// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_H_
#define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_H_
#include <stddef.h>
#include <limits>
#include <ostream>
#include <type_traits>
#include "third_party/base/numerics/safe_conversions_impl.h"
namespace pdfium {
namespace base {
// The following are helper constexpr template functions and classes for safely
// performing a range of conversions, assignments, and tests:
//
// checked_cast<> - Analogous to static_cast<> for numeric types, except
// that it CHECKs that the specified numeric conversion will not overflow
// or underflow. NaN source will always trigger a CHECK.
// The default CHECK triggers a crash, but the handler can be overriden.
// saturated_cast<> - Analogous to static_cast<> for numeric types, except
// that it returns a saturated result when the specified numeric conversion
// would otherwise overflow or underflow. An NaN source returns 0 by
// default, but can be overridden to return a different result.
// strict_cast<> - Analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large
// enough to contain any value in the source type. It performs no runtime
// checking and thus introduces no runtime overhead.
// IsValueInRangeForNumericType<>() - A convenience function that returns true
// if the type supplied to the template parameter can represent the value
// passed as an argument to the function.
// IsValueNegative<>() - A convenience function that will accept any arithmetic
// type as an argument and will return whether the value is less than zero.
// Unsigned types always return false.
// SafeUnsignedAbs() - Returns the absolute value of the supplied integer
// parameter as an unsigned result (thus avoiding an overflow if the value
// is the signed, two's complement minimum).
// StrictNumeric<> - A wrapper type that performs assignments and copies via
// the strict_cast<> template, and can perform valid arithmetic comparisons
// across any range of arithmetic types. StrictNumeric is the return type
// for values extracted from a CheckedNumeric class instance. The raw
// arithmetic value is extracted via static_cast to the underlying type.
// MakeStrictNum() - Creates a new StrictNumeric from the underlying type of
// the supplied arithmetic or StrictNumeric type.
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
constexpr bool IsValueInRangeForNumericType(Src value) {
return internal::DstRangeRelationToSrcRange<Dst>(value).IsValid();
}
// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
struct CheckOnFailure {
template <typename T>
static T HandleFailure() {
#if defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#else
((void)(*(volatile char*)0 = 0));
#endif
return T();
}
};
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst, class CheckHandler = CheckOnFailure, typename Src>
constexpr Dst checked_cast(Src value) {
// This throws a compile-time error on evaluating the constexpr if it can be
// determined at compile-time as failing, otherwise it will CHECK at runtime.
using SrcType = typename internal::UnderlyingType<Src>::type;
return IsValueInRangeForNumericType<Dst, SrcType>(value)
? static_cast<Dst>(static_cast<SrcType>(value))
: CheckHandler::template HandleFailure<Dst>();
}
// Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
template <typename T>
struct SaturationDefaultHandler {
static constexpr T NaN() {
return std::numeric_limits<T>::has_quiet_NaN
? std::numeric_limits<T>::quiet_NaN()
: T();
}
static constexpr T max() { return std::numeric_limits<T>::max(); }
static constexpr T Overflow() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::max();
}
static constexpr T lowest() { return std::numeric_limits<T>::lowest(); }
static constexpr T Underflow() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity() * -1
: std::numeric_limits<T>::lowest();
}
};
namespace internal {
template <typename Dst, template <typename> class S, typename Src>
constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {
// For some reason clang generates much better code when the branch is
// structured exactly this way, rather than a sequence of checks.
return !constraint.IsOverflowFlagSet()
? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value)
: S<Dst>::Underflow())
// Skip this check for integral Src, which cannot be NaN.
: (std::is_integral<Src>::value || !constraint.IsUnderflowFlagSet()
? S<Dst>::Overflow()
: S<Dst>::NaN());
}
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate by default rather than
// overflow or underflow, and NaN assignment to an integral will return 0.
// All boundary condition behaviors can be overriden with a custom handler.
template <typename Dst,
template <typename>
class SaturationHandler = SaturationDefaultHandler,
typename Src>
constexpr Dst saturated_cast(Src value) {
using SrcType = typename UnderlyingType<Src>::type;
return saturated_cast_impl<Dst, SaturationHandler, SrcType>(
value,
DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(value));
}
// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src>
constexpr Dst strict_cast(Src value) {
using SrcType = typename UnderlyingType<Src>::type;
static_assert(UnderlyingType<Src>::is_numeric, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// Alternatively, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
static_assert(StaticDstRangeRelationToSrcRange<Dst, SrcType>::value ==
NUMERIC_RANGE_CONTAINED,
"The source type is out of range for the destination type. "
"Please see strict_cast<> comments for more information.");
return static_cast<Dst>(static_cast<SrcType>(value));
}
// Some wrappers to statically check that a type is in range.
template <typename Dst, typename Src, class Enable = void>
struct IsNumericRangeContained {
static const bool value = false;
};
template <typename Dst, typename Src>
struct IsNumericRangeContained<
Dst,
Src,
typename std::enable_if<ArithmeticOrUnderlyingEnum<Dst>::value &&
ArithmeticOrUnderlyingEnum<Src>::value>::type> {
static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
NUMERIC_RANGE_CONTAINED;
};
// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
class StrictNumeric {
public:
using type = T;
constexpr StrictNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
: value_(strict_cast<T>(rhs.value_)) {}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to StrictNumerics to make them easier to use.
template <typename Src>
constexpr StrictNumeric(Src value) // NOLINT(runtime/explicit)
: value_(strict_cast<T>(value)) {}
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// If you're assigning from a CheckedNumeric<> class, you may be able to use
// the AssignIfValid() member function, specify a narrower destination type to
// the member value functions (e.g. val.template ValueOrDie<Dst>()), use one
// of the value helper functions (e.g. ValueOrDieForType<Dst>(val)).
// If you've encountered an _ambiguous overload_ you can use a static_cast<>
// to explicitly cast the result to the destination type.
// If none of that works, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
template <typename Dst,
typename std::enable_if<
IsNumericRangeContained<Dst, T>::value>::type* = nullptr>
constexpr operator Dst() const {
return static_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(value_);
}
private:
const T value_;
};
// Convience wrapper returns a StrictNumeric from the provided arithmetic type.
template <typename T>
constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum(
const T value) {
return value;
}
// Overload the ostream output operator to make logging work nicely.
template <typename T>
std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) {
os << static_cast<T>(value);
return os;
}
#define STRICT_COMPARISON_OP(NAME, OP) \
template <typename L, typename R, \
typename std::enable_if< \
internal::IsStrictOp<L, R>::value>::type* = nullptr> \
constexpr bool operator OP(const L lhs, const R rhs) { \
return SafeCompare<NAME, typename UnderlyingType<L>::type, \
typename UnderlyingType<R>::type>(lhs, rhs); \
}
STRICT_COMPARISON_OP(IsLess, <);
STRICT_COMPARISON_OP(IsLessOrEqual, <=);
STRICT_COMPARISON_OP(IsGreater, >);
STRICT_COMPARISON_OP(IsGreaterOrEqual, >=);
STRICT_COMPARISON_OP(IsEqual, ==);
STRICT_COMPARISON_OP(IsNotEqual, !=);
#undef STRICT_COMPARISON_OP
};
using internal::strict_cast;
using internal::saturated_cast;
using internal::SafeUnsignedAbs;
using internal::StrictNumeric;
using internal::MakeStrictNum;
using internal::IsValueNegative;
// Explicitly make a shorter size_t alias for convenience.
using SizeT = StrictNumeric<size_t>;
} // namespace base
} // namespace pdfium
#endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_H_