src rhs);
template <typename Src>
CheckedNumeric& operator>>=(const Src rhs);
template <typename Src>
CheckedNumeric& operator&=(const Src rhs);
template <typename Src>
CheckedNumeric& operator|=(const Src rhs);
template <typename Src>
CheckedNumeric& operator^=(const Src rhs);
constexpr CheckedNumeric operator-() const {
return CheckedNumeric<T>(
NegateWrapper(state_.value()),
IsValid() &&
(!std::is_signed<T>::value || std::is_floating_point<T>::value ||
NegateWrapper(state_.value()) !=
std::numeric_limits<T>::lowest()));
}
constexpr CheckedNumeric operator~() const {
return CheckedNumeric<decltype(InvertWrapper(T()))>(
InvertWrapper(state_.value()), IsValid());
}
constexpr CheckedNumeric Abs() const {
return CheckedNumeric<T>(
AbsWrapper(state_.value()),
IsValid() &&
(!std::is_signed<T>::value || std::is_floating_point<T>::value ||
AbsWrapper(state_.value()) != std::numeric_limits<T>::lowest()));
}
template <typename U>
constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max(
const U rhs) const {
using R = typename UnderlyingType<U>::type;
using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type;
// TODO(jschuh): This can be converted to the MathOp version and remain
// constexpr once we have C++14 support.
return CheckedNumeric<result_type>(
static_cast<result_type>(
IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
? state_.value()
: Wrapper<U>::value(rhs)),
state_.is_valid() && Wrapper<U>::is_valid(rhs));
}
template <typename U>
constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min(
const U rhs) const {
using R = typename UnderlyingType<U>::type;
using result_type = typename MathWrapper<CheckedMinOp, T, U>::type;
// TODO(jschuh): This can be converted to the MathOp version and remain
// constexpr once we have C++14 support.
return CheckedNumeric<result_type>(
static_cast<result_type>(
IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
? state_.value()
: Wrapper<U>::value(rhs)),
state_.is_valid() && Wrapper<U>::is_valid(rhs));
}
// This function is available only for integral types. It returns an unsigned
// integer of the same width as the source type, containing the absolute value
// of the source, and properly handling signed min.
constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>
UnsignedAbs() const {
return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>(
SafeUnsignedAbs(state_.value()), state_.is_valid());
}
CheckedNumeric& operator++() {
*this += 1;
return *this;
}
CheckedNumeric operator++(int) {
CheckedNumeric value = *this;
*this += 1;
return value;
}
CheckedNumeric& operator--() {
*this -= 1;
return *this;
}
CheckedNumeric operator--(int) {
CheckedNumeric value = *this;
*this -= 1;
return value;
}
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
static CheckedNumeric MathOp(const L lhs, const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
T result = 0;
bool is_valid =
Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) &&
Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result);
return CheckedNumeric<T>(result, is_valid);
};
// Assignment arithmetic operations.
template <template <typename, typename, typename> class M, typename R>
CheckedNumeric& MathOp(const R rhs) {
using Math = typename MathWrapper<M, T, R>::math;
T result = 0; // Using T as the destination saves a range check.
bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) &&
Math::Do(state_.value(), Wrapper<R>::value(rhs), &result);
*this = CheckedNumeric<T>(result, is_valid);
return *this;
};
private:
CheckedNumericState<T> state_;
template <typename Src>
constexpr CheckedNumeric(Src value, bool is_valid)
: state_(value, is_valid) {}
// These wrappers allow us to handle state the same way for both
// CheckedNumeric and POD arithmetic types.
template <typename Src>
struct Wrapper {
static constexpr bool is_valid(Src) { return true; }
static constexpr Src value(Src value) { return value; }
};
template <typename Src>
struct Wrapper<CheckedNumeric<Src>> {
static constexpr bool is_valid(const CheckedNumeric<Src> v) {
return v.IsValid();
}
static constexpr Src value(const CheckedNumeric<Src> v) {
return v.state_.value();
}
};
template <typename Src>
struct Wrapper<StrictNumeric<Src>> {
static constexpr bool is_valid(const StrictNumeric<Src>) { return true; }
static constexpr Src value(const StrictNumeric<Src> v) {
return static_cast<Src>(v);
}
};
};
// Convenience functions to avoid the ugly template disambiguator syntax.
template <typename Dst, typename Src>
constexpr bool IsValidForType(const CheckedNumeric<Src> value) {
return value.template IsValid<Dst>();
}
template <typename Dst, typename Src>
constexpr StrictNumeric<Dst> ValueOrDieForType(
const CheckedNumeric<Src> value) {
return value.template ValueOrDie<Dst>();
}
template <typename Dst, typename Src, typename Default>
constexpr StrictNumeric<Dst> ValueOrDefaultForType(
const CheckedNumeric<Src> value,
const Default default_value) {
return value.template ValueOrDefault<Dst>(default_value);
}
// These variadic templates work out the return types.
// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
struct ResultType;
template <template <typename, typename, typename> class M,
typename L,
typename R>
struct ResultType<M, L, R> {
using type = typename MathWrapper<M, L, R>::type;
};
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
struct ResultType {
using type =
typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type;
};
// Convience wrapper to return a new CheckedNumeric from the provided arithmetic
// or CheckedNumericType.
template <typename T>
constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum(
const T value) {
return value;
}
// These implement the variadic wrapper for the math operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
CheckedNumeric<typename MathWrapper<M, L, R>::type> ChkMathOp(const L lhs,
const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
rhs);
}
// General purpose wrapper template for arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
CheckedNumeric<typename ResultType<M, L, R, Args...>::type>
ChkMathOp(const L lhs, const R rhs, const Args... args) {
auto tmp = ChkMathOp<M>(lhs, rhs);
return tmp.IsValid() ? ChkMathOp<M>(tmp, args...)
: decltype(ChkMathOp<M>(tmp, args...))(tmp);
};
// The following macros are just boilerplate for the standard arithmetic
// operator overloads and variadic function templates. A macro isn't the nicest
// solution, but it beats rewriting these over and over again.
#define BASE_NUMERIC_ARITHMETIC_VARIADIC(NAME) \
template <typename L, typename R, typename... Args> \
CheckedNumeric<typename ResultType<Checked##NAME##Op, L, R, Args...>::type> \
Check##NAME(const L lhs, const R rhs, const Args... args) { \
return ChkMathOp<Checked##NAME##Op, L, R, Args...>(lhs, rhs, args...); \
}
#define BASE_NUMERIC_ARITHMETIC_OPERATORS(NAME, OP, COMPOUND_OP) \
/* Binary arithmetic operator for all CheckedNumeric operations. */ \
template <typename L, typename R, \
typename std::enable_if<IsCheckedOp<L, R>::value>::type* = \
nullptr> \
CheckedNumeric<typename MathWrapper<Checked##NAME##Op, L, R>::type> \
operator OP(const L lhs, const R rhs) { \
return decltype(lhs OP rhs)::template MathOp<Checked##NAME##Op>(lhs, rhs); \
} \
/* Assignment arithmetic operator implementation from CheckedNumeric. */ \
template <typename L> \
template <typename R> \
CheckedNumeric<L>& CheckedNumeric<L>::operator COMPOUND_OP(const R rhs) { \
return MathOp<Checked##NAME##Op>(rhs); \
} \
/* Variadic arithmetic functions that return CheckedNumeric. */ \
BASE_NUMERIC_ARITHMETIC_VARIADIC(NAME)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Add, +, +=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Sub, -, -=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Mul, *, *=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Div, /, /=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Mod, %, %=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Lsh, <<, <<=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Rsh, >>, >>=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(And, &, &=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Or, |, |=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Xor, ^, ^=)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Max)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Min)
#undef BASE_NUMERIC_ARITHMETIC_VARIADIC
#undef BASE_NUMERIC_ARITHMETIC_OPERATORS
// These are some extra StrictNumeric operators to support simple pointer
// arithmetic with our result types. Since wrapping on a pointer is always
// bad, we trigger the CHECK condition here.
template <typename L, typename R>
L* operator+(L* lhs, const StrictNumeric<R> rhs) {
uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs),
CheckMul(sizeof(L), static_cast<R>(rhs)))
.template ValueOrDie<uintptr_t>();
return reinterpret_cast<L*>(result);
}
template <typename L, typename R>
L* operator-(L* lhs, const StrictNumeric<R> rhs) {
uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs),
CheckMul(sizeof(L), static_cast<R>(rhs)))
.template ValueOrDie<uintptr_t>();
return reinterpret_cast<L*>(result);
}
} // namespace internal
using internal::CheckedNumeric;
using internal::IsValidForType;
using internal::ValueOrDieForType;
using internal::ValueOrDefaultForType;
using internal::MakeCheckedNum;
using internal::CheckMax;
using internal::CheckMin;
using internal::CheckAdd;
using internal::CheckSub;
using internal::CheckMul;
using internal::CheckDiv;
using internal::CheckMod;
using internal::CheckLsh;
using internal::CheckRsh;
using internal::CheckAnd;
using internal::CheckOr;
using internal::CheckXor;
} // namespace base
} // namespace pdfium
#endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_