// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/sparse_histogram.h"
#include <memory>
#include <string>
#include "base/metrics/histogram_base.h"
#include "base/metrics/histogram_samples.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/metrics/sample_map.h"
#include "base/metrics/statistics_recorder.h"
#include "base/pickle.h"
#include "base/strings/stringprintf.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
// Test parameter indicates if a persistent memory allocator should be used
// for histogram allocation. False will allocate histograms from the process
// heap.
class SparseHistogramTest : public testing::TestWithParam<bool> {
protected:
const int32_t kAllocatorMemorySize = 8 << 20; // 8 MiB
SparseHistogramTest() : use_persistent_histogram_allocator_(GetParam()) {}
void SetUp() override {
if (use_persistent_histogram_allocator_)
CreatePersistentMemoryAllocator();
// Each test will have a clean state (no Histogram / BucketRanges
// registered).
InitializeStatisticsRecorder();
}
void TearDown() override {
if (allocator_) {
ASSERT_FALSE(allocator_->IsFull());
ASSERT_FALSE(allocator_->IsCorrupt());
}
UninitializeStatisticsRecorder();
DestroyPersistentMemoryAllocator();
}
void InitializeStatisticsRecorder() {
DCHECK(!statistics_recorder_);
statistics_recorder_ = StatisticsRecorder::CreateTemporaryForTesting();
}
void UninitializeStatisticsRecorder() {
statistics_recorder_.reset();
}
void CreatePersistentMemoryAllocator() {
// By getting the results-histogram before any persistent allocator
// is attached, that histogram is guaranteed not to be stored in
// any persistent memory segment (which simplifies some tests).
GlobalHistogramAllocator::GetCreateHistogramResultHistogram();
GlobalHistogramAllocator::CreateWithLocalMemory(
kAllocatorMemorySize, 0, "SparseHistogramAllocatorTest");
allocator_ = GlobalHistogramAllocator::Get()->memory_allocator();
}
void DestroyPersistentMemoryAllocator() {
allocator_ = nullptr;
GlobalHistogramAllocator::ReleaseForTesting();
}
std::unique_ptr<SparseHistogram> NewSparseHistogram(const std::string& name) {
return std::unique_ptr<SparseHistogram>(new SparseHistogram(name));
}
const bool use_persistent_histogram_allocator_;
std::unique_ptr<StatisticsRecorder> statistics_recorder_;
PersistentMemoryAllocator* allocator_ = nullptr;
private:
DISALLOW_COPY_AND_ASSIGN(SparseHistogramTest);
};
// Run all HistogramTest cases with both heap and persistent memory.
INSTANTIATE_TEST_CASE_P(HeapAndPersistent,
SparseHistogramTest,
testing::Bool());
TEST_P(SparseHistogramTest, BasicTest) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
EXPECT_EQ(0, snapshot->TotalCount());
EXPECT_EQ(0, snapshot->sum());
histogram->Add(100);
std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
EXPECT_EQ(1, snapshot1->TotalCount());
EXPECT_EQ(1, snapshot1->GetCount(100));
histogram->Add(100);
histogram->Add(101);
std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
EXPECT_EQ(3, snapshot2->TotalCount());
EXPECT_EQ(2, snapshot2->GetCount(100));
EXPECT_EQ(1, snapshot2->GetCount(101));
}
TEST_P(SparseHistogramTest, BasicTestAddCount) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
EXPECT_EQ(0, snapshot->TotalCount());
EXPECT_EQ(0, snapshot->sum());
histogram->AddCount(100, 15);
std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
EXPECT_EQ(15, snapshot1->TotalCount());
EXPECT_EQ(15, snapshot1->GetCount(100));
histogram->AddCount(100, 15);
histogram->AddCount(101, 25);
std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
EXPECT_EQ(55, snapshot2->TotalCount());
EXPECT_EQ(30, snapshot2->GetCount(100));
EXPECT_EQ(25, snapshot2->GetCount(101));
}
TEST_P(SparseHistogramTest, AddCount_LargeValuesDontOverflow) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
EXPECT_EQ(0, snapshot->TotalCount());
EXPECT_EQ(0, snapshot->sum());
histogram->AddCount(1000000000, 15);
std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
EXPECT_EQ(15, snapshot1->TotalCount());
EXPECT_EQ(15, snapshot1->GetCount(1000000000));
histogram->AddCount(1000000000, 15);
histogram->AddCount(1010000000, 25);
std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
EXPECT_EQ(55, snapshot2->TotalCount());
EXPECT_EQ(30, snapshot2->GetCount(1000000000));
EXPECT_EQ(25, snapshot2->GetCount(1010000000));
EXPECT_EQ(55250000000LL, snapshot2->sum());
}
TEST_P(SparseHistogramTest, MacroBasicTest) {
UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 100);
UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 200);
UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 100);
StatisticsRecorder::Histograms histograms;
StatisticsRecorder::GetHistograms(&histograms);
ASSERT_EQ(1U, histograms.size());
HistogramBase* sparse_histogram = histograms[0];
EXPECT_EQ(SPARSE_HISTOGRAM, sparse_histogram->GetHistogramType());
EXPECT_EQ("Sparse", sparse_histogram->histogram_name());
EXPECT_EQ(
HistogramBase::kUmaTargetedHistogramFlag |
(use_persistent_histogram_allocator_ ? HistogramBase::kIsPersistent
: 0),
sparse_histogram->flags());
std::unique_ptr<HistogramSamples> samples =
sparse_histogram->SnapshotSamples();
EXPECT_EQ(3, samples->TotalCount());
EXPECT_EQ(2, samples->GetCount(100));
EXPECT_EQ(1, samples->GetCount(200));
}
TEST_P(SparseHistogramTest, MacroInLoopTest) {
// Unlike the macros in histogram.h, SparseHistogram macros can have a
// variable as histogram name.
for (int i = 0; i < 2; i++) {
std::string name = StringPrintf("Sparse%d", i + 1);
UMA_HISTOGRAM_SPARSE_SLOWLY(name, 100);
}
StatisticsRecorder::Histograms histograms;
StatisticsRecorder::GetHistograms(&histograms);
ASSERT_EQ(2U, histograms.size());
std::string name1 = histograms[0]->histogram_name();
std::string name2 = histograms[1]->histogram_name();
EXPECT_TRUE(("Sparse1" == name1 && "Sparse2" == name2) ||
("Sparse2" == name1 && "Sparse1" == name2));
}
TEST_P(SparseHistogramTest, Serialize) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
histogram->SetFlags(HistogramBase::kIPCSerializationSourceFlag);
Pickle pickle;
histogram->SerializeInfo(&pickle);
PickleIterator iter(pickle);
int type;
EXPECT_TRUE(iter.ReadInt(&type));
EXPECT_EQ(SPARSE_HISTOGRAM, type);
std::string name;
EXPECT_TRUE(iter.ReadString(&name));
EXPECT_EQ("Sparse", name);
int flag;
EXPECT_TRUE(iter.ReadInt(&flag));
EXPECT_EQ(HistogramBase::kIPCSerializationSourceFlag, flag);
// No more data in the pickle.
EXPECT_FALSE(iter.SkipBytes(1));
}
// Ensure that race conditions that cause multiple, identical sparse histograms
// to be created will safely resolve to a single one.
TEST_P(SparseHistogramTest, DuplicationSafety) {
const char histogram_name[] = "Duplicated";
size_t histogram_count = StatisticsRecorder::GetHistogramCount();
// Create a histogram that we will later duplicate.
HistogramBase* original =
SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
++histogram_count;
DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
original->Add(1);
// Create a duplicate. This has to happen differently depending on where the
// memory is taken from.
if (use_persistent_histogram_allocator_) {
// To allocate from persistent memory, clear the last_created reference in
// the GlobalHistogramAllocator. This will cause an Import to recreate
// the just-created histogram which will then be released as a duplicate.
GlobalHistogramAllocator::Get()->ClearLastCreatedReferenceForTesting();
// Creating a different histogram will first do an Import to ensure it
// hasn't been created elsewhere, triggering the duplication and release.
SparseHistogram::FactoryGet("something.new", HistogramBase::kNoFlags);
++histogram_count;
} else {
// To allocate from the heap, just call the (private) constructor directly.
// Delete it immediately like would have happened within FactoryGet();
std::unique_ptr<SparseHistogram> something =
NewSparseHistogram(histogram_name);
DCHECK_NE(original, something.get());
}
DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
// Re-creating the histogram via FactoryGet() will return the same one.
HistogramBase* duplicate =
SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
DCHECK_EQ(original, duplicate);
DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
duplicate->Add(2);
// Ensure that original histograms are still cross-functional.
original->Add(2);
duplicate->Add(1);
std::unique_ptr<HistogramSamples> snapshot_orig = original->SnapshotSamples();
std::unique_ptr<HistogramSamples> snapshot_dup = duplicate->SnapshotSamples();
DCHECK_EQ(2, snapshot_orig->GetCount(2));
DCHECK_EQ(2, snapshot_dup->GetCount(1));
}
TEST_P(SparseHistogramTest, FactoryTime) {
const int kTestCreateCount = 1 << 10; // Must be power-of-2.
const int kTestLookupCount = 100000;
const int kTestAddCount = 100000;
// Create all histogram names in advance for accurate timing below.
std::vector<std::string> histogram_names;
for (int i = 0; i < kTestCreateCount; ++i) {
histogram_names.push_back(
StringPrintf("TestHistogram.%d", i % kTestCreateCount));
}
// Calculate cost of creating histograms.
TimeTicks create_start = TimeTicks::Now();
for (int i = 0; i < kTestCreateCount; ++i)
SparseHistogram::FactoryGet(histogram_names[i], HistogramBase::kNoFlags);
TimeDelta create_ticks = TimeTicks::Now() - create_start;
int64_t create_ms = create_ticks.InMilliseconds();
VLOG(1) << kTestCreateCount << " histogram creations took " << create_ms
<< "ms or about "
<< (create_ms * 1000000) / kTestCreateCount
<< "ns each.";
// Calculate cost of looking up existing histograms.
TimeTicks lookup_start = TimeTicks::Now();
for (int i = 0; i < kTestLookupCount; ++i) {
// 6007 is co-prime with kTestCreateCount and so will do lookups in an
// order less likely to be cacheable (but still hit them all) should the
// underlying storage use the exact histogram name as the key.
const int i_mult = 6007;
static_assert(i_mult < INT_MAX / kTestCreateCount, "Multiplier too big");
int index = (i * i_mult) & (kTestCreateCount - 1);
SparseHistogram::FactoryGet(histogram_names[index],
HistogramBase::kNoFlags);
}
TimeDelta lookup_ticks = TimeTicks::Now() - lookup_start;
int64_t lookup_ms = lookup_ticks.InMilliseconds();
VLOG(1) << kTestLookupCount << " histogram lookups took " << lookup_ms
<< "ms or about "
<< (lookup_ms * 1000000) / kTestLookupCount
<< "ns each.";
// Calculate cost of accessing histograms.
HistogramBase* histogram =
SparseHistogram::FactoryGet(histogram_names[0], HistogramBase::kNoFlags);
ASSERT_TRUE(histogram);
TimeTicks add_start = TimeTicks::Now();
for (int i = 0; i < kTestAddCount; ++i)
histogram->Add(i & 127);
TimeDelta add_ticks = TimeTicks::Now() - add_start;
int64_t add_ms = add_ticks.InMilliseconds();
VLOG(1) << kTestAddCount << " histogram adds took " << add_ms
<< "ms or about "
<< (add_ms * 1000000) / kTestAddCount
<< "ns each.";
}
} // namespace base