/*
* Mesa 3-D graphics library
* Version: 7.1
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file mipmap.c mipmap generation and teximage resizing functions.
*/
#include "imports.h"
#include "formats.h"
#include "glformats.h"
#include "mipmap.h"
#include "mtypes.h"
#include "teximage.h"
#include "texobj.h"
#include "texstore.h"
#include "image.h"
#include "macros.h"
#include "../../gallium/auxiliary/util/u_format_rgb9e5.h"
#include "../../gallium/auxiliary/util/u_format_r11g11b10f.h"
static GLint
bytes_per_pixel(GLenum datatype, GLuint comps)
{
GLint b;
if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA ||
datatype == GL_UNSIGNED_INT_24_8_MESA)
return 4;
b = _mesa_sizeof_packed_type(datatype);
assert(b >= 0);
if (_mesa_type_is_packed(datatype))
return b;
else
return b * comps;
}
/**
* \name Support macros for do_row and do_row_3d
*
* The macro madness is here for two reasons. First, it compacts the code
* slightly. Second, it makes it much easier to adjust the specifics of the
* filter to tune the rounding characteristics.
*/
/*@{*/
#define DECLARE_ROW_POINTERS(t, e) \
const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
t(*dst)[e] = (t(*)[e]) dstRow
#define DECLARE_ROW_POINTERS0(t) \
const t *rowA = (const t *) srcRowA; \
const t *rowB = (const t *) srcRowB; \
const t *rowC = (const t *) srcRowC; \
const t *rowD = (const t *) srcRowD; \
t *dst = (t *) dstRow
#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
((unsigned) Aj + (unsigned) Ak \
+ (unsigned) Bj + (unsigned) Bk \
+ (unsigned) Cj + (unsigned) Ck \
+ (unsigned) Dj + (unsigned) Dk \
+ 4) >> 3
#define FILTER_3D(e) \
do { \
dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
rowB[j][e], rowB[k][e], \
rowC[j][e], rowC[k][e], \
rowD[j][e], rowD[k][e]); \
} while(0)
#define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
(Aj + Ak \
+ Bj + Bk \
+ Cj + Ck \
+ Dj + Dk \
+ 4) / 8
#define FILTER_3D_SIGNED(e) \
do { \
dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
rowB[j][e], rowB[k][e], \
rowC[j][e], rowC[k][e], \
rowD[j][e], rowD[k][e]); \
} while(0)
#define FILTER_F_3D(e) \
do { \
dst[i][e] = (rowA[j][e] + rowA[k][e] \
+ rowB[j][e] + rowB[k][e] \
+ rowC[j][e] + rowC[k][e] \
+ rowD[j][e] + rowD[k][e]) * 0.125F; \
} while(0)
#define FILTER_HF_3D(e) \
do { \
const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
* 0.125F); \
} while(0)
/*@}*/
/**
* Average together two rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
* \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
*/
static void
do_row(GLenum datatype, GLuint comps, GLint srcWidth,
const GLvoid *srcRowA, const GLvoid *srcRowB,
GLint dstWidth, GLvoid *dstRow)
{
const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
ASSERT(comps >= 1);
ASSERT(comps <= 4);
/* This assertion is no longer valid with non-power-of-2 textures
assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
*/
if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
GLuint i, j, k;
const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
GLuint i, j, k;
const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
GLuint i, j, k;
const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
}
}
else if (datatype == GL_BYTE && comps == 4) {
GLuint i, j, k;
const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_BYTE && comps == 3) {
GLuint i, j, k;
const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_BYTE && comps == 2) {
GLuint i, j, k;
const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_BYTE && comps == 1) {
GLuint i, j, k;
const GLbyte *rowA = (const GLbyte *) srcRowA;
const GLbyte *rowB = (const GLbyte *) srcRowB;
GLbyte *dst = (GLbyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
GLuint i, j, k;
const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
GLuint i, j, k;
const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
GLuint i, j, k;
const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 4) {
GLuint i, j, k;
const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 3) {
GLuint i, j, k;
const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 2) {
GLuint i, j, k;
const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 1) {
GLuint i, j, k;
const GLshort *rowA = (const GLshort *) srcRowA;
const GLshort *rowB = (const GLshort *) srcRowB;
GLshort *dst = (GLshort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
else if (datatype == GL_FLOAT && comps == 4) {
GLuint i, j, k;
const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
dst[i][3] = (rowA[j][3] + rowA[k][3] +
rowB[j][3] + rowB[k][3]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 3) {
GLuint i, j, k;
const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 2) {
GLuint i, j, k;
const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 1) {
GLuint i, j, k;
const GLfloat *rowA = (const GLfloat *) srcRowA;
const GLfloat *rowB = (const GLfloat *) srcRowB;
GLfloat *dst = (GLfloat *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 4; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 3; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 2; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
GLuint i, j, k;
const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
GLhalfARB *dst = (GLhalfARB *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j]);
ak = _mesa_half_to_float(rowA[k]);
bj = _mesa_half_to_float(rowB[j]);
bk = _mesa_half_to_float(rowB[k]);
dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
else if (datatype == GL_UNSIGNED_INT && comps == 1) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
GLuint *dst = (GLuint *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 11) | (green << 5) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
const GLint rowAa0 = (rowA[j] & 0x1);
const GLint rowAa1 = (rowA[k] & 0x1);
const GLint rowBa0 = (rowB[j] & 0x1);
const GLint rowBa1 = (rowB[k] & 0x1);
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
}
}
else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3;
const GLint rowAr1 = rowA[k] & 0x3;
const GLint rowBr0 = rowB[j] & 0x3;
const GLint rowBr1 = rowB[k] & 0x3;
const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 5) | (green << 2) | red;
}
}
else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
dst[i] = (g << 4) | r;
}
}
else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
GLuint *dst = (GLuint *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3ff;
const GLint rowAr1 = rowA[k] & 0x3ff;
const GLint rowBr0 = rowB[j] & 0x3ff;
const GLint rowBr1 = rowB[k] & 0x3ff;
const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red;
}
}
else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint*) srcRowA;
const GLuint *rowB = (const GLuint*) srcRowB;
GLuint *dst = (GLuint*)dstRow;
GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
rgb9e5_to_float3(rowA[j], rowAj);
rgb9e5_to_float3(rowB[j], rowBj);
rgb9e5_to_float3(rowA[k], rowAk);
rgb9e5_to_float3(rowB[k], rowBk);
res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
dst[i] = float3_to_rgb9e5(res);
}
}
else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint*) srcRowA;
const GLuint *rowB = (const GLuint*) srcRowB;
GLuint *dst = (GLuint*)dstRow;
GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
r11g11b10f_to_float3(rowA[j], rowAj);
r11g11b10f_to_float3(rowB[j], rowBj);
r11g11b10f_to_float3(rowA[k], rowAk);
r11g11b10f_to_float3(rowB[k], rowBk);
res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
dst[i] = float3_to_r11g11b10f(res);
}
}
else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
GLuint i, j, k;
const GLfloat *rowA = (const GLfloat *) srcRowA;
const GLfloat *rowB = (const GLfloat *) srcRowB;
GLfloat *dst = (GLfloat *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F;
}
}
else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
GLuint *dst = (GLuint *) dstRow;
/* note: averaging stencil values seems weird, but what else? */
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) +
(rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8;
GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) +
(rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4;
dst[i] = z | s;
}
}
else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
GLuint *dst = (GLuint *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) +
(rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4;
GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) +
(rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24;
dst[i] = z | s;
}
}
else {
_mesa_problem(NULL, "bad format in do_row()");
}
}
/**
* Average together four rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
*
* \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
* \c GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
* \param srcWidth Width of a row in the source data
* \param srcRowA Pointer to one of the rows of source data
* \param srcRowB Pointer to one of the rows of source data
* \param srcRowC Pointer to one of the rows of source data
* \param srcRowD Pointer to one of the rows of source data
* \param dstWidth Width of a row in the destination data
* \param srcRowA Pointer to the row of destination data
*/
static void
do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
const GLvoid *srcRowA, const GLvoid *srcRowB,
const GLvoid *srcRowC, const GLvoid *srcRowD,
GLint dstWidth, GLvoid *dstRow)
{
const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
GLuint i, j, k;
ASSERT(comps >= 1);
ASSERT(comps <= 4);
if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLubyte, 4);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLubyte, 3);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLubyte, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLubyte, 1);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == GL_BYTE) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLbyte, 4);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
FILTER_3D_SIGNED(1);
FILTER_3D_SIGNED(2);
FILTER_3D_SIGNED(3);
}
}
else if ((datatype == GL_BYTE) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLbyte, 3);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
FILTER_3D_SIGNED(1);
FILTER_3D_SIGNED(2);
}
}
else if ((datatype == GL_BYTE) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLbyte, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
FILTER_3D_SIGNED(1);
}
}
else if ((datatype == GL_BYTE) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLbyte, 1);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLushort, 4);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLushort, 3);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLushort, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLushort, 1);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == GL_SHORT) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLshort, 4);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == GL_SHORT) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLshort, 3);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == GL_SHORT) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLshort, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == GL_SHORT) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLshort, 1);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == GL_FLOAT) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLfloat, 4);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
FILTER_F_3D(2);
FILTER_F_3D(3);
}
}
else if ((datatype == GL_FLOAT) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLfloat, 3);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
FILTER_F_3D(2);
}
}
else if ((datatype == GL_FLOAT) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLfloat, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
}
}
else if ((datatype == GL_FLOAT) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLfloat, 1);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLhalfARB, 4);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
FILTER_HF_3D(2);
FILTER_HF_3D(3);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLhalfARB, 3);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
FILTER_HF_3D(2);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLhalfARB, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLhalfARB, 1);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
}
}
else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
const GLuint *rowC = (const GLuint *) srcRowC;
const GLuint *rowD = (const GLuint *) srcRowD;
GLfloat *dst = (GLfloat *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
+ ((uint64_t) rowB[j] + (uint64_t) rowB[k])
+ ((uint64_t) rowC[j] + (uint64_t) rowC[k])
+ ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
dst[i] = (GLfloat)((double) tmp * 0.125);
}
}
else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
DECLARE_ROW_POINTERS0(GLushort);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowCr0 = rowC[j] & 0x1f;
const GLint rowCr1 = rowC[k] & 0x1f;
const GLint rowDr0 = rowD[j] & 0x1f;
const GLint rowDr1 = rowD[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
dst[i] = (b << 11) | (g << 5) | r;
}
}
else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLushort);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowCr0 = rowC[j] & 0xf;
const GLint rowCr1 = rowC[k] & 0xf;
const GLint rowDr0 = rowD[j] & 0xf;
const GLint rowDr1 = rowD[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
}
}
else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLushort);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowCr0 = rowC[j] & 0x1f;
const GLint rowCr1 = rowC[k] & 0x1f;
const GLint rowDr0 = rowD[j] & 0x1f;
const GLint rowDr1 = rowD[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
}
}
else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLushort);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
const GLint rowAa0 = (rowA[j] & 0x1);
const GLint rowAa1 = (rowA[k] & 0x1);
const GLint rowBa0 = (rowB[j] & 0x1);
const GLint rowBa1 = (rowB[k] & 0x1);
const GLint rowCa0 = (rowC[j] & 0x1);
const GLint rowCa1 = (rowC[k] & 0x1);
const GLint rowDa0 = (rowD[j] & 0x1);
const GLint rowDa1 = (rowD[k] & 0x1);
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
}
}
else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
DECLARE_ROW_POINTERS0(GLubyte);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3;
const GLint rowAr1 = rowA[k] & 0x3;
const GLint rowBr0 = rowB[j] & 0x3;
const GLint rowBr1 = rowB[k] & 0x3;
const GLint rowCr0 = rowC[j] & 0x3;
const GLint rowCr1 = rowC[k] & 0x3;
const GLint rowDr0 = rowD[j] & 0x3;
const GLint rowDr1 = rowD[k] & 0x3;
const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
dst[i] = (b << 5) | (g << 2) | r;
}
}
else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
DECLARE_ROW_POINTERS0(GLubyte);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowCr0 = rowC[j] & 0xf;
const GLint rowCr1 = rowC[k] & 0xf;
const GLint rowDr0 = rowD[j] & 0xf;
const GLint rowDr1 = rowD[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
dst[i] = (g << 4) | r;
}
}
else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLuint);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3ff;
const GLint rowAr1 = rowA[k] & 0x3ff;
const GLint rowBr0 = rowB[j] & 0x3ff;
const GLint rowBr1 = rowB[k] & 0x3ff;
const GLint rowCr0 = rowC[j] & 0x3ff;
const GLint rowCr1 = rowC[k] & 0x3ff;
const GLint rowDr0 = rowD[j] & 0x3ff;
const GLint rowDr1 = rowD[k] & 0x3ff;
const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff;
const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff;
const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff;
const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff;
const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff;
const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff;
const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff;
const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff;
const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
const GLint rowCa0 = (rowC[j] >> 30) & 0x3;
const GLint rowCa1 = (rowC[k] >> 30) & 0x3;
const GLint rowDa0 = (rowD[j] >> 30) & 0x3;
const GLint rowDa1 = (rowD[k] >> 30) & 0x3;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
dst[i] = (a << 30) | (b << 20) | (g << 10) | r;
}
}
else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
DECLARE_ROW_POINTERS0(GLuint);
GLfloat res[3];
GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
rgb9e5_to_float3(rowA[j], rowAj);
rgb9e5_to_float3(rowB[j], rowBj);
rgb9e5_to_float3(rowC[j], rowCj);
rgb9e5_to_float3(rowD[j], rowDj);
rgb9e5_to_float3(rowA[k], rowAk);
rgb9e5_to_float3(rowB[k], rowBk);
rgb9e5_to_float3(rowC[k], rowCk);
rgb9e5_to_float3(rowD[k], rowDk);
res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
dst[i] = float3_to_rgb9e5(res);
}
}
else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
DECLARE_ROW_POINTERS0(GLuint);
GLfloat res[3];
GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
r11g11b10f_to_float3(rowA[j], rowAj);
r11g11b10f_to_float3(rowB[j], rowBj);
r11g11b10f_to_float3(rowC[j], rowCj);
r11g11b10f_to_float3(rowD[j], rowDj);
r11g11b10f_to_float3(rowA[k], rowAk);
r11g11b10f_to_float3(rowB[k], rowBk);
r11g11b10f_to_float3(rowC[k], rowCk);
r11g11b10f_to_float3(rowD[k], rowDk);
res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
dst[i] = float3_to_r11g11b10f(res);
}
}
else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
DECLARE_ROW_POINTERS(GLfloat, 2);
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
}
}
else {
_mesa_problem(NULL, "bad format in do_row()");
}
}
/*
* These functions generate a 1/2-size mipmap image from a source image.
* Texture borders are handled by copying or averaging the source image's
* border texels, depending on the scale-down factor.
*/
static void
make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, const GLubyte *srcPtr,
GLint dstWidth, GLubyte *dstPtr)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLubyte *src;
GLubyte *dst;
/* skip the border pixel, if any */
src = srcPtr + border * bpt;
dst = dstPtr + border * bpt;
/* we just duplicate the input row, kind of hack, saves code */
do_row(datatype, comps, srcWidth - 2 * border, src, src,
dstWidth - 2 * border, dst);
if (border) {
/* copy left-most pixel from source */
assert(dstPtr);
assert(srcPtr);
memcpy(dstPtr, srcPtr, bpt);
/* copy right-most pixel from source */
memcpy(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt,
bpt);
}
}
static void
make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLubyte *srcA, *srcB;
GLubyte *dst;
GLint row, srcRowStep;
/* Compute src and dst pointers, skipping any border */
srcA = srcPtr + border * ((srcWidth + 1) * bpt);
if (srcHeight > 1 && srcHeight > dstHeight) {
/* sample from two source rows */
srcB = srcA + srcRowStride;
srcRowStep = 2;
}
else {
/* sample from one source row */
srcB = srcA;
srcRowStep = 1;
}
dst = dstPtr + border * ((dstWidth + 1) * bpt);
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, srcA, srcB,
dstWidthNB, dst);
srcA += srcRowStep * srcRowStride;
srcB += srcRowStep * srcRowStride;
dst += dstRowStride;
}
/* This is ugly but probably won't be used much */
if (border > 0) {
/* fill in dest border */
/* lower-left border pixel */
assert(dstPtr);
assert(srcPtr);
memcpy(dstPtr, srcPtr, bpt);
/* lower-right border pixel */
memcpy(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt, bpt);
/* upper-left border pixel */
memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
/* upper-right border pixel */
memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
/* lower border */
do_row(datatype, comps, srcWidthNB,
srcPtr + bpt,
srcPtr + bpt,
dstWidthNB, dstPtr + bpt);
/* upper border */
do_row(datatype, comps, srcWidthNB,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
dstWidthNB,
dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
/* left and right borders */
if (srcHeight == dstHeight) {
/* copy border pixel from src to dst */
for (row = 1; row < srcHeight; row++) {
memcpy(dstPtr + dstWidth * row * bpt,
srcPtr + srcWidth * row * bpt, bpt);
memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
}
}
else {
/* average two src pixels each dest pixel */
for (row = 0; row < dstHeightNB; row += 2) {
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1, dstPtr + (dstWidth * row + 1) * bpt);
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
}
}
}
}
static void
make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
const GLubyte **srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte **dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint srcDepthNB = srcDepth - 2 * border;
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint dstDepthNB = dstDepth - 2 * border;
GLint img, row;
GLint bytesPerSrcImage, bytesPerDstImage;
GLint bytesPerSrcRow, bytesPerDstRow;
GLint srcImageOffset, srcRowOffset;
(void) srcDepthNB; /* silence warnings */
bytesPerSrcImage = srcWidth * srcHeight * bpt;
bytesPerDstImage = dstWidth * dstHeight * bpt;
bytesPerSrcRow = srcWidth * bpt;
bytesPerDstRow = dstWidth * bpt;
/* Offset between adjacent src images to be averaged together */
srcImageOffset = (srcDepth == dstDepth) ? 0 : 1;
/* Offset between adjacent src rows to be averaged together */
srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
/*
* Need to average together up to 8 src pixels for each dest pixel.
* Break that down into 3 operations:
* 1. take two rows from source image and average them together.
* 2. take two rows from next source image and average them together.
* 3. take the two averaged rows and average them for the final dst row.
*/
/*
printf("mip3d %d x %d x %d -> %d x %d x %d\n",
srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
*/
for (img = 0; img < dstDepthNB; img++) {
/* first source image pointer, skipping border */
const GLubyte *imgSrcA = srcPtr[img * 2 + border]
+ bytesPerSrcRow * border + bpt * border;
/* second source image pointer, skipping border */
const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border]
+ bytesPerSrcRow * border + bpt * border;
/* address of the dest image, skipping border */
GLubyte *imgDst = dstPtr[img + border]
+ bytesPerDstRow * border + bpt * border;
/* setup the four source row pointers and the dest row pointer */
const GLubyte *srcImgARowA = imgSrcA;
const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
const GLubyte *srcImgBRowA = imgSrcB;
const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
GLubyte *dstImgRow = imgDst;
for (row = 0; row < dstHeightNB; row++) {
do_row_3D(datatype, comps, srcWidthNB,
srcImgARowA, srcImgARowB,
srcImgBRowA, srcImgBRowB,
dstWidthNB, dstImgRow);
/* advance to next rows */
srcImgARowA += bytesPerSrcRow + srcRowOffset;
srcImgARowB += bytesPerSrcRow + srcRowOffset;
srcImgBRowA += bytesPerSrcRow + srcRowOffset;
srcImgBRowB += bytesPerSrcRow + srcRowOffset;
dstImgRow += bytesPerDstRow;
}
}
/* Luckily we can leverage the make_2d_mipmap() function here! */
if (border > 0) {
/* do front border image */
make_2d_mipmap(datatype, comps, 1,
srcWidth, srcHeight, srcPtr[0], srcRowStride,
dstWidth, dstHeight, dstPtr[0], dstRowStride);
/* do back border image */
make_2d_mipmap(datatype, comps, 1,
srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride,
dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride);
/* do four remaining border edges that span the image slices */
if (srcDepth == dstDepth) {
/* just copy border pixels from src to dst */
for (img = 0; img < dstDepthNB; img++) {
const GLubyte *src;
GLubyte *dst;
/* do border along [img][row=0][col=0] */
src = srcPtr[img * 2];
dst = dstPtr[img];
memcpy(dst, src, bpt);
/* do border along [img][row=dstHeight-1][col=0] */
src = srcPtr[img * 2] + (srcHeight - 1) * bytesPerSrcRow;
dst = dstPtr[img] + (dstHeight - 1) * bytesPerDstRow;
memcpy(dst, src, bpt);
/* do border along [img][row=0][col=dstWidth-1] */
src = srcPtr[img * 2] + (srcWidth - 1) * bpt;
dst = dstPtr[img] + (dstWidth - 1) * bpt;
memcpy(dst, src, bpt);
/* do border along [img][row=dstHeight-1][col=dstWidth-1] */
src = srcPtr[img * 2] + (bytesPerSrcImage - bpt);
dst = dstPtr[img] + (bytesPerDstImage - bpt);
memcpy(dst, src, bpt);
}
}
else {
/* average border pixels from adjacent src image pairs */
ASSERT(srcDepthNB == 2 * dstDepthNB);
for (img = 0; img < dstDepthNB; img++) {
const GLubyte *srcA, *srcB;
GLubyte *dst;
/* do border along [img][row=0][col=0] */
srcA = srcPtr[img * 2 + 0];
srcB = srcPtr[img * 2 + srcImageOffset];
dst = dstPtr[img];
do_row(datatype, comps, 1, srcA, srcB, 1, dst);
/* do border along [img][row=dstHeight-1][col=0] */
srcA = srcPtr[img * 2 + 0]
+ (srcHeight - 1) * bytesPerSrcRow;
srcB = srcPtr[img * 2 + srcImageOffset]
+ (srcHeight - 1) * bytesPerSrcRow;
dst = dstPtr[img] + (dstHeight - 1) * bytesPerDstRow;
do_row(datatype, comps, 1, srcA, srcB, 1, dst);
/* do border along [img][row=0][col=dstWidth-1] */
srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt;
srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt;
dst = dstPtr[img] + (dstWidth - 1) * bpt;
do_row(datatype, comps, 1, srcA, srcB, 1, dst);
/* do border along [img][row=dstHeight-1][col=dstWidth-1] */
srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt);
srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt);
dst = dstPtr[img] + (bytesPerDstImage - bpt);
do_row(datatype, comps, 1, srcA, srcB, 1, dst);
}
}
}
}
/**
* Down-sample a texture image to produce the next lower mipmap level.
* \param comps components per texel (1, 2, 3 or 4)
* \param srcData array[slice] of pointers to source image slices
* \param dstData array[slice] of pointers to dest image slices
* \param srcRowStride stride between source rows, in bytes
* \param dstRowStride stride between destination rows, in bytes
*/
void
_mesa_generate_mipmap_level(GLenum target,
GLenum datatype, GLuint comps,
GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
const GLubyte **srcData,
GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte **dstData,
GLint dstRowStride)
{
int i;
switch (target) {
case GL_TEXTURE_1D:
make_1d_mipmap(datatype, comps, border,
srcWidth, srcData[0],
dstWidth, dstData[0]);
break;
case GL_TEXTURE_2D:
case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
make_2d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcData[0], srcRowStride,
dstWidth, dstHeight, dstData[0], dstRowStride);
break;
case GL_TEXTURE_3D:
make_3d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcDepth,
srcData, srcRowStride,
dstWidth, dstHeight, dstDepth,
dstData, dstRowStride);
break;
case GL_TEXTURE_1D_ARRAY_EXT:
assert(srcHeight == 1);
assert(dstHeight == 1);
for (i = 0; i < dstDepth; i++) {
make_1d_mipmap(datatype, comps, border,
srcWidth, srcData[i],
dstWidth, dstData[i]);
}
break;
case GL_TEXTURE_2D_ARRAY_EXT:
for (i = 0; i < dstDepth; i++) {
make_2d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcData[i], srcRowStride,
dstWidth, dstHeight, dstData[i], dstRowStride);
}
break;
case GL_TEXTURE_RECTANGLE_NV:
case GL_TEXTURE_EXTERNAL_OES:
/* no mipmaps, do nothing */
break;
default:
_mesa_problem(NULL, "bad tex target in _mesa_generate_mipmaps");
return;
}
}
/**
* compute next (level+1) image size
* \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
*/
static GLboolean
next_mipmap_level_size(GLenum target, GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
{
if (srcWidth - 2 * border > 1) {
*dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
}
else {
*dstWidth = srcWidth; /* can't go smaller */
}
if ((srcHeight - 2 * border > 1) &&
(target != GL_TEXTURE_1D_ARRAY_EXT)) {
*dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
}
else {
*dstHeight = srcHeight; /* can't go smaller */
}
if ((srcDepth - 2 * border > 1) &&
(target != GL_TEXTURE_2D_ARRAY_EXT)) {
*dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
}
else {
*dstDepth = srcDepth; /* can't go smaller */
}
if (*dstWidth == srcWidth &&
*dstHeight == srcHeight &&
*dstDepth == srcDepth) {
return GL_FALSE;
}
else {
return GL_TRUE;
}
}
/**
* Helper function for mipmap generation.
* Make sure the specified destination mipmap level is the right size/format
* for mipmap generation. If not, (re) allocate it.
* \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop
*/
GLboolean
_mesa_prepare_mipmap_level(struct gl_context *ctx,
struct gl_texture_object *texObj, GLuint level,
GLsizei width, GLsizei height, GLsizei depth,
GLsizei border, GLenum intFormat, gl_format format)
{
const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
GLuint face;
if (texObj->Immutable) {
/* The texture was created with glTexStorage() so the number/size of
* mipmap levels is fixed and the storage for all images is already
* allocated.
*/
if (!texObj->Image[0][level]) {
/* No more levels to create - we're done */
return GL_FALSE;
}
else {
/* Nothing to do - the texture memory must have already been
* allocated to the right size so we're all set.
*/
return GL_TRUE;
}
}
for (face = 0; face < numFaces; face++) {
struct gl_texture_image *dstImage;
GLenum target;
if (numFaces == 1)
target = texObj->Target;
else
target = GL_TEXTURE_CUBE_MAP_POSITIVE_X + face;
dstImage = _mesa_get_tex_image(ctx, texObj, target, level);
if (!dstImage) {
/* out of memory */
return GL_FALSE;
}
if (dstImage->Width != width ||
dstImage->Height != height ||
dstImage->Depth != depth ||
dstImage->Border != border ||
dstImage->InternalFormat != intFormat ||
dstImage->TexFormat != format) {
/* need to (re)allocate image */
ctx->Driver.FreeTextureImageBuffer(ctx, dstImage);
_mesa_init_teximage_fields(ctx, dstImage,
width, height, depth,
border, intFormat, format);
ctx->Driver.AllocTextureImageBuffer(ctx, dstImage);
/* in case the mipmap level is part of an FBO: */
_mesa_update_fbo_texture(ctx, texObj, face, level);
ctx->NewState |= _NEW_TEXTURE;
}
}
return GL_TRUE;
}
static void
generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target,
struct gl_texture_object *texObj,
const struct gl_texture_image *srcImage,
GLuint maxLevel)
{
GLint level;
GLenum datatype;
GLuint comps;
_mesa_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps);
for (level = texObj->BaseLevel; level < maxLevel; level++) {
/* generate image[level+1] from image[level] */
struct gl_texture_image *srcImage, *dstImage;
GLint srcRowStride, dstRowStride;
GLint srcWidth, srcHeight, srcDepth;
GLint dstWidth, dstHeight, dstDepth;
GLint border;
GLint slice;
GLboolean nextLevel;
GLubyte **srcMaps, **dstMaps;
GLboolean success = GL_TRUE;
/* get src image parameters */
srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
ASSERT(srcImage);
srcWidth = srcImage->Width;
srcHeight = srcImage->Height;
srcDepth = srcImage->Depth;
border = srcImage->Border;
nextLevel = next_mipmap_level_size(target, border,
srcWidth, srcHeight, srcDepth,
&dstWidth, &dstHeight, &dstDepth);
if (!nextLevel)
return;
if (!_mesa_prepare_mipmap_level(ctx, texObj, level + 1,
dstWidth, dstHeight, dstDepth,
border, srcImage->InternalFormat,
srcImage->TexFormat)) {
return;
}
/* get dest gl_texture_image */
dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
if (!dstImage) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
return;
}
if (target == GL_TEXTURE_1D_ARRAY) {
srcDepth = srcHeight;
dstDepth = dstHeight;
srcHeight = 1;
dstHeight = 1;
}
/* Map src texture image slices */
srcMaps = (GLubyte **) calloc(srcDepth, sizeof(GLubyte *));
if (srcMaps) {
for (slice = 0; slice < srcDepth; slice++) {
ctx->Driver.MapTextureImage(ctx, srcImage, slice,
0, 0, srcWidth, srcHeight,
GL_MAP_READ_BIT,
&srcMaps[slice], &srcRowStride);
if (!srcMaps[slice]) {
success = GL_FALSE;
break;
}
}
}
else {
success = GL_FALSE;
}
/* Map dst texture image slices */
dstMaps = (GLubyte **) calloc(dstDepth, sizeof(GLubyte *));
if (dstMaps) {
for (slice = 0; slice < dstDepth; slice++) {
ctx->Driver.MapTextureImage(ctx, dstImage, slice,
0, 0, dstWidth, dstHeight,
GL_MAP_WRITE_BIT,
&dstMaps[slice], &dstRowStride);
if (!dstMaps[slice]) {
success = GL_FALSE;
break;
}
}
}
else {
success = GL_FALSE;
}
if (success) {
/* generate one mipmap level (for 1D/2D/3D/array/etc texture) */
_mesa_generate_mipmap_level(target, datatype, comps, border,
srcWidth, srcHeight, srcDepth,
(const GLubyte **) srcMaps, srcRowStride,
dstWidth, dstHeight, dstDepth,
dstMaps, dstRowStride);
}
/* Unmap src image slices */
if (srcMaps) {
for (slice = 0; slice < srcDepth; slice++) {
if (srcMaps[slice]) {
ctx->Driver.UnmapTextureImage(ctx, srcImage, slice);
}
}
free(srcMaps);
}
/* Unmap dst image slices */
if (dstMaps) {
for (slice = 0; slice < dstDepth; slice++) {
if (dstMaps[slice]) {
ctx->Driver.UnmapTextureImage(ctx, dstImage, slice);
}
}
free(dstMaps);
}
if (!success) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation");
break;
}
} /* loop over mipmap levels */
}
static void
generate_mipmap_compressed(struct gl_context *ctx, GLenum target,
struct gl_texture_object *texObj,
struct gl_texture_image *srcImage,
GLuint maxLevel)
{
GLint level;
gl_format temp_format;
GLint components;
GLuint temp_src_stride; /* in bytes */
GLubyte *temp_src = NULL, *temp_dst = NULL;
GLenum temp_datatype;
GLenum temp_base_format;
/* only two types of compressed textures at this time */
assert(texObj->Target == GL_TEXTURE_2D ||
texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
/*
* Choose a format for the temporary, uncompressed base image.
* Then, get number of components, choose temporary image datatype,
* and get base format.
*/
temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat);
components = _mesa_format_num_components(temp_format);
/* Revisit this if we get compressed formats with >8 bits per component */
if (_mesa_get_format_datatype(srcImage->TexFormat)
== GL_SIGNED_NORMALIZED) {
temp_datatype = GL_BYTE;
}
else {
temp_datatype = GL_UNSIGNED_BYTE;
}
temp_base_format = _mesa_get_format_base_format(temp_format);
/* allocate storage for the temporary, uncompressed image */
/* 20 extra bytes, just be safe when calling last FetchTexel */
temp_src_stride = _mesa_format_row_stride(temp_format, srcImage->Width);
temp_src = (GLubyte *) malloc(temp_src_stride * srcImage->Height + 20);
if (!temp_src) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
return;
}
/* decompress base image to the temporary */
{
/* save pixel packing mode */
struct gl_pixelstore_attrib save = ctx->Pack;
/* use default/tight packing parameters */
ctx->Pack = ctx->DefaultPacking;
/* Get the uncompressed image */
assert(srcImage->Level == texObj->BaseLevel);
ctx->Driver.GetTexImage(ctx,
temp_base_format, temp_datatype,
temp_src, srcImage);
/* restore packing mode */
ctx->Pack = save;
}
for (level = texObj->BaseLevel; level < maxLevel; level++) {
/* generate image[level+1] from image[level] */
const struct gl_texture_image *srcImage;
struct gl_texture_image *dstImage;
GLint srcWidth, srcHeight, srcDepth;
GLint dstWidth, dstHeight, dstDepth;
GLint border;
GLboolean nextLevel;
GLuint temp_dst_stride; /* in bytes */
/* get src image parameters */
srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
ASSERT(srcImage);
srcWidth = srcImage->Width;
srcHeight = srcImage->Height;
srcDepth = srcImage->Depth;
border = srcImage->Border;
nextLevel = next_mipmap_level_size(target, border,
srcWidth, srcHeight, srcDepth,
&dstWidth, &dstHeight, &dstDepth);
if (!nextLevel)
break;
temp_dst_stride = _mesa_format_row_stride(temp_format, dstWidth);
if (!temp_dst) {
temp_dst = (GLubyte *) malloc(temp_dst_stride * dstHeight);
if (!temp_dst) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
break;
}
}
/* get dest gl_texture_image */
dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
if (!dstImage) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
free(temp_dst);
return;
}
/* rescale src image to dest image */
_mesa_generate_mipmap_level(target, temp_datatype, components, border,
srcWidth, srcHeight, srcDepth,
(const GLubyte **) &temp_src,
temp_src_stride,
dstWidth, dstHeight, dstDepth,
&temp_dst, temp_dst_stride);
if (!_mesa_prepare_mipmap_level(ctx, texObj, level + 1,
dstWidth, dstHeight, dstDepth,
border, srcImage->InternalFormat,
srcImage->TexFormat)) {
free(temp_dst);
return;
}
/* The image space was allocated above so use glTexSubImage now */
ctx->Driver.TexSubImage(ctx, 2, dstImage,
0, 0, 0, dstWidth, dstHeight, 1,
temp_base_format, temp_datatype,
temp_dst, &ctx->DefaultPacking);
/* swap src and dest pointers */
{
GLubyte *temp = temp_src;
temp_src = temp_dst;
temp_dst = temp;
temp_src_stride = temp_dst_stride;
}
} /* loop over mipmap levels */
free(temp_src);
free(temp_dst);
}
/**
* Automatic mipmap generation.
* This is the fallback/default function for ctx->Driver.GenerateMipmap().
* Generate a complete set of mipmaps from texObj's BaseLevel image.
* Stop at texObj's MaxLevel or when we get to the 1x1 texture.
* For cube maps, target will be one of
* GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
*/
void
_mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
struct gl_texture_object *texObj)
{
struct gl_texture_image *srcImage;
GLint maxLevel;
ASSERT(texObj);
srcImage = _mesa_select_tex_image(ctx, texObj, target, texObj->BaseLevel);
ASSERT(srcImage);
maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1;
ASSERT(maxLevel >= 0); /* bad target */
maxLevel = MIN2(maxLevel, texObj->MaxLevel);
if (_mesa_is_format_compressed(srcImage->TexFormat)) {
generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel);
} else {
generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel);
}
}