// 7zAes.cpp
#include "StdAfx.h"
#include "../../../C/Sha256.h"
#include "../../Windows/Synchronization.h"
#include "../Common/StreamObjects.h"
#include "../Common/StreamUtils.h"
#include "7zAes.h"
#include "MyAes.h"
#ifndef EXTRACT_ONLY
#include "RandGen.h"
#endif
using namespace NWindows;
namespace NCrypto {
namespace NSevenZ {
bool CKeyInfo::IsEqualTo(const CKeyInfo &a) const
{
if (SaltSize != a.SaltSize || NumCyclesPower != a.NumCyclesPower)
return false;
for (UInt32 i = 0; i < SaltSize; i++)
if (Salt[i] != a.Salt[i])
return false;
return (Password == a.Password);
}
void CKeyInfo::CalculateDigest()
{
if (NumCyclesPower == 0x3F)
{
UInt32 pos;
for (pos = 0; pos < SaltSize; pos++)
Key[pos] = Salt[pos];
for (UInt32 i = 0; i < Password.Size() && pos < kKeySize; i++)
Key[pos++] = Password[i];
for (; pos < kKeySize; pos++)
Key[pos] = 0;
}
else
{
CSha256 sha;
Sha256_Init(&sha);
const UInt64 numRounds = (UInt64)1 << NumCyclesPower;
Byte temp[8] = { 0,0,0,0,0,0,0,0 };
for (UInt64 round = 0; round < numRounds; round++)
{
Sha256_Update(&sha, Salt, (size_t)SaltSize);
Sha256_Update(&sha, Password, Password.Size());
Sha256_Update(&sha, temp, 8);
for (int i = 0; i < 8; i++)
if (++(temp[i]) != 0)
break;
}
Sha256_Final(&sha, Key);
}
}
bool CKeyInfoCache::Find(CKeyInfo &key)
{
FOR_VECTOR (i, Keys)
{
const CKeyInfo &cached = Keys[i];
if (key.IsEqualTo(cached))
{
for (int j = 0; j < kKeySize; j++)
key.Key[j] = cached.Key[j];
if (i != 0)
Keys.MoveToFront(i);
return true;
}
}
return false;
}
void CKeyInfoCache::Add(CKeyInfo &key)
{
if (Find(key))
return;
if (Keys.Size() >= Size)
Keys.DeleteBack();
Keys.Insert(0, key);
}
static CKeyInfoCache g_GlobalKeyCache(32);
static NSynchronization::CCriticalSection g_GlobalKeyCacheCriticalSection;
CBase::CBase():
_cachedKeys(16),
_ivSize(0)
{
for (int i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
}
void CBase::CalculateDigest()
{
NSynchronization::CCriticalSectionLock lock(g_GlobalKeyCacheCriticalSection);
if (_cachedKeys.Find(_key))
g_GlobalKeyCache.Add(_key);
else
{
if (!g_GlobalKeyCache.Find(_key))
{
_key.CalculateDigest();
g_GlobalKeyCache.Add(_key);
}
_cachedKeys.Add(_key);
}
}
#ifndef EXTRACT_ONLY
/*
STDMETHODIMP CEncoder::ResetSalt()
{
_key.SaltSize = 4;
g_RandomGenerator.Generate(_key.Salt, _key.SaltSize);
return S_OK;
}
*/
STDMETHODIMP CEncoder::ResetInitVector()
{
_ivSize = 8;
g_RandomGenerator.Generate(_iv, (unsigned)_ivSize);
return S_OK;
}
STDMETHODIMP CEncoder::WriteCoderProperties(ISequentialOutStream *outStream)
{
// _key.Init();
for (UInt32 i = _ivSize; i < sizeof(_iv); i++)
_iv[i] = 0;
UInt32 ivSize = _ivSize;
// _key.NumCyclesPower = 0x3F;
_key.NumCyclesPower = 19;
Byte firstByte = (Byte)(_key.NumCyclesPower |
(((_key.SaltSize == 0) ? 0 : 1) << 7) |
(((ivSize == 0) ? 0 : 1) << 6));
RINOK(outStream->Write(&firstByte, 1, NULL));
if (_key.SaltSize == 0 && ivSize == 0)
return S_OK;
Byte saltSizeSpec = (Byte)((_key.SaltSize == 0) ? 0 : (_key.SaltSize - 1));
Byte ivSizeSpec = (Byte)((ivSize == 0) ? 0 : (ivSize - 1));
Byte secondByte = (Byte)(((saltSizeSpec) << 4) | ivSizeSpec);
RINOK(outStream->Write(&secondByte, 1, NULL));
if (_key.SaltSize > 0)
{
RINOK(WriteStream(outStream, _key.Salt, _key.SaltSize));
}
if (ivSize > 0)
{
RINOK(WriteStream(outStream, _iv, ivSize));
}
return S_OK;
}
HRESULT CEncoder::CreateFilter()
{
_aesFilter = new CAesCbcEncoder(kKeySize);
return S_OK;
}
#endif
STDMETHODIMP CDecoder::SetDecoderProperties2(const Byte *data, UInt32 size)
{
_key.Init();
UInt32 i;
for (i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
if (size == 0)
return S_OK;
UInt32 pos = 0;
Byte firstByte = data[pos++];
_key.NumCyclesPower = firstByte & 0x3F;
if ((firstByte & 0xC0) == 0)
return S_OK;
_key.SaltSize = (firstByte >> 7) & 1;
UInt32 ivSize = (firstByte >> 6) & 1;
if (pos >= size)
return E_INVALIDARG;
Byte secondByte = data[pos++];
_key.SaltSize += (secondByte >> 4);
ivSize += (secondByte & 0x0F);
if (pos + _key.SaltSize + ivSize > size)
return E_INVALIDARG;
for (i = 0; i < _key.SaltSize; i++)
_key.Salt[i] = data[pos++];
for (i = 0; i < ivSize; i++)
_iv[i] = data[pos++];
return (_key.NumCyclesPower <= 24) ? S_OK : E_NOTIMPL;
}
STDMETHODIMP CBaseCoder::CryptoSetPassword(const Byte *data, UInt32 size)
{
_key.Password.CopyFrom(data, (size_t)size);
return S_OK;
}
STDMETHODIMP CBaseCoder::Init()
{
CalculateDigest();
if (_aesFilter == 0)
{
RINOK(CreateFilter());
}
CMyComPtr<ICryptoProperties> cp;
RINOK(_aesFilter.QueryInterface(IID_ICryptoProperties, &cp));
RINOK(cp->SetKey(_key.Key, sizeof(_key.Key)));
RINOK(cp->SetInitVector(_iv, sizeof(_iv)));
return _aesFilter->Init();
}
STDMETHODIMP_(UInt32) CBaseCoder::Filter(Byte *data, UInt32 size)
{
return _aesFilter->Filter(data, size);
}
HRESULT CDecoder::CreateFilter()
{
_aesFilter = new CAesCbcDecoder(kKeySize);
return S_OK;
}
}}