// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/bpf_dsl/policy_compiler.h"
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/syscall.h>
#include <limits>
#include "base/logging.h"
#include "base/macros.h"
#include "sandbox/linux/bpf_dsl/bpf_dsl.h"
#include "sandbox/linux/bpf_dsl/bpf_dsl_impl.h"
#include "sandbox/linux/bpf_dsl/codegen.h"
#include "sandbox/linux/bpf_dsl/policy.h"
#include "sandbox/linux/bpf_dsl/seccomp_macros.h"
#include "sandbox/linux/bpf_dsl/syscall_set.h"
#include "sandbox/linux/system_headers/linux_filter.h"
#include "sandbox/linux/system_headers/linux_seccomp.h"
#include "sandbox/linux/system_headers/linux_syscalls.h"
namespace sandbox {
namespace bpf_dsl {
namespace {
#if defined(__i386__) || defined(__x86_64__)
const bool kIsIntel = true;
#else
const bool kIsIntel = false;
#endif
#if defined(__x86_64__) && defined(__ILP32__)
const bool kIsX32 = true;
#else
const bool kIsX32 = false;
#endif
const int kSyscallsRequiredForUnsafeTraps[] = {
__NR_rt_sigprocmask,
__NR_rt_sigreturn,
#if defined(__NR_sigprocmask)
__NR_sigprocmask,
#endif
#if defined(__NR_sigreturn)
__NR_sigreturn,
#endif
};
bool HasExactlyOneBit(uint64_t x) {
// Common trick; e.g., see http://stackoverflow.com/a/108329.
return x != 0 && (x & (x - 1)) == 0;
}
ResultExpr DefaultPanic(const char* error) {
return Kill();
}
// A Trap() handler that returns an "errno" value. The value is encoded
// in the "aux" parameter.
intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
// TrapFnc functions report error by following the native kernel convention
// of returning an exit code in the range of -1..-4096. They do not try to
// set errno themselves. The glibc wrapper that triggered the SIGSYS will
// ultimately do so for us.
int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
return -err;
}
bool HasUnsafeTraps(const Policy* policy) {
DCHECK(policy);
for (uint32_t sysnum : SyscallSet::ValidOnly()) {
if (policy->EvaluateSyscall(sysnum)->HasUnsafeTraps()) {
return true;
}
}
return policy->InvalidSyscall()->HasUnsafeTraps();
}
} // namespace
struct PolicyCompiler::Range {
uint32_t from;
CodeGen::Node node;
};
PolicyCompiler::PolicyCompiler(const Policy* policy, TrapRegistry* registry)
: policy_(policy),
registry_(registry),
escapepc_(0),
panic_func_(DefaultPanic),
gen_(),
has_unsafe_traps_(HasUnsafeTraps(policy_)) {
DCHECK(policy);
}
PolicyCompiler::~PolicyCompiler() {
}
CodeGen::Program PolicyCompiler::Compile() {
CHECK(policy_->InvalidSyscall()->IsDeny())
<< "Policies should deny invalid system calls";
// If our BPF program has unsafe traps, enable support for them.
if (has_unsafe_traps_) {
CHECK_NE(0U, escapepc_) << "UnsafeTrap() requires a valid escape PC";
for (int sysnum : kSyscallsRequiredForUnsafeTraps) {
CHECK(policy_->EvaluateSyscall(sysnum)->IsAllow())
<< "Policies that use UnsafeTrap() must unconditionally allow all "
"required system calls";
}
CHECK(registry_->EnableUnsafeTraps())
<< "We'd rather die than enable unsafe traps";
}
// Assemble the BPF filter program.
return gen_.Compile(AssemblePolicy());
}
void PolicyCompiler::DangerousSetEscapePC(uint64_t escapepc) {
escapepc_ = escapepc;
}
void PolicyCompiler::SetPanicFunc(PanicFunc panic_func) {
panic_func_ = panic_func;
}
CodeGen::Node PolicyCompiler::AssemblePolicy() {
// A compiled policy consists of three logical parts:
// 1. Check that the "arch" field matches the expected architecture.
// 2. If the policy involves unsafe traps, check if the syscall was
// invoked by Syscall::Call, and then allow it unconditionally.
// 3. Check the system call number and jump to the appropriate compiled
// system call policy number.
return CheckArch(MaybeAddEscapeHatch(DispatchSyscall()));
}
CodeGen::Node PolicyCompiler::CheckArch(CodeGen::Node passed) {
// If the architecture doesn't match SECCOMP_ARCH, disallow the
// system call.
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARCH_IDX,
gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, SECCOMP_ARCH, passed,
CompileResult(panic_func_(
"Invalid audit architecture in BPF filter"))));
}
CodeGen::Node PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest) {
// If no unsafe traps, then simply return |rest|.
if (!has_unsafe_traps_) {
return rest;
}
// We already enabled unsafe traps in Compile, but enable them again to give
// the trap registry a second chance to complain before we add the backdoor.
CHECK(registry_->EnableUnsafeTraps());
// Allow system calls, if they originate from our magic return address.
const uint32_t lopc = static_cast<uint32_t>(escapepc_);
const uint32_t hipc = static_cast<uint32_t>(escapepc_ >> 32);
// BPF cannot do native 64-bit comparisons, so we have to compare
// both 32-bit halves of the instruction pointer. If they match what
// we expect, we return ERR_ALLOWED. If either or both don't match,
// we continue evalutating the rest of the sandbox policy.
//
// For simplicity, we check the full 64-bit instruction pointer even
// on 32-bit architectures.
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_LSB_IDX,
gen_.MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K, lopc,
gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_MSB_IDX,
gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, hipc,
CompileResult(Allow()), rest)),
rest));
}
CodeGen::Node PolicyCompiler::DispatchSyscall() {
// Evaluate all possible system calls and group their Nodes into
// ranges of identical codes.
Ranges ranges;
FindRanges(&ranges);
// Compile the system call ranges to an optimized BPF jumptable
CodeGen::Node jumptable = AssembleJumpTable(ranges.begin(), ranges.end());
// Grab the system call number, so that we can check it and then
// execute the jump table.
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX, CheckSyscallNumber(jumptable));
}
CodeGen::Node PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed) {
if (kIsIntel) {
// On Intel architectures, verify that system call numbers are in the
// expected number range.
CodeGen::Node invalidX32 =
CompileResult(panic_func_("Illegal mixing of system call ABIs"));
if (kIsX32) {
// The newer x32 API always sets bit 30.
return gen_.MakeInstruction(
BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32);
} else {
// The older i386 and x86-64 APIs clear bit 30 on all system calls.
return gen_.MakeInstruction(
BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed);
}
}
// TODO(mdempsky): Similar validation for other architectures?
return passed;
}
void PolicyCompiler::FindRanges(Ranges* ranges) {
// Please note that "struct seccomp_data" defines system calls as a signed
// int32_t, but BPF instructions always operate on unsigned quantities. We
// deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
// and then verifying that the rest of the number range (both positive and
// negative) all return the same Node.
const CodeGen::Node invalid_node = CompileResult(policy_->InvalidSyscall());
uint32_t old_sysnum = 0;
CodeGen::Node old_node =
SyscallSet::IsValid(old_sysnum)
? CompileResult(policy_->EvaluateSyscall(old_sysnum))
: invalid_node;
for (uint32_t sysnum : SyscallSet::All()) {
CodeGen::Node node =
SyscallSet::IsValid(sysnum)
? CompileResult(policy_->EvaluateSyscall(static_cast<int>(sysnum)))
: invalid_node;
// N.B., here we rely on CodeGen folding (i.e., returning the same
// node value for) identical code sequences, otherwise our jump
// table will blow up in size.
if (node != old_node) {
ranges->push_back(Range{old_sysnum, old_node});
old_sysnum = sysnum;
old_node = node;
}
}
ranges->push_back(Range{old_sysnum, old_node});
}
CodeGen::Node PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start,
Ranges::const_iterator stop) {
// We convert the list of system call ranges into jump table that performs
// a binary search over the ranges.
// As a sanity check, we need to have at least one distinct ranges for us
// to be able to build a jump table.
CHECK(start < stop) << "Invalid iterator range";
const auto n = stop - start;
if (n == 1) {
// If we have narrowed things down to a single range object, we can
// return from the BPF filter program.
return start->node;
}
// Pick the range object that is located at the mid point of our list.
// We compare our system call number against the lowest valid system call
// number in this range object. If our number is lower, it is outside of
// this range object. If it is greater or equal, it might be inside.
Ranges::const_iterator mid = start + n / 2;
// Sub-divide the list of ranges and continue recursively.
CodeGen::Node jf = AssembleJumpTable(start, mid);
CodeGen::Node jt = AssembleJumpTable(mid, stop);
return gen_.MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
}
CodeGen::Node PolicyCompiler::CompileResult(const ResultExpr& res) {
return res->Compile(this);
}
CodeGen::Node PolicyCompiler::MaskedEqual(int argno,
size_t width,
uint64_t mask,
uint64_t value,
CodeGen::Node passed,
CodeGen::Node failed) {
// Sanity check that arguments make sense.
CHECK(argno >= 0 && argno < 6) << "Invalid argument number " << argno;
CHECK(width == 4 || width == 8) << "Invalid argument width " << width;
CHECK_NE(0U, mask) << "Zero mask is invalid";
CHECK_EQ(value, value & mask) << "Value contains masked out bits";
if (sizeof(void*) == 4) {
CHECK_EQ(4U, width) << "Invalid width on 32-bit platform";
}
if (width == 4) {
CHECK_EQ(0U, mask >> 32) << "Mask exceeds argument size";
CHECK_EQ(0U, value >> 32) << "Value exceeds argument size";
}
// We want to emit code to check "(arg & mask) == value" where arg, mask, and
// value are 64-bit values, but the BPF machine is only 32-bit. We implement
// this by independently testing the upper and lower 32-bits and continuing to
// |passed| if both evaluate true, or to |failed| if either evaluate false.
return MaskedEqualHalf(argno, width, mask, value, ArgHalf::UPPER,
MaskedEqualHalf(argno, width, mask, value,
ArgHalf::LOWER, passed, failed),
failed);
}
CodeGen::Node PolicyCompiler::MaskedEqualHalf(int argno,
size_t width,
uint64_t full_mask,
uint64_t full_value,
ArgHalf half,
CodeGen::Node passed,
CodeGen::Node failed) {
if (width == 4 && half == ArgHalf::UPPER) {
// Special logic for sanity checking the upper 32-bits of 32-bit system
// call arguments.
// TODO(mdempsky): Compile Unexpected64bitArgument() just per program.
CodeGen::Node invalid_64bit = Unexpected64bitArgument();
const uint32_t upper = SECCOMP_ARG_MSB_IDX(argno);
const uint32_t lower = SECCOMP_ARG_LSB_IDX(argno);
if (sizeof(void*) == 4) {
// On 32-bit platforms, the upper 32-bits should always be 0:
// LDW [upper]
// JEQ 0, passed, invalid
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
upper,
gen_.MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit));
}
// On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow
// ~0 if the sign bit of the lower 32-bits is set too:
// LDW [upper]
// JEQ 0, passed, (next)
// JEQ ~0, (next), invalid
// LDW [lower]
// JSET (1<<31), passed, invalid
//
// TODO(mdempsky): The JSET instruction could perhaps jump to passed->next
// instead, as the first instruction of passed should be "LDW [lower]".
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
upper,
gen_.MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
0,
passed,
gen_.MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
std::numeric_limits<uint32_t>::max(),
gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
lower,
gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
1U << 31,
passed,
invalid_64bit)),
invalid_64bit)));
}
const uint32_t idx = (half == ArgHalf::UPPER) ? SECCOMP_ARG_MSB_IDX(argno)
: SECCOMP_ARG_LSB_IDX(argno);
const uint32_t mask = (half == ArgHalf::UPPER) ? full_mask >> 32 : full_mask;
const uint32_t value =
(half == ArgHalf::UPPER) ? full_value >> 32 : full_value;
// Emit a suitable instruction sequence for (arg & mask) == value.
// For (arg & 0) == 0, just return passed.
if (mask == 0) {
CHECK_EQ(0U, value);
return passed;
}
// For (arg & ~0) == value, emit:
// LDW [idx]
// JEQ value, passed, failed
if (mask == std::numeric_limits<uint32_t>::max()) {
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
idx,
gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed));
}
// For (arg & mask) == 0, emit:
// LDW [idx]
// JSET mask, failed, passed
// (Note: failed and passed are intentionally swapped.)
if (value == 0) {
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
idx,
gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed));
}
// For (arg & x) == x where x is a single-bit value, emit:
// LDW [idx]
// JSET mask, passed, failed
if (mask == value && HasExactlyOneBit(mask)) {
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
idx,
gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed));
}
// Generic fallback:
// LDW [idx]
// AND mask
// JEQ value, passed, failed
return gen_.MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
idx,
gen_.MakeInstruction(
BPF_ALU + BPF_AND + BPF_K,
mask,
gen_.MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)));
}
CodeGen::Node PolicyCompiler::Unexpected64bitArgument() {
return CompileResult(panic_func_("Unexpected 64bit argument detected"));
}
CodeGen::Node PolicyCompiler::Return(uint32_t ret) {
if (has_unsafe_traps_ && (ret & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
// When inside an UnsafeTrap() callback, we want to allow all system calls.
// This means, we must conditionally disable the sandbox -- and that's not
// something that kernel-side BPF filters can do, as they cannot inspect
// any state other than the syscall arguments.
// But if we redirect all error handlers to user-space, then we can easily
// make this decision.
// The performance penalty for this extra round-trip to user-space is not
// actually that bad, as we only ever pay it for denied system calls; and a
// typical program has very few of these.
return Trap(ReturnErrno, reinterpret_cast<void*>(ret & SECCOMP_RET_DATA),
true);
}
return gen_.MakeInstruction(BPF_RET + BPF_K, ret);
}
CodeGen::Node PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc,
const void* aux,
bool safe) {
uint16_t trap_id = registry_->Add(fnc, aux, safe);
return gen_.MakeInstruction(BPF_RET + BPF_K, SECCOMP_RET_TRAP + trap_id);
}
bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno) {
for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
if (sysno == kSyscallsRequiredForUnsafeTraps[i]) {
return true;
}
}
return false;
}
} // namespace bpf_dsl
} // namespace sandbox