// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_metrics.h"
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <mach/shared_region.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/sysctl.h>
#include "base/containers/hash_tables.h"
#include "base/logging.h"
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_mach_port.h"
#include "base/sys_info.h"
#if !defined(TASK_POWER_INFO)
// Doesn't exist in the 10.6 or 10.7 SDKs.
#define TASK_POWER_INFO 21
struct task_power_info {
uint64_t total_user;
uint64_t total_system;
uint64_t task_interrupt_wakeups;
uint64_t task_platform_idle_wakeups;
uint64_t task_timer_wakeups_bin_1;
uint64_t task_timer_wakeups_bin_2;
};
typedef struct task_power_info task_power_info_data_t;
typedef struct task_power_info *task_power_info_t;
#define TASK_POWER_INFO_COUNT ((mach_msg_type_number_t) \
(sizeof (task_power_info_data_t) / sizeof (natural_t)))
#endif
namespace base {
namespace {
bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
if (task == MACH_PORT_NULL)
return false;
mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
kern_return_t kr = task_info(task,
TASK_BASIC_INFO_64,
reinterpret_cast<task_info_t>(task_info_data),
&count);
// Most likely cause for failure: |task| is a zombie.
return kr == KERN_SUCCESS;
}
bool GetCPUTypeForProcess(pid_t /* pid */, cpu_type_t* cpu_type) {
size_t len = sizeof(*cpu_type);
int result = sysctlbyname("sysctl.proc_cputype",
cpu_type,
&len,
NULL,
0);
if (result != 0) {
DPLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")";
return false;
}
return true;
}
bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) {
if (type == CPU_TYPE_I386) {
return addr >= SHARED_REGION_BASE_I386 &&
addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386);
} else if (type == CPU_TYPE_X86_64) {
return addr >= SHARED_REGION_BASE_X86_64 &&
addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64);
} else {
return false;
}
}
} // namespace
SystemMemoryInfoKB::SystemMemoryInfoKB() {
total = 0;
free = 0;
}
SystemMemoryInfoKB::SystemMemoryInfoKB(const SystemMemoryInfoKB& other) =
default;
// Getting a mach task from a pid for another process requires permissions in
// general, so there doesn't really seem to be a way to do these (and spinning
// up ps to fetch each stats seems dangerous to put in a base api for anyone to
// call). Child processes ipc their port, so return something if available,
// otherwise return 0.
// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(
ProcessHandle process,
PortProvider* port_provider) {
return new ProcessMetrics(process, port_provider);
}
size_t ProcessMetrics::GetPagefileUsage() const {
task_basic_info_64 task_info_data;
if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
return 0;
return task_info_data.virtual_size;
}
size_t ProcessMetrics::GetPeakPagefileUsage() const {
return 0;
}
size_t ProcessMetrics::GetWorkingSetSize() const {
task_basic_info_64 task_info_data;
if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
return 0;
return task_info_data.resident_size;
}
size_t ProcessMetrics::GetPeakWorkingSetSize() const {
return 0;
}
// This is a rough approximation of the algorithm that libtop uses.
// private_bytes is the size of private resident memory.
// shared_bytes is the size of shared resident memory.
bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
size_t* shared_bytes) {
size_t private_pages_count = 0;
size_t shared_pages_count = 0;
if (!private_bytes && !shared_bytes)
return true;
mach_port_t task = TaskForPid(process_);
if (task == MACH_PORT_NULL) {
DLOG(ERROR) << "Invalid process";
return false;
}
cpu_type_t cpu_type;
if (!GetCPUTypeForProcess(process_, &cpu_type))
return false;
// The same region can be referenced multiple times. To avoid double counting
// we need to keep track of which regions we've already counted.
base::hash_set<int> seen_objects;
// We iterate through each VM region in the task's address map. For shared
// memory we add up all the pages that are marked as shared. Like libtop we
// try to avoid counting pages that are also referenced by other tasks. Since
// we don't have access to the VM regions of other tasks the only hint we have
// is if the address is in the shared region area.
//
// Private memory is much simpler. We simply count the pages that are marked
// as private or copy on write (COW).
//
// See libtop_update_vm_regions in
// http://www.opensource.apple.com/source/top/top-67/libtop.c
mach_vm_size_t size = 0;
for (mach_vm_address_t address = MACH_VM_MIN_ADDRESS;; address += size) {
vm_region_top_info_data_t info;
mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
mach_port_t object_name;
kern_return_t kr = mach_vm_region(task,
&address,
&size,
VM_REGION_TOP_INFO,
reinterpret_cast<vm_region_info_t>(&info),
&info_count,
&object_name);
if (kr == KERN_INVALID_ADDRESS) {
// We're at the end of the address space.
break;
} else if (kr != KERN_SUCCESS) {
MACH_DLOG(ERROR, kr) << "mach_vm_region";
return false;
}
// The kernel always returns a null object for VM_REGION_TOP_INFO, but
// balance it with a deallocate in case this ever changes. See 10.9.2
// xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
mach_port_deallocate(mach_task_self(), object_name);
if (IsAddressInSharedRegion(address, cpu_type) &&
info.share_mode != SM_PRIVATE)
continue;
if (info.share_mode == SM_COW && info.ref_count == 1)
info.share_mode = SM_PRIVATE;
switch (info.share_mode) {
case SM_PRIVATE:
private_pages_count += info.private_pages_resident;
private_pages_count += info.shared_pages_resident;
break;
case SM_COW:
private_pages_count += info.private_pages_resident;
// Fall through
case SM_SHARED:
if (seen_objects.count(info.obj_id) == 0) {
// Only count the first reference to this region.
seen_objects.insert(info.obj_id);
shared_pages_count += info.shared_pages_resident;
}
break;
default:
break;
}
}
if (private_bytes)
*private_bytes = private_pages_count * PAGE_SIZE;
if (shared_bytes)
*shared_bytes = shared_pages_count * PAGE_SIZE;
return true;
}
void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
WorkingSetKBytes unused;
if (!GetCommittedAndWorkingSetKBytes(usage, &unused)) {
*usage = CommittedKBytes();
}
}
bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
CommittedKBytes unused;
return GetCommittedAndWorkingSetKBytes(&unused, ws_usage);
}
bool ProcessMetrics::GetCommittedAndWorkingSetKBytes(
CommittedKBytes* usage,
WorkingSetKBytes* ws_usage) const {
task_basic_info_64 task_info_data;
if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
return false;
usage->priv = task_info_data.virtual_size / 1024;
usage->mapped = 0;
usage->image = 0;
ws_usage->priv = task_info_data.resident_size / 1024;
ws_usage->shareable = 0;
ws_usage->shared = 0;
return true;
}
#define TIME_VALUE_TO_TIMEVAL(a, r) do { \
(r)->tv_sec = (a)->seconds; \
(r)->tv_usec = (a)->microseconds; \
} while (0)
double ProcessMetrics::GetCPUUsage() {
mach_port_t task = TaskForPid(process_);
if (task == MACH_PORT_NULL)
return 0;
// Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
// in libtop.c), but this is more concise and gives the same results:
task_thread_times_info thread_info_data;
mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
kern_return_t kr = task_info(task,
TASK_THREAD_TIMES_INFO,
reinterpret_cast<task_info_t>(&thread_info_data),
&thread_info_count);
if (kr != KERN_SUCCESS) {
// Most likely cause: |task| is a zombie.
return 0;
}
task_basic_info_64 task_info_data;
if (!GetTaskInfo(task, &task_info_data))
return 0;
/* Set total_time. */
// thread info contains live time...
struct timeval user_timeval, system_timeval, task_timeval;
TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
timeradd(&user_timeval, &system_timeval, &task_timeval);
// ... task info contains terminated time.
TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
timeradd(&user_timeval, &task_timeval, &task_timeval);
timeradd(&system_timeval, &task_timeval, &task_timeval);
TimeTicks time = TimeTicks::Now();
int64_t task_time = TimeValToMicroseconds(task_timeval);
if (last_system_time_ == 0) {
// First call, just set the last values.
last_cpu_time_ = time;
last_system_time_ = task_time;
return 0;
}
int64_t system_time_delta = task_time - last_system_time_;
int64_t time_delta = (time - last_cpu_time_).InMicroseconds();
DCHECK_NE(0U, time_delta);
if (time_delta == 0)
return 0;
last_cpu_time_ = time;
last_system_time_ = task_time;
return static_cast<double>(system_time_delta * 100.0) / time_delta;
}
int ProcessMetrics::GetIdleWakeupsPerSecond() {
mach_port_t task = TaskForPid(process_);
if (task == MACH_PORT_NULL)
return 0;
task_power_info power_info_data;
mach_msg_type_number_t power_info_count = TASK_POWER_INFO_COUNT;
kern_return_t kr = task_info(task,
TASK_POWER_INFO,
reinterpret_cast<task_info_t>(&power_info_data),
&power_info_count);
if (kr != KERN_SUCCESS) {
// Most likely cause: |task| is a zombie, or this is on a pre-10.8.4 system
// where TASK_POWER_INFO isn't supported yet.
return 0;
}
return CalculateIdleWakeupsPerSecond(
power_info_data.task_platform_idle_wakeups);
}
bool ProcessMetrics::GetIOCounters(IoCounters* /* io_counters */) const {
return false;
}
ProcessMetrics::ProcessMetrics(ProcessHandle process,
PortProvider* port_provider)
: process_(process),
last_system_time_(0),
last_absolute_idle_wakeups_(0),
port_provider_(port_provider) {
processor_count_ = SysInfo::NumberOfProcessors();
}
mach_port_t ProcessMetrics::TaskForPid(ProcessHandle /* process */) const {
mach_port_t task = MACH_PORT_NULL;
if (port_provider_)
task = port_provider_->TaskForPid(process_);
if (task == MACH_PORT_NULL && process_ == getpid())
task = mach_task_self();
return task;
}
// Bytes committed by the system.
size_t GetSystemCommitCharge() {
base::mac::ScopedMachSendRight host(mach_host_self());
mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
vm_statistics_data_t data;
kern_return_t kr = host_statistics(host.get(), HOST_VM_INFO,
reinterpret_cast<host_info_t>(&data),
&count);
if (kr != KERN_SUCCESS) {
MACH_DLOG(WARNING, kr) << "host_statistics";
return 0;
}
return (data.active_count * PAGE_SIZE) / 1024;
}
// On Mac, We only get total memory and free memory from the system.
bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) {
struct host_basic_info hostinfo;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
base::mac::ScopedMachSendRight host(mach_host_self());
int result = host_info(host.get(), HOST_BASIC_INFO,
reinterpret_cast<host_info_t>(&hostinfo), &count);
if (result != KERN_SUCCESS)
return false;
DCHECK_EQ(HOST_BASIC_INFO_COUNT, count);
meminfo->total = static_cast<int>(hostinfo.max_mem / 1024);
vm_statistics_data_t vm_info;
count = HOST_VM_INFO_COUNT;
if (host_statistics(host.get(), HOST_VM_INFO,
reinterpret_cast<host_info_t>(&vm_info),
&count) != KERN_SUCCESS) {
return false;
}
meminfo->free = static_cast<int>(
(vm_info.free_count - vm_info.speculative_count) * PAGE_SIZE / 1024);
return true;
}
} // namespace base