//===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class contains all of the shared state and information that is used by
// the BugPoint tool to track down errors in optimizations. This class is the
// main driver class that invokes all sub-functionality.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
#define LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
#include "llvm/IR/ValueMap.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <memory>
#include <string>
#include <vector>
namespace llvm {
class Value;
class PassInfo;
class Module;
class GlobalVariable;
class Function;
class BasicBlock;
class AbstractInterpreter;
class Instruction;
class LLVMContext;
class DebugCrashes;
class CC;
extern bool DisableSimplifyCFG;
/// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
///
extern bool BugpointIsInterrupted;
class BugDriver {
LLVMContext& Context;
const char *ToolName; // argv[0] of bugpoint
std::string ReferenceOutputFile; // Name of `good' output file
Module *Program; // The raw program, linked together
std::vector<std::string> PassesToRun;
AbstractInterpreter *Interpreter; // How to run the program
AbstractInterpreter *SafeInterpreter; // To generate reference output, etc.
CC *cc;
bool run_find_bugs;
unsigned Timeout;
unsigned MemoryLimit;
bool UseValgrind;
// FIXME: sort out public/private distinctions...
friend class ReducePassList;
friend class ReduceMisCodegenFunctions;
public:
BugDriver(const char *toolname, bool find_bugs,
unsigned timeout, unsigned memlimit, bool use_valgrind,
LLVMContext& ctxt);
~BugDriver();
const char *getToolName() const { return ToolName; }
LLVMContext& getContext() const { return Context; }
// Set up methods... these methods are used to copy information about the
// command line arguments into instance variables of BugDriver.
//
bool addSources(const std::vector<std::string> &FileNames);
void addPass(std::string p) { PassesToRun.push_back(std::move(p)); }
void setPassesToRun(const std::vector<std::string> &PTR) {
PassesToRun = PTR;
}
const std::vector<std::string> &getPassesToRun() const {
return PassesToRun;
}
/// run - The top level method that is invoked after all of the instance
/// variables are set up from command line arguments. The \p as_child argument
/// indicates whether the driver is to run in parent mode or child mode.
///
bool run(std::string &ErrMsg);
/// debugOptimizerCrash - This method is called when some optimizer pass
/// crashes on input. It attempts to prune down the testcase to something
/// reasonable, and figure out exactly which pass is crashing.
///
bool debugOptimizerCrash(const std::string &ID = "passes");
/// debugCodeGeneratorCrash - This method is called when the code generator
/// crashes on an input. It attempts to reduce the input as much as possible
/// while still causing the code generator to crash.
bool debugCodeGeneratorCrash(std::string &Error);
/// debugMiscompilation - This method is used when the passes selected are not
/// crashing, but the generated output is semantically different from the
/// input.
void debugMiscompilation(std::string *Error);
/// debugPassMiscompilation - This method is called when the specified pass
/// miscompiles Program as input. It tries to reduce the testcase to
/// something that smaller that still miscompiles the program.
/// ReferenceOutput contains the filename of the file containing the output we
/// are to match.
///
bool debugPassMiscompilation(const PassInfo *ThePass,
const std::string &ReferenceOutput);
/// compileSharedObject - This method creates a SharedObject from a given
/// BitcodeFile for debugging a code generator.
///
std::string compileSharedObject(const std::string &BitcodeFile,
std::string &Error);
/// debugCodeGenerator - This method narrows down a module to a function or
/// set of functions, using the CBE as a ``safe'' code generator for other
/// functions that are not under consideration.
bool debugCodeGenerator(std::string *Error);
/// isExecutingJIT - Returns true if bugpoint is currently testing the JIT
///
bool isExecutingJIT();
Module *getProgram() const { return Program; }
/// swapProgramIn - Set the current module to the specified module, returning
/// the old one.
Module *swapProgramIn(Module *M) {
Module *OldProgram = Program;
Program = M;
return OldProgram;
}
AbstractInterpreter *switchToSafeInterpreter() {
AbstractInterpreter *Old = Interpreter;
Interpreter = (AbstractInterpreter*)SafeInterpreter;
return Old;
}
void switchToInterpreter(AbstractInterpreter *AI) {
Interpreter = AI;
}
/// setNewProgram - If we reduce or update the program somehow, call this
/// method to update bugdriver with it. This deletes the old module and sets
/// the specified one as the current program.
void setNewProgram(Module *M);
/// compileProgram - Try to compile the specified module, returning false and
/// setting Error if an error occurs. This is used for code generation
/// crash testing.
///
void compileProgram(Module *M, std::string *Error) const;
/// executeProgram - This method runs "Program", capturing the output of the
/// program to a file. A recommended filename may be optionally specified.
///
std::string executeProgram(const Module *Program,
std::string OutputFilename,
std::string Bitcode,
const std::string &SharedObjects,
AbstractInterpreter *AI,
std::string *Error) const;
/// executeProgramSafely - Used to create reference output with the "safe"
/// backend, if reference output is not provided. If there is a problem with
/// the code generator (e.g., llc crashes), this will return false and set
/// Error.
///
std::string executeProgramSafely(const Module *Program,
const std::string &OutputFile,
std::string *Error) const;
/// createReferenceFile - calls compileProgram and then records the output
/// into ReferenceOutputFile. Returns true if reference file created, false
/// otherwise. Note: initializeExecutionEnvironment should be called BEFORE
/// this function.
///
bool createReferenceFile(Module *M, const std::string &Filename
= "bugpoint.reference.out-%%%%%%%");
/// diffProgram - This method executes the specified module and diffs the
/// output against the file specified by ReferenceOutputFile. If the output
/// is different, 1 is returned. If there is a problem with the code
/// generator (e.g., llc crashes), this will return -1 and set Error.
///
bool diffProgram(const Module *Program,
const std::string &BitcodeFile = "",
const std::string &SharedObj = "",
bool RemoveBitcode = false,
std::string *Error = nullptr) const;
/// EmitProgressBitcode - This function is used to output M to a file named
/// "bugpoint-ID.bc".
///
void EmitProgressBitcode(const Module *M, const std::string &ID,
bool NoFlyer = false) const;
/// This method clones the current Program and deletes the specified
/// instruction from the cloned module. It then runs a series of cleanup
/// passes (ADCE and SimplifyCFG) to eliminate any code which depends on the
/// value. The modified module is then returned.
///
std::unique_ptr<Module> deleteInstructionFromProgram(const Instruction *I,
unsigned Simp);
/// This method clones the current Program and performs a series of cleanups
/// intended to get rid of extra cruft on the module. If the
/// MayModifySemantics argument is true, then the cleanups is allowed to
/// modify how the code behaves.
///
std::unique_ptr<Module> performFinalCleanups(Module *M,
bool MayModifySemantics = false);
/// Given a module, extract up to one loop from it into a new function. This
/// returns null if there are no extractable loops in the program or if the
/// loop extractor crashes.
std::unique_ptr<Module> extractLoop(Module *M);
/// Extract all but the specified basic blocks into their own functions. The
/// only detail is that M is actually a module cloned from the one the BBs are
/// in, so some mapping needs to be performed. If this operation fails for
/// some reason (ie the implementation is buggy), this function should return
/// null, otherwise it returns a new Module.
std::unique_ptr<Module>
extractMappedBlocksFromModule(const std::vector<BasicBlock *> &BBs,
Module *M);
/// Carefully run the specified set of pass on the specified/ module,
/// returning the transformed module on success, or a null pointer on failure.
std::unique_ptr<Module> runPassesOn(Module *M,
const std::vector<std::string> &Passes,
unsigned NumExtraArgs = 0,
const char *const *ExtraArgs = nullptr);
/// runPasses - Run the specified passes on Program, outputting a bitcode
/// file and writting the filename into OutputFile if successful. If the
/// optimizations fail for some reason (optimizer crashes), return true,
/// otherwise return false. If DeleteOutput is set to true, the bitcode is
/// deleted on success, and the filename string is undefined. This prints to
/// outs() a single line message indicating whether compilation was successful
/// or failed, unless Quiet is set. ExtraArgs specifies additional arguments
/// to pass to the child bugpoint instance.
///
bool runPasses(Module *Program,
const std::vector<std::string> &PassesToRun,
std::string &OutputFilename, bool DeleteOutput = false,
bool Quiet = false, unsigned NumExtraArgs = 0,
const char * const *ExtraArgs = nullptr) const;
/// runPasses - Just like the method above, but this just returns true or
/// false indicating whether or not the optimizer crashed on the specified
/// input (true = crashed). Does not produce any output.
///
bool runPasses(Module *M,
const std::vector<std::string> &PassesToRun) const {
std::string Filename;
return runPasses(M, PassesToRun, Filename, true);
}
/// runManyPasses - Take the specified pass list and create different
/// combinations of passes to compile the program with. Compile the program with
/// each set and mark test to see if it compiled correctly. If the passes
/// compiled correctly output nothing and rearrange the passes into a new order.
/// If the passes did not compile correctly, output the command required to
/// recreate the failure. This returns true if a compiler error is found.
///
bool runManyPasses(const std::vector<std::string> &AllPasses,
std::string &ErrMsg);
/// writeProgramToFile - This writes the current "Program" to the named
/// bitcode file. If an error occurs, true is returned.
///
bool writeProgramToFile(const std::string &Filename, const Module *M) const;
bool writeProgramToFile(const std::string &Filename, int FD,
const Module *M) const;
private:
/// initializeExecutionEnvironment - This method is used to set up the
/// environment for executing LLVM programs.
///
bool initializeExecutionEnvironment();
};
/// Given a bitcode or assembly input filename, parse and return it, or return
/// null if not possible.
///
std::unique_ptr<Module> parseInputFile(StringRef InputFilename,
LLVMContext &ctxt);
/// getPassesString - Turn a list of passes into a string which indicates the
/// command line options that must be passed to add the passes.
///
std::string getPassesString(const std::vector<std::string> &Passes);
/// PrintFunctionList - prints out list of problematic functions
///
void PrintFunctionList(const std::vector<Function*> &Funcs);
/// PrintGlobalVariableList - prints out list of problematic global variables
///
void PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs);
// DeleteGlobalInitializer - "Remove" the global variable by deleting its
// initializer, making it external.
//
void DeleteGlobalInitializer(GlobalVariable *GV);
// DeleteFunctionBody - "Remove" the function by deleting all of it's basic
// blocks, making it external.
//
void DeleteFunctionBody(Function *F);
/// Given a module and a list of functions in the module, split the functions
/// OUT of the specified module, and place them in the new module.
std::unique_ptr<Module>
SplitFunctionsOutOfModule(Module *M, const std::vector<Function *> &F,
ValueToValueMapTy &VMap);
} // End llvm namespace
#endif