<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title><atomic> design</title>
<link type="text/css" rel="stylesheet" href="menu.css">
<link type="text/css" rel="stylesheet" href="content.css">
</head>
<body>
<div id="menu">
<div>
<a href="http://llvm.org/">LLVM Home</a>
</div>
<div class="submenu">
<label>libc++ Info</label>
<a href="/index.html">About</a>
</div>
<div class="submenu">
<label>Quick Links</label>
<a href="http://lists.llvm.org/mailman/listinfo/cfe-dev">cfe-dev</a>
<a href="http://lists.llvm.org/mailman/listinfo/cfe-commits">cfe-commits</a>
<a href="https://bugs.llvm.org/">Bug Reports</a>
<a href="http://llvm.org/svn/llvm-project/libcxx/trunk/">Browse SVN</a>
<a href="http://llvm.org/viewvc/llvm-project/libcxx/trunk/">Browse ViewVC</a>
</div>
</div>
<div id="content">
<!--*********************************************************************-->
<h1><atomic> design</h1>
<!--*********************************************************************-->
<p>
The compiler supplies all of the intrinsics as described below. This list of
intrinsics roughly parallels the requirements of the C and C++ atomics
proposals. The C and C++ library implementations simply drop through to these
intrinsics. Anything the platform does not support in hardware, the compiler
arranges for a (compiler-rt) library call to be made which will do the job with
a mutex, and in this case ignoring the memory ordering parameter (effectively
implementing <tt>memory_order_seq_cst</tt>).
</p>
<p>
Ultimate efficiency is preferred over run time error checking. Undefined
behavior is acceptable when the inputs do not conform as defined below.
</p>
<blockquote><pre>
<font color="#C80000">// In every intrinsic signature below, type* atomic_obj may be a pointer to a</font>
<font color="#C80000">// volatile-qualified type.</font>
<font color="#C80000">// Memory ordering values map to the following meanings:</font>
<font color="#C80000">// memory_order_relaxed == 0</font>
<font color="#C80000">// memory_order_consume == 1</font>
<font color="#C80000">// memory_order_acquire == 2</font>
<font color="#C80000">// memory_order_release == 3</font>
<font color="#C80000">// memory_order_acq_rel == 4</font>
<font color="#C80000">// memory_order_seq_cst == 5</font>
<font color="#C80000">// type must be trivially copyable</font>
<font color="#C80000">// type represents a "type argument"</font>
bool __atomic_is_lock_free(type);
<font color="#C80000">// type must be trivially copyable</font>
<font color="#C80000">// Behavior is defined for mem_ord = 0, 1, 2, 5</font>
type __atomic_load(const type* atomic_obj, int mem_ord);
<font color="#C80000">// type must be trivially copyable</font>
<font color="#C80000">// Behavior is defined for mem_ord = 0, 3, 5</font>
void __atomic_store(type* atomic_obj, type desired, int mem_ord);
<font color="#C80000">// type must be trivially copyable</font>
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
type __atomic_exchange(type* atomic_obj, type desired, int mem_ord);
<font color="#C80000">// type must be trivially copyable</font>
<font color="#C80000">// Behavior is defined for mem_success = [0 ... 5],</font>
<font color="#C80000">// mem_failure <= mem_success</font>
<font color="#C80000">// mem_failure != 3</font>
<font color="#C80000">// mem_failure != 4</font>
bool __atomic_compare_exchange_strong(type* atomic_obj,
type* expected, type desired,
int mem_success, int mem_failure);
<font color="#C80000">// type must be trivially copyable</font>
<font color="#C80000">// Behavior is defined for mem_success = [0 ... 5],</font>
<font color="#C80000">// mem_failure <= mem_success</font>
<font color="#C80000">// mem_failure != 3</font>
<font color="#C80000">// mem_failure != 4</font>
bool __atomic_compare_exchange_weak(type* atomic_obj,
type* expected, type desired,
int mem_success, int mem_failure);
<font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font>
<font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font>
<font color="#C80000">// char16_t, char32_t, wchar_t</font>
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
type __atomic_fetch_add(type* atomic_obj, type operand, int mem_ord);
<font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font>
<font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font>
<font color="#C80000">// char16_t, char32_t, wchar_t</font>
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
type __atomic_fetch_sub(type* atomic_obj, type operand, int mem_ord);
<font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font>
<font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font>
<font color="#C80000">// char16_t, char32_t, wchar_t</font>
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
type __atomic_fetch_and(type* atomic_obj, type operand, int mem_ord);
<font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font>
<font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font>
<font color="#C80000">// char16_t, char32_t, wchar_t</font>
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
type __atomic_fetch_or(type* atomic_obj, type operand, int mem_ord);
<font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font>
<font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font>
<font color="#C80000">// char16_t, char32_t, wchar_t</font>
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
type __atomic_fetch_xor(type* atomic_obj, type operand, int mem_ord);
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
void* __atomic_fetch_add(void** atomic_obj, ptrdiff_t operand, int mem_ord);
void* __atomic_fetch_sub(void** atomic_obj, ptrdiff_t operand, int mem_ord);
<font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font>
void __atomic_thread_fence(int mem_ord);
void __atomic_signal_fence(int mem_ord);
</pre></blockquote>
<p>
If desired the intrinsics taking a single <tt>mem_ord</tt> parameter can default
this argument to 5.
</p>
<p>
If desired the intrinsics taking two ordering parameters can default
<tt>mem_success</tt> to 5, and <tt>mem_failure</tt> to
<tt>translate_memory_order(mem_success)</tt> where
<tt>translate_memory_order(mem_success)</tt> is defined as:
</p>
<blockquote><pre>
int
translate_memory_order(int o)
{
switch (o)
{
case 4:
return 2;
case 3:
return 0;
}
return o;
}
</pre></blockquote>
<p>
Below are representative C++ implementations of all of the operations. Their
purpose is to document the desired semantics of each operation, assuming
<tt>memory_order_seq_cst</tt>. This is essentially the code that will be called
if the front end calls out to compiler-rt.
</p>
<blockquote><pre>
template <class T>
T
__atomic_load(T const volatile* obj)
{
unique_lock<mutex> _(some_mutex);
return *obj;
}
template <class T>
void
__atomic_store(T volatile* obj, T desr)
{
unique_lock<mutex> _(some_mutex);
*obj = desr;
}
template <class T>
T
__atomic_exchange(T volatile* obj, T desr)
{
unique_lock<mutex> _(some_mutex);
T r = *obj;
*obj = desr;
return r;
}
template <class T>
bool
__atomic_compare_exchange_strong(T volatile* obj, T* exp, T desr)
{
unique_lock<mutex> _(some_mutex);
if (std::memcmp(const_cast<T*>(obj), exp, sizeof(T)) == 0) <font color="#C80000">// if (*obj == *exp)</font>
{
std::memcpy(const_cast<T*>(obj), &desr, sizeof(T)); <font color="#C80000">// *obj = desr;</font>
return true;
}
std::memcpy(exp, const_cast<T*>(obj), sizeof(T)); <font color="#C80000">// *exp = *obj;</font>
return false;
}
<font color="#C80000">// May spuriously return false (even if *obj == *exp)</font>
template <class T>
bool
__atomic_compare_exchange_weak(T volatile* obj, T* exp, T desr)
{
unique_lock<mutex> _(some_mutex);
if (std::memcmp(const_cast<T*>(obj), exp, sizeof(T)) == 0) <font color="#C80000">// if (*obj == *exp)</font>
{
std::memcpy(const_cast<T*>(obj), &desr, sizeof(T)); <font color="#C80000">// *obj = desr;</font>
return true;
}
std::memcpy(exp, const_cast<T*>(obj), sizeof(T)); <font color="#C80000">// *exp = *obj;</font>
return false;
}
template <class T>
T
__atomic_fetch_add(T volatile* obj, T operand)
{
unique_lock<mutex> _(some_mutex);
T r = *obj;
*obj += operand;
return r;
}
template <class T>
T
__atomic_fetch_sub(T volatile* obj, T operand)
{
unique_lock<mutex> _(some_mutex);
T r = *obj;
*obj -= operand;
return r;
}
template <class T>
T
__atomic_fetch_and(T volatile* obj, T operand)
{
unique_lock<mutex> _(some_mutex);
T r = *obj;
*obj &= operand;
return r;
}
template <class T>
T
__atomic_fetch_or(T volatile* obj, T operand)
{
unique_lock<mutex> _(some_mutex);
T r = *obj;
*obj |= operand;
return r;
}
template <class T>
T
__atomic_fetch_xor(T volatile* obj, T operand)
{
unique_lock<mutex> _(some_mutex);
T r = *obj;
*obj ^= operand;
return r;
}
void*
__atomic_fetch_add(void* volatile* obj, ptrdiff_t operand)
{
unique_lock<mutex> _(some_mutex);
void* r = *obj;
(char*&)(*obj) += operand;
return r;
}
void*
__atomic_fetch_sub(void* volatile* obj, ptrdiff_t operand)
{
unique_lock<mutex> _(some_mutex);
void* r = *obj;
(char*&)(*obj) -= operand;
return r;
}
void __atomic_thread_fence()
{
unique_lock<mutex> _(some_mutex);
}
void __atomic_signal_fence()
{
unique_lock<mutex> _(some_mutex);
}
</pre></blockquote>
</div>
</body>
</html>