// Copyright (C) 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (c) 2003-2014, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Author: Alan Liu
* Created: July 10 2003
* Since: ICU 2.8
**********************************************************************
*/
#include "tzfile.h" // from Olson tzcode archive, copied to this dir
#ifdef WIN32
#include <windows.h>
#undef min // windows.h/STL conflict
#undef max // windows.h/STL conflict
// "identifier was truncated to 'number' characters" warning
#pragma warning(disable: 4786)
#else
#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>
#endif
#include <algorithm>
#include <cassert>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <set>
#include <sstream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include "tz2icu.h"
#include "unicode/uversion.h"
using namespace std;
bool ICU44PLUS = TRUE;
string TZ_RESOURCE_NAME = ICU_TZ_RESOURCE;
//--------------------------------------------------------------------
// Time utilities
//--------------------------------------------------------------------
const int64_t SECS_PER_YEAR = 31536000; // 365 days
const int64_t SECS_PER_LEAP_YEAR = 31622400; // 366 days
const int64_t LOWEST_TIME32 = (int64_t)((int32_t)0x80000000);
const int64_t HIGHEST_TIME32 = (int64_t)((int32_t)0x7fffffff);
bool isLeap(int32_t y) {
return (y%4 == 0) && ((y%100 != 0) || (y%400 == 0)); // Gregorian
}
int64_t secsPerYear(int32_t y) {
return isLeap(y) ? SECS_PER_LEAP_YEAR : SECS_PER_YEAR;
}
/**
* Given a calendar year, return the GMT epoch seconds for midnight
* GMT of January 1 of that year. yearToSeconds(1970) == 0.
*/
int64_t yearToSeconds(int32_t year) {
// inefficient but foolproof
int64_t s = 0;
int32_t y = 1970;
while (y < year) {
s += secsPerYear(y++);
}
while (y > year) {
s -= secsPerYear(--y);
}
return s;
}
/**
* Given 1970 GMT epoch seconds, return the calendar year containing
* that time. secondsToYear(0) == 1970.
*/
int32_t secondsToYear(int64_t seconds) {
// inefficient but foolproof
int32_t y = 1970;
int64_t s = 0;
if (seconds >= 0) {
for (;;) {
s += secsPerYear(y++);
if (s > seconds) break;
}
--y;
} else {
for (;;) {
s -= secsPerYear(--y);
if (s <= seconds) break;
}
}
return y;
}
//--------------------------------------------------------------------
// Types
//--------------------------------------------------------------------
struct FinalZone;
struct FinalRule;
struct SimplifiedZoneType;
// A transition from one ZoneType to another
// Minimal size = 5 bytes (4+1)
struct Transition {
int64_t time; // seconds, 1970 epoch
int32_t type; // index into 'ZoneInfo.types' 0..255
Transition(int64_t _time, int32_t _type) {
time = _time;
type = _type;
}
};
// A behavior mode (what zic calls a 'type') of a time zone.
// Minimal size = 6 bytes (4+1+3bits)
// SEE: SimplifiedZoneType
struct ZoneType {
int64_t rawoffset; // raw seconds offset from GMT
int64_t dstoffset; // dst seconds offset from GMT
// We don't really need any of the following, but they are
// retained for possible future use. See SimplifiedZoneType.
int32_t abbr; // index into ZoneInfo.abbrs 0..n-1
bool isdst;
bool isstd;
bool isgmt;
ZoneType(const SimplifiedZoneType&); // used by optimizeTypeList
ZoneType() : rawoffset(-1), dstoffset(-1), abbr(-1) {}
// A restricted equality, of just the raw and dst offset
bool matches(const ZoneType& other) {
return rawoffset == other.rawoffset &&
dstoffset == other.dstoffset;
}
};
// A collection of transitions from one ZoneType to another, together
// with a list of the ZoneTypes. A ZoneInfo object may have a long
// list of transitions between a smaller list of ZoneTypes.
//
// This object represents the contents of a single zic-created
// zoneinfo file.
struct ZoneInfo {
vector<Transition> transitions;
vector<ZoneType> types;
vector<string> abbrs;
string finalRuleID;
int32_t finalOffset;
int32_t finalYear; // -1 if none
// If this is an alias, then all other fields are meaningless, and
// this field will point to the "real" zone 0..n-1.
int32_t aliasTo; // -1 if this is a "real" zone
// If there are aliases TO this zone, then the following set will
// contain their index numbers (each index >= 0).
set<int32_t> aliases;
ZoneInfo() : finalYear(-1), aliasTo(-1) {}
void mergeFinalData(const FinalZone& fz);
void optimizeTypeList();
// Set this zone to be an alias TO another zone.
void setAliasTo(int32_t index);
// Clear the list of aliases OF this zone.
void clearAliases();
// Add an alias to the list of aliases OF this zone.
void addAlias(int32_t index);
// Is this an alias to another zone?
bool isAlias() const {
return aliasTo >= 0;
}
// Retrieve alias list
const set<int32_t>& getAliases() const {
return aliases;
}
void print(ostream& os, const string& id) const;
};
void ZoneInfo::clearAliases() {
assert(aliasTo < 0);
aliases.clear();
}
void ZoneInfo::addAlias(int32_t index) {
assert(aliasTo < 0 && index >= 0 && aliases.find(index) == aliases.end());
aliases.insert(index);
}
void ZoneInfo::setAliasTo(int32_t index) {
assert(index >= 0);
assert(aliases.size() == 0);
aliasTo = index;
}
typedef map<string, ZoneInfo> ZoneMap;
typedef ZoneMap::const_iterator ZoneMapIter;
//--------------------------------------------------------------------
// ZONEINFO
//--------------------------------------------------------------------
// Global map holding all our ZoneInfo objects, indexed by id.
ZoneMap ZONEINFO;
//--------------------------------------------------------------------
// zoneinfo file parsing
//--------------------------------------------------------------------
// Read zic-coded 32-bit integer from file
int64_t readcoded(ifstream& file, int64_t minv=numeric_limits<int64_t>::min(),
int64_t maxv=numeric_limits<int64_t>::max()) {
unsigned char buf[4]; // must be UNSIGNED
int64_t val=0;
file.read((char*)buf, 4);
for(int32_t i=0,shift=24;i<4;++i,shift-=8) {
val |= buf[i] << shift;
}
if (val < minv || val > maxv) {
ostringstream os;
os << "coded value out-of-range: " << val << ", expected ["
<< minv << ", " << maxv << "]";
throw out_of_range(os.str());
}
return val;
}
// Read zic-coded 64-bit integer from file
int64_t readcoded64(ifstream& file, int64_t minv=numeric_limits<int64_t>::min(),
int64_t maxv=numeric_limits<int64_t>::max()) {
unsigned char buf[8]; // must be UNSIGNED
int64_t val=0;
file.read((char*)buf, 8);
for(int32_t i=0,shift=56;i<8;++i,shift-=8) {
val |= (int64_t)buf[i] << shift;
}
if (val < minv || val > maxv) {
ostringstream os;
os << "coded value out-of-range: " << val << ", expected ["
<< minv << ", " << maxv << "]";
throw out_of_range(os.str());
}
return val;
}
// Read a boolean value
bool readbool(ifstream& file) {
char c;
file.read(&c, 1);
if (c!=0 && c!=1) {
ostringstream os;
os << "boolean value out-of-range: " << (int32_t)c;
throw out_of_range(os.str());
}
return (c!=0);
}
/**
* Read the zoneinfo file structure (see tzfile.h) into a ZoneInfo
* @param file an already-open file stream
*/
void readzoneinfo(ifstream& file, ZoneInfo& info, bool is64bitData) {
int32_t i;
// Check for TZ_ICU_MAGIC signature at file start. If we get a
// signature mismatch, it means we're trying to read a file which
// isn't a ICU-modified-zic-created zoneinfo file. Typically this
// means the user is passing in a "normal" zoneinfo directory, or
// a zoneinfo directory that is polluted with other files, or that
// the user passed in the wrong directory.
char buf[32];
file.read(buf, 4);
if (strncmp(buf, TZ_ICU_MAGIC, 4) != 0) {
throw invalid_argument("TZ_ICU_MAGIC signature missing");
}
// skip additional Olson byte version
file.read(buf, 1);
// if '\0', we have just one copy of data, if '2' or '3', there is additional
// 64 bit version at the end.
if(buf[0]!=0 && buf[0]!='2' && buf[0]!='3') {
throw invalid_argument("Bad Olson version info");
}
// Read reserved bytes. The first of these will be a version byte.
file.read(buf, 15);
if (*(ICUZoneinfoVersion*)&buf != TZ_ICU_VERSION) {
throw invalid_argument("File version mismatch");
}
// Read array sizes
int64_t isgmtcnt = readcoded(file, 0);
int64_t isdstcnt = readcoded(file, 0);
int64_t leapcnt = readcoded(file, 0);
int64_t timecnt = readcoded(file, 0);
int64_t typecnt = readcoded(file, 0);
int64_t charcnt = readcoded(file, 0);
// Confirm sizes that we assume to be equal. These assumptions
// are drawn from a reading of the zic source (2003a), so they
// should hold unless the zic source changes.
if (isgmtcnt != typecnt || isdstcnt != typecnt) {
throw invalid_argument("count mismatch between tzh_ttisgmtcnt, tzh_ttisdstcnt, tth_typecnt");
}
// Used temporarily to store transition times and types. We need
// to do this because the times and types are stored in two
// separate arrays.
vector<int64_t> transitionTimes(timecnt, -1); // temporary
vector<int32_t> transitionTypes(timecnt, -1); // temporary
// Read transition times
for (i=0; i<timecnt; ++i) {
if (is64bitData) {
transitionTimes[i] = readcoded64(file);
} else {
transitionTimes[i] = readcoded(file);
}
}
// Read transition types
for (i=0; i<timecnt; ++i) {
unsigned char c;
file.read((char*) &c, 1);
int32_t t = (int32_t) c;
if (t < 0 || t >= typecnt) {
ostringstream os;
os << "illegal type: " << t << ", expected [0, " << (typecnt-1) << "]";
throw out_of_range(os.str());
}
transitionTypes[i] = t;
}
// Build transitions vector out of corresponding times and types.
bool insertInitial = false;
if (is64bitData && !ICU44PLUS) {
if (timecnt > 0) {
int32_t minidx = -1;
for (i=0; i<timecnt; ++i) {
if (transitionTimes[i] < LOWEST_TIME32) {
if (minidx == -1 || transitionTimes[i] > transitionTimes[minidx]) {
// Preserve the latest transition before the 32bit minimum time
minidx = i;
}
} else if (transitionTimes[i] > HIGHEST_TIME32) {
// Skipping the rest of the transition data. We cannot put such
// transitions into zoneinfo.res, because data is limited to singed
// 32bit int by the ICU resource bundle.
break;
} else {
info.transitions.push_back(Transition(transitionTimes[i], transitionTypes[i]));
}
}
if (minidx != -1) {
// If there are any transitions before the 32bit minimum time,
// put the type information with the 32bit minimum time
vector<Transition>::iterator itr = info.transitions.begin();
info.transitions.insert(itr, Transition(LOWEST_TIME32, transitionTypes[minidx]));
} else {
// Otherwise, we need insert the initial type later
insertInitial = true;
}
}
} else {
for (i=0; i<timecnt; ++i) {
info.transitions.push_back(Transition(transitionTimes[i], transitionTypes[i]));
}
}
// Read types (except for the isdst and isgmt flags, which come later (why??))
for (i=0; i<typecnt; ++i) {
ZoneType type;
type.rawoffset = readcoded(file);
type.dstoffset = readcoded(file);
type.isdst = readbool(file);
unsigned char c;
file.read((char*) &c, 1);
type.abbr = (int32_t) c;
if (type.isdst != (type.dstoffset != 0)) {
throw invalid_argument("isdst does not reflect dstoffset");
}
info.types.push_back(type);
}
assert(info.types.size() == (unsigned) typecnt);
if (insertInitial) {
assert(timecnt > 0);
assert(typecnt > 0);
int32_t initialTypeIdx = -1;
// Check if the first type is not dst
if (info.types.at(0).dstoffset != 0) {
// Initial type's rawoffset is same with the rawoffset after the
// first transition, but no DST is observed.
int64_t rawoffset0 = (info.types.at(info.transitions.at(0).type)).rawoffset;
// Look for matching type
for (i=0; i<(int32_t)info.types.size(); ++i) {
if (info.types.at(i).rawoffset == rawoffset0
&& info.types.at(i).dstoffset == 0) {
initialTypeIdx = i;
break;
}
}
} else {
initialTypeIdx = 0;
}
assert(initialTypeIdx >= 0);
// Add the initial type associated with the lowest int32 time
vector<Transition>::iterator itr = info.transitions.begin();
info.transitions.insert(itr, Transition(LOWEST_TIME32, initialTypeIdx));
}
// Read the abbreviation string
if (charcnt) {
// All abbreviations are concatenated together, with a 0 at
// the end of each abbr.
char* str = new char[charcnt + 8];
file.read(str, charcnt);
// Split abbreviations apart into individual strings. Record
// offset of each abbr in a vector.
vector<int32_t> abbroffset;
char *limit=str+charcnt;
for (char* p=str; p<limit; ++p) {
char* start = p;
while (*p != 0) ++p;
info.abbrs.push_back(string(start, p-start));
abbroffset.push_back(start-str);
}
// Remap all the abbrs. Old value is offset into concatenated
// raw abbr strings. New value is index into vector of
// strings. E.g., 0,5,10,14 => 0,1,2,3.
// Keep track of which abbreviations get used.
vector<bool> abbrseen(abbroffset.size(), false);
for (vector<ZoneType>::iterator it=info.types.begin();
it!=info.types.end();
++it) {
vector<int32_t>::const_iterator x=
find(abbroffset.begin(), abbroffset.end(), it->abbr);
if (x==abbroffset.end()) {
// TODO: Modify code to add a new string to the end of
// the abbr list when a middle offset is given, e.g.,
// "abc*def*" where * == '\0', take offset of 1 and
// make the array "abc", "def", "bc", and translate 1
// => 2. NOT CRITICAL since we don't even use the
// abbr at this time.
#if 0
// TODO: Re-enable this warning if we start using
// the Olson abbr data, or if the above TODO is completed.
ostringstream os;
os << "Warning: unusual abbr offset " << it->abbr
<< ", expected one of";
for (vector<int32_t>::const_iterator y=abbroffset.begin();
y!=abbroffset.end(); ++y) {
os << ' ' << *y;
}
cerr << os.str() << "; using 0" << endl;
#endif
it->abbr = 0;
} else {
int32_t index = x - abbroffset.begin();
it->abbr = index;
abbrseen[index] = true;
}
}
for (int32_t ii=0;ii<(int32_t) abbrseen.size();++ii) {
if (!abbrseen[ii]) {
cerr << "Warning: unused abbreviation: " << ii << endl;
}
}
}
// Read leap second info, if any.
// *** We discard leap second data. ***
for (i=0; i<leapcnt; ++i) {
readcoded(file); // transition time
readcoded(file); // total correction after above
}
// Read isstd flags
for (i=0; i<typecnt; ++i) info.types[i].isstd = readbool(file);
// Read isgmt flags
for (i=0; i<typecnt; ++i) info.types[i].isgmt = readbool(file);
}
//--------------------------------------------------------------------
// Directory and file reading
//--------------------------------------------------------------------
/**
* Process a single zoneinfo file, adding the data to ZONEINFO
* @param path the full path to the file, e.g., ".\zoneinfo\America\Los_Angeles"
* @param id the zone ID, e.g., "America/Los_Angeles"
*/
void handleFile(string path, string id) {
// Check for duplicate id
if (ZONEINFO.find(id) != ZONEINFO.end()) {
ostringstream os;
os << "duplicate zone ID: " << id;
throw invalid_argument(os.str());
}
ifstream file(path.c_str(), ios::in | ios::binary);
if (!file) {
throw invalid_argument("can't open file");
}
// eat 32bit data part
ZoneInfo info;
readzoneinfo(file, info, false);
// Check for errors
if (!file) {
throw invalid_argument("read error");
}
// we only use 64bit part
ZoneInfo info64;
readzoneinfo(file, info64, true);
bool alldone = false;
int64_t eofPos = (int64_t) file.tellg();
// '\n' + <envvar string> + '\n' after the 64bit version data
char ch = file.get();
if (ch == 0x0a) {
bool invalidchar = false;
while (file.get(ch)) {
if (ch == 0x0a) {
break;
}
if (ch < 0x20) {
// must be printable ascii
invalidchar = true;
break;
}
}
if (!invalidchar) {
eofPos = (int64_t) file.tellg();
file.seekg(0, ios::end);
eofPos = eofPos - (int64_t) file.tellg();
if (eofPos == 0) {
alldone = true;
}
}
}
if (!alldone) {
ostringstream os;
os << (-eofPos) << " unprocessed bytes at end";
throw invalid_argument(os.str());
}
ZONEINFO[id] = info64;
}
/**
* Recursively scan the given directory, calling handleFile() for each
* file in the tree. The user should call with the root directory and
* a prefix of "". The function will call itself with non-empty
* prefix values.
*/
#ifdef WIN32
void scandir(string dirname, string prefix="") {
HANDLE hList;
WIN32_FIND_DATA FileData;
// Get the first file
hList = FindFirstFile((dirname + "\\*").c_str(), &FileData);
if (hList == INVALID_HANDLE_VALUE) {
cerr << "Error: Invalid directory: " << dirname << endl;
exit(1);
}
for (;;) {
string name(FileData.cFileName);
string path(dirname + "\\" + name);
if (FileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
if (name != "." && name != "..") {
scandir(path, prefix + name + "/");
}
} else {
try {
string id = prefix + name;
handleFile(path, id);
} catch (const exception& e) {
cerr << "Error: While processing \"" << path << "\", "
<< e.what() << endl;
exit(1);
}
}
if (!FindNextFile(hList, &FileData)) {
if (GetLastError() == ERROR_NO_MORE_FILES) {
break;
} // else...?
}
}
FindClose(hList);
}
#else
void scandir(string dir, string prefix="") {
DIR *dp;
struct dirent *dir_entry;
struct stat stat_info;
char pwd[512];
vector<string> subdirs;
vector<string> subfiles;
if ((dp = opendir(dir.c_str())) == NULL) {
cerr << "Error: Invalid directory: " << dir << endl;
exit(1);
}
if (!getcwd(pwd, sizeof(pwd))) {
cerr << "Error: Directory name too long" << endl;
exit(1);
}
chdir(dir.c_str());
while ((dir_entry = readdir(dp)) != NULL) {
string name = dir_entry->d_name;
string path = dir + "/" + name;
lstat(dir_entry->d_name,&stat_info);
if (S_ISDIR(stat_info.st_mode)) {
if (name != "." && name != "..") {
subdirs.push_back(path);
subdirs.push_back(prefix + name + "/");
// scandir(path, prefix + name + "/");
}
} else {
try {
string id = prefix + name;
subfiles.push_back(path);
subfiles.push_back(id);
// handleFile(path, id);
} catch (const exception& e) {
cerr << "Error: While processing \"" << path << "\", "
<< e.what() << endl;
exit(1);
}
}
}
closedir(dp);
chdir(pwd);
for(int32_t i=0;i<(int32_t)subfiles.size();i+=2) {
try {
handleFile(subfiles[i], subfiles[i+1]);
} catch (const exception& e) {
cerr << "Error: While processing \"" << subfiles[i] << "\", "
<< e.what() << endl;
exit(1);
}
}
for(int32_t i=0;i<(int32_t)subdirs.size();i+=2) {
scandir(subdirs[i], subdirs[i+1]);
}
}
#endif
//--------------------------------------------------------------------
// Final zone and rule info
//--------------------------------------------------------------------
/**
* Read and discard the current line.
*/
void consumeLine(istream& in) {
int32_t c;
do {
c = in.get();
} while (c != EOF && c != '\n');
}
enum {
DOM = 0,
DOWGEQ = 1,
DOWLEQ = 2
};
const char* TIME_MODE[] = {"w", "s", "u"};
// Allow 29 days in February because zic outputs February 29
// for rules like "last Sunday in February".
const int32_t MONTH_LEN[] = {31,29,31,30,31,30,31,31,30,31,30,31};
const int32_t HOUR = 3600;
struct FinalZone {
int32_t offset; // raw offset
int32_t year; // takes effect for y >= year
string ruleid;
set<string> aliases;
FinalZone(int32_t _offset, int32_t _year, const string& _ruleid) :
offset(_offset), year(_year), ruleid(_ruleid) {
if (offset <= -16*HOUR || offset >= 16*HOUR) {
ostringstream os;
os << "Invalid input offset " << offset
<< " for year " << year
<< " and rule ID " << ruleid;
throw invalid_argument(os.str());
}
if (year < 1900) {
ostringstream os;
os << "Invalid input year " << year
<< " with offset " << offset
<< " and rule ID " << ruleid;
throw invalid_argument(os.str());
}
}
FinalZone() : offset(-1), year(-1) {}
void addLink(const string& alias) {
if (aliases.find(alias) != aliases.end()) {
ostringstream os;
os << "Duplicate alias " << alias;
throw invalid_argument(os.str());
}
aliases.insert(alias);
}
};
struct FinalRulePart {
int32_t mode;
int32_t month;
int32_t dom;
int32_t dow;
int32_t time;
int32_t offset; // dst offset, usually either 0 or 1:00
// Isstd and isgmt only have 3 valid states, corresponding to local
// wall time, local standard time, and GMT standard time.
// Here is how the isstd & isgmt flags are set by zic:
//| case 's': /* Standard */
//| rp->r_todisstd = TRUE;
//| rp->r_todisgmt = FALSE;
//| case 'w': /* Wall */
//| rp->r_todisstd = FALSE;
//| rp->r_todisgmt = FALSE;
//| case 'g': /* Greenwich */
//| case 'u': /* Universal */
//| case 'z': /* Zulu */
//| rp->r_todisstd = TRUE;
//| rp->r_todisgmt = TRUE;
bool isstd;
bool isgmt;
bool isset; // used during building; later ignored
FinalRulePart() : isset(false) {}
void set(const string& id,
const string& _mode,
int32_t _month,
int32_t _dom,
int32_t _dow,
int32_t _time,
bool _isstd,
bool _isgmt,
int32_t _offset) {
if (isset) {
throw invalid_argument("FinalRulePart set twice");
}
isset = true;
if (_mode == "DOWLEQ") {
mode = DOWLEQ;
} else if (_mode == "DOWGEQ") {
mode = DOWGEQ;
} else if (_mode == "DOM") {
mode = DOM;
} else {
throw invalid_argument("Unrecognized FinalRulePart mode");
}
month = _month;
dom = _dom;
dow = _dow;
time = _time;
isstd = _isstd;
isgmt = _isgmt;
offset = _offset;
ostringstream os;
if (month < 0 || month >= 12) {
os << "Invalid input month " << month;
}
if (dom < 1 || dom > MONTH_LEN[month]) {
os << "Invalid input day of month " << dom;
}
if (mode != DOM && (dow < 0 || dow >= 7)) {
os << "Invalid input day of week " << dow;
}
if (offset < 0 || offset > (2 * HOUR)) {
os << "Invalid input offset " << offset;
}
if (isgmt && !isstd) {
os << "Invalid input isgmt && !isstd";
}
if (!os.str().empty()) {
os << " for rule "
<< id
<< _mode
<< month << dom << dow << time
<< isstd << isgmt
<< offset;
throw invalid_argument(os.str());
}
}
/**
* Return the time mode as an ICU SimpleTimeZone int from 0..2;
* see simpletz.h.
*/
int32_t timemode() const {
if (isgmt) {
assert(isstd);
return 2; // gmt standard
}
if (isstd) {
return 1; // local standard
}
return 0; // local wall
}
// The SimpleTimeZone encoding method for rules is as follows:
// stz_dowim stz_dow
// DOM: dom 0
// DOWGEQ: dom -(dow+1)
// DOWLEQ: -dom -(dow+1)
// E.g., to encode Mon>=7, use stz_dowim=7, stz_dow=-2
// to encode Mon<=7, use stz_dowim=-7, stz_dow=-2
// to encode 7, use stz_dowim=7, stz_dow=0
// Note that for this program and for SimpleTimeZone, 0==Jan,
// but for this program 0==Sun while for SimpleTimeZone 1==Sun.
/**
* Return a "dowim" param suitable for SimpleTimeZone.
*/
int32_t stz_dowim() const {
return (mode == DOWLEQ) ? -dom : dom;
}
/**
* Return a "dow" param suitable for SimpleTimeZone.
*/
int32_t stz_dow() const {
return (mode == DOM) ? 0 : -(dow+1);
}
};
struct FinalRule {
FinalRulePart part[2];
bool isset() const {
return part[0].isset && part[1].isset;
}
void print(ostream& os) const;
};
map<string,FinalZone> finalZones;
map<string,FinalRule> finalRules;
map<string, set<string> > links;
map<string, string> reverseLinks;
map<string, string> linkSource; // id => "Olson link" or "ICU alias"
/**
* Predicate used to find FinalRule objects that do not have both
* sub-parts set (indicating an error in the input file).
*/
bool isNotSet(const pair<const string,FinalRule>& p) {
return !p.second.isset();
}
/**
* Predicate used to find FinalZone objects that do not map to a known
* rule (indicating an error in the input file).
*/
bool mapsToUnknownRule(const pair<const string,FinalZone>& p) {
return finalRules.find(p.second.ruleid) == finalRules.end();
}
/**
* This set is used to make sure each rule in finalRules is used at
* least once. First we populate it with all the rules from
* finalRules; then we remove all the rules referred to in
* finaleZones.
*/
set<string> ruleIDset;
void insertRuleID(const pair<string,FinalRule>& p) {
ruleIDset.insert(p.first);
}
void eraseRuleID(const pair<string,FinalZone>& p) {
ruleIDset.erase(p.second.ruleid);
}
/**
* Populate finalZones and finalRules from the given istream.
*/
void readFinalZonesAndRules(istream& in) {
for (;;) {
string token;
in >> token;
if (in.eof() || !in) {
break;
} else if (token == "zone") {
// zone Africa/Cairo 7200 1995 Egypt # zone Africa/Cairo, offset 7200, year >= 1995, rule Egypt (0)
string id, ruleid;
int32_t offset, year;
in >> id >> offset >> year >> ruleid;
consumeLine(in);
finalZones[id] = FinalZone(offset, year, ruleid);
} else if (token == "rule") {
// rule US DOWGEQ 3 1 0 7200 0 0 3600 # 52: US, file data/northamerica, line 119, mode DOWGEQ, April, dom 1, Sunday, time 7200, isstd 0, isgmt 0, offset 3600
// rule US DOWLEQ 9 31 0 7200 0 0 0 # 53: US, file data/northamerica, line 114, mode DOWLEQ, October, dom 31, Sunday, time 7200, isstd 0, isgmt 0, offset 0
string id, mode;
int32_t month, dom, dow, time, offset;
bool isstd, isgmt;
in >> id >> mode >> month >> dom >> dow >> time >> isstd >> isgmt >> offset;
consumeLine(in);
FinalRule& fr = finalRules[id];
int32_t p = fr.part[0].isset ? 1 : 0;
fr.part[p].set(id, mode, month, dom, dow, time, isstd, isgmt, offset);
} else if (token == "link") {
string fromid, toid; // fromid == "real" zone, toid == alias
in >> fromid >> toid;
// DO NOT consumeLine(in);
if (finalZones.find(toid) != finalZones.end()) {
throw invalid_argument("Bad link: `to' id is a \"real\" zone");
}
links[fromid].insert(toid);
reverseLinks[toid] = fromid;
linkSource[fromid] = "Olson link";
linkSource[toid] = "Olson link";
} else if (token.length() > 0 && token[0] == '#') {
consumeLine(in);
} else {
throw invalid_argument("Unrecognized keyword");
}
}
if (!in.eof() && !in) {
throw invalid_argument("Parse failure");
}
// Perform validity check: Each rule should have data for 2 parts.
if (count_if(finalRules.begin(), finalRules.end(), isNotSet) != 0) {
throw invalid_argument("One or more incomplete rule pairs");
}
// Perform validity check: Each zone should map to a known rule.
if (count_if(finalZones.begin(), finalZones.end(), mapsToUnknownRule) != 0) {
throw invalid_argument("One or more zones refers to an unknown rule");
}
// Perform validity check: Each rule should be referred to by a zone.
ruleIDset.clear();
for_each(finalRules.begin(), finalRules.end(), insertRuleID);
for_each(finalZones.begin(), finalZones.end(), eraseRuleID);
if (ruleIDset.size() != 0) {
throw invalid_argument("Unused rules");
}
}
//--------------------------------------------------------------------
// Resource bundle output
//--------------------------------------------------------------------
// SEE olsontz.h FOR RESOURCE BUNDLE DATA LAYOUT
void ZoneInfo::print(ostream& os, const string& id) const {
// Implement compressed format #2:
os << " /* " << id << " */ ";
if (aliasTo >= 0) {
assert(aliases.size() == 0);
os << ":int { " << aliasTo << " } "; // No endl - save room for comment.
return;
}
if (ICU44PLUS) {
os << ":table {" << endl;
} else {
os << ":array {" << endl;
}
vector<Transition>::const_iterator trn;
vector<ZoneType>::const_iterator typ;
bool first;
if (ICU44PLUS) {
trn = transitions.begin();
// pre 32bit transitions
if (trn != transitions.end() && trn->time < LOWEST_TIME32) {
os << " transPre32:intvector { ";
for (first = true; trn != transitions.end() && trn->time < LOWEST_TIME32; ++trn) {
if (!first) {
os<< ", ";
}
first = false;
os << (int32_t)(trn->time >> 32) << ", " << (int32_t)(trn->time & 0x00000000ffffffff);
}
os << " }" << endl;
}
// 32bit transtions
if (trn != transitions.end() && trn->time < HIGHEST_TIME32) {
os << " trans:intvector { ";
for (first = true; trn != transitions.end() && trn->time < HIGHEST_TIME32; ++trn) {
if (!first) {
os << ", ";
}
first = false;
os << trn->time;
}
os << " }" << endl;
}
// post 32bit transitons
if (trn != transitions.end()) {
os << " transPost32:intvector { ";
for (first = true; trn != transitions.end(); ++trn) {
if (!first) {
os<< ", ";
}
first = false;
os << (int32_t)(trn->time >> 32) << ", " << (int32_t)(trn->time & 0x00000000ffffffff);
}
os << " }" << endl;
}
} else {
os << " :intvector { ";
for (trn = transitions.begin(), first = true; trn != transitions.end(); ++trn) {
if (!first) os << ", ";
first = false;
os << trn->time;
}
os << " }" << endl;
}
first=true;
if (ICU44PLUS) {
os << " typeOffsets:intvector { ";
} else {
os << " :intvector { ";
}
for (typ = types.begin(); typ != types.end(); ++typ) {
if (!first) os << ", ";
first = false;
os << typ->rawoffset << ", " << typ->dstoffset;
}
os << " }" << endl;
if (ICU44PLUS) {
if (transitions.size() != 0) {
os << " typeMap:bin { \"" << hex << setfill('0');
for (trn = transitions.begin(); trn != transitions.end(); ++trn) {
os << setw(2) << trn->type;
}
os << dec << "\" }" << endl;
}
} else {
os << " :bin { \"" << hex << setfill('0');
for (trn = transitions.begin(); trn != transitions.end(); ++trn) {
os << setw(2) << trn->type;
}
os << dec << "\" }" << endl;
}
// Final zone info, if any
if (finalYear != -1) {
if (ICU44PLUS) {
os << " finalRule { \"" << finalRuleID << "\" }" << endl;
os << " finalRaw:int { " << finalOffset << " }" << endl;
os << " finalYear:int { " << finalYear << " }" << endl;
} else {
os << " \"" << finalRuleID << "\"" << endl;
os << " :intvector { " << finalOffset << ", "
<< finalYear << " }" << endl;
}
}
// Alias list, if any
if (aliases.size() != 0) {
first = true;
if (ICU44PLUS) {
os << " links:intvector { ";
} else {
os << " :intvector { ";
}
for (set<int32_t>::const_iterator i=aliases.begin(); i!=aliases.end(); ++i) {
if (!first) os << ", ";
first = false;
os << *i;
}
os << " }" << endl;
}
os << " } "; // no trailing 'endl', so comments can be placed.
}
inline ostream&
operator<<(ostream& os, const ZoneMap& zoneinfo) {
int32_t c = 0;
for (ZoneMapIter it = zoneinfo.begin();
it != zoneinfo.end();
++it) {
if(c && !ICU44PLUS) os << ",";
it->second.print(os, it->first);
os << "//Z#" << c++ << endl;
}
return os;
}
// print the string list
ostream& printStringList( ostream& os, const ZoneMap& zoneinfo) {
int32_t n = 0; // count
int32_t col = 0; // column
os << " Names {" << endl
<< " ";
for (ZoneMapIter it = zoneinfo.begin();
it != zoneinfo.end();
++it) {
if(n) {
os << ",";
col ++;
}
const string& id = it->first;
os << "\"" << id << "\"";
col += id.length() + 2;
if(col >= 50) {
os << " // " << n << endl
<< " ";
col = 0;
}
n++;
}
os << " // " << (n-1) << endl
<< " }" << endl;
return os;
}
//--------------------------------------------------------------------
// main
//--------------------------------------------------------------------
// Unary predicate for finding transitions after a given time
bool isAfter(const Transition t, int64_t thresh) {
return t.time >= thresh;
}
/**
* A zone type that contains only the raw and dst offset. Used by the
* optimizeTypeList() method.
*/
struct SimplifiedZoneType {
int64_t rawoffset;
int64_t dstoffset;
SimplifiedZoneType() : rawoffset(-1), dstoffset(-1) {}
SimplifiedZoneType(const ZoneType& t) : rawoffset(t.rawoffset),
dstoffset(t.dstoffset) {}
bool operator<(const SimplifiedZoneType& t) const {
return rawoffset < t.rawoffset ||
(rawoffset == t.rawoffset &&
dstoffset < t.dstoffset);
}
};
/**
* Construct a ZoneType from a SimplifiedZoneType. Note that this
* discards information; the new ZoneType will have meaningless
* (empty) abbr, isdst, isstd, and isgmt flags; this is appropriate,
* since ignoring these is how we do optimization (we have no use for
* these in historical transitions).
*/
ZoneType::ZoneType(const SimplifiedZoneType& t) :
rawoffset(t.rawoffset), dstoffset(t.dstoffset),
abbr(-1), isdst(false), isstd(false), isgmt(false) {}
/**
* Optimize the type list to remove excess entries. The type list may
* contain entries that are distinct only in terms of their dst, std,
* or gmt flags. Since we don't care about those flags, we can reduce
* the type list to a set of unique raw/dst offset pairs, and remap
* the type indices in the transition list, which stores, for each
* transition, a transition time and a type index.
*/
void ZoneInfo::optimizeTypeList() {
// Assemble set of unique types; only those in the `transitions'
// list, since there may be unused types in the `types' list
// corresponding to transitions that have been trimmed (during
// merging of final data).
if (aliasTo >= 0) return; // Nothing to do for aliases
if (!ICU44PLUS) {
// This is the old logic which has a bug, which occasionally removes
// the type before the first transition. The problem was fixed
// by inserting the dummy transition indirectly.
// If there are zero transitions and one type, then leave that as-is.
if (transitions.size() == 0) {
if (types.size() != 1) {
cerr << "Error: transition count = 0, type count = " << types.size() << endl;
}
return;
}
set<SimplifiedZoneType> simpleset;
for (vector<Transition>::const_iterator i=transitions.begin();
i!=transitions.end(); ++i) {
assert(i->type < (int32_t)types.size());
simpleset.insert(types[i->type]);
}
// Map types to integer indices
map<SimplifiedZoneType,int32_t> simplemap;
int32_t n=0;
for (set<SimplifiedZoneType>::const_iterator i=simpleset.begin();
i!=simpleset.end(); ++i) {
simplemap[*i] = n++;
}
// Remap transitions
for (vector<Transition>::iterator i=transitions.begin();
i!=transitions.end(); ++i) {
assert(i->type < (int32_t)types.size());
ZoneType oldtype = types[i->type];
SimplifiedZoneType newtype(oldtype);
assert(simplemap.find(newtype) != simplemap.end());
i->type = simplemap[newtype];
}
// Replace type list
types.clear();
copy(simpleset.begin(), simpleset.end(), back_inserter(types));
} else {
if (types.size() > 1) {
// Note: localtime uses the very first non-dst type as initial offsets.
// If all types are DSTs, the very first type is treated as the initial offsets.
// Decide a type used as the initial offsets. ICU put the type at index 0.
ZoneType initialType = types[0];
for (vector<ZoneType>::const_iterator i=types.begin(); i!=types.end(); ++i) {
if (i->dstoffset == 0) {
initialType = *i;
break;
}
}
SimplifiedZoneType initialSimplifiedType(initialType);
// create a set of unique types, but ignoring fields which we're not interested in
set<SimplifiedZoneType> simpleset;
simpleset.insert(initialSimplifiedType);
for (vector<Transition>::const_iterator i=transitions.begin(); i!=transitions.end(); ++i) {
assert(i->type < (int32_t)types.size());
simpleset.insert(types[i->type]);
}
// Map types to integer indices, however, keeping the first type at offset 0
map<SimplifiedZoneType,int32_t> simplemap;
simplemap[initialSimplifiedType] = 0;
int32_t n = 1;
for (set<SimplifiedZoneType>::const_iterator i=simpleset.begin(); i!=simpleset.end(); ++i) {
if (*i < initialSimplifiedType || initialSimplifiedType < *i) {
simplemap[*i] = n++;
}
}
// Remap transitions
for (vector<Transition>::iterator i=transitions.begin();
i!=transitions.end(); ++i) {
assert(i->type < (int32_t)types.size());
ZoneType oldtype = types[i->type];
SimplifiedZoneType newtype(oldtype);
assert(simplemap.find(newtype) != simplemap.end());
i->type = simplemap[newtype];
}
// Replace type list
types.clear();
types.push_back(initialSimplifiedType);
for (set<SimplifiedZoneType>::const_iterator i=simpleset.begin(); i!=simpleset.end(); ++i) {
if (*i < initialSimplifiedType || initialSimplifiedType < *i) {
types.push_back(*i);
}
}
// Reiterating transitions to remove any transitions which
// do not actually change the raw/dst offsets
int32_t prevTypeIdx = 0;
for (vector<Transition>::iterator i=transitions.begin(); i!=transitions.end();) {
if (i->type == prevTypeIdx) {
// this is not a time transition, probably just name change
// e.g. America/Resolute after 2006 in 2010b
transitions.erase(i);
} else {
prevTypeIdx = i->type;
i++;
}
}
}
}
}
/**
* Merge final zone data into this zone.
*/
void ZoneInfo::mergeFinalData(const FinalZone& fz) {
int32_t year = fz.year;
int64_t seconds = yearToSeconds(year);
if (!ICU44PLUS) {
if (seconds > HIGHEST_TIME32) {
// Avoid transitions beyond signed 32bit max second.
// This may result incorrect offset computation around
// HIGHEST_TIME32. This is a limitation of ICU
// before 4.4.
seconds = HIGHEST_TIME32;
}
}
vector<Transition>::iterator it =
find_if(transitions.begin(), transitions.end(),
bind2nd(ptr_fun(isAfter), seconds));
transitions.erase(it, transitions.end());
if (finalYear != -1) {
throw invalid_argument("Final zone already merged in");
}
finalYear = fz.year;
finalOffset = fz.offset;
finalRuleID = fz.ruleid;
}
/**
* Merge the data from the given final zone into the core zone data by
* calling the ZoneInfo member function mergeFinalData.
*/
void mergeOne(const string& zoneid, const FinalZone& fz) {
if (ZONEINFO.find(zoneid) == ZONEINFO.end()) {
throw invalid_argument("Unrecognized final zone ID");
}
ZONEINFO[zoneid].mergeFinalData(fz);
}
/**
* Visitor function that merges the final zone data into the main zone
* data structures. It calls mergeOne for each final zone and its
* list of aliases.
*/
void mergeFinalZone(const pair<string,FinalZone>& p) {
const string& id = p.first;
const FinalZone& fz = p.second;
mergeOne(id, fz);
}
/**
* Print this rule in resource bundle format to os. ID and enclosing
* braces handled elsewhere.
*/
void FinalRule::print(ostream& os) const {
// First print the rule part that enters DST; then the rule part
// that exits it.
int32_t whichpart = (part[0].offset != 0) ? 0 : 1;
assert(part[whichpart].offset != 0);
assert(part[1-whichpart].offset == 0);
os << " ";
for (int32_t i=0; i<2; ++i) {
const FinalRulePart& p = part[whichpart];
whichpart = 1-whichpart;
os << p.month << ", " << p.stz_dowim() << ", " << p.stz_dow() << ", "
<< p.time << ", " << p.timemode() << ", ";
}
os << part[whichpart].offset << endl;
}
int main(int argc, char *argv[]) {
string rootpath, zonetab, version;
bool validArgs = FALSE;
if (argc == 4 || argc == 5) {
validArgs = TRUE;
rootpath = argv[1];
zonetab = argv[2];
version = argv[3];
if (argc == 5) {
if (strcmp(argv[4], "--old") == 0) {
ICU44PLUS = FALSE;
TZ_RESOURCE_NAME = ICU_TZ_RESOURCE_OLD;
} else {
validArgs = FALSE;
}
}
}
if (!validArgs) {
cout << "Usage: tz2icu <dir> <cmap> <tzver> [--old]" << endl
<< " <dir> path to zoneinfo file tree generated by" << endl
<< " ICU-patched version of zic" << endl
<< " <cmap> country map, from tzdata archive," << endl
<< " typically named \"zone.tab\"" << endl
<< " <tzver> version string, such as \"2003e\"" << endl
<< " --old generating resource format before ICU4.4" << endl;
exit(1);
}
cout << "Olson data version: " << version << endl;
cout << "ICU 4.4+ format: " << (ICU44PLUS ? "Yes" : "No") << endl;
try {
ifstream finals(ICU_ZONE_FILE);
if (finals) {
readFinalZonesAndRules(finals);
cout << "Finished reading " << finalZones.size()
<< " final zones and " << finalRules.size()
<< " final rules from " ICU_ZONE_FILE << endl;
} else {
cerr << "Error: Unable to open " ICU_ZONE_FILE << endl;
return 1;
}
} catch (const exception& error) {
cerr << "Error: While reading " ICU_ZONE_FILE ": " << error.what() << endl;
return 1;
}
try {
// Recursively scan all files below the given path, accumulating
// their data into ZONEINFO. All files must be TZif files. Any
// failure along the way will result in a call to exit(1).
scandir(rootpath);
} catch (const exception& error) {
cerr << "Error: While scanning " << rootpath << ": " << error.what() << endl;
return 1;
}
cout << "Finished reading " << ZONEINFO.size() << " zoneinfo files ["
<< (ZONEINFO.begin())->first << ".."
<< (--ZONEINFO.end())->first << "]" << endl;
try {
for_each(finalZones.begin(), finalZones.end(), mergeFinalZone);
} catch (const exception& error) {
cerr << "Error: While merging final zone data: " << error.what() << endl;
return 1;
}
// Process links (including ICU aliases). For each link set we have
// a canonical ID (e.g., America/Los_Angeles) and a set of one or more
// aliases (e.g., PST, PST8PDT, ...).
// 1. Add all aliases as zone objects in ZONEINFO
for (map<string,set<string> >::const_iterator i = links.begin();
i!=links.end(); ++i) {
const string& olson = i->first;
const set<string>& aliases = i->second;
if (ZONEINFO.find(olson) == ZONEINFO.end()) {
cerr << "Error: Invalid " << linkSource[olson] << " to non-existent \""
<< olson << "\"" << endl;
return 1;
}
for (set<string>::const_iterator j=aliases.begin();
j!=aliases.end(); ++j) {
ZONEINFO[*j] = ZoneInfo();
}
}
// 2. Create a mapping from zones to index numbers 0..n-1.
map<string,int32_t> zoneIDs;
vector<string> zoneIDlist;
int32_t z=0;
for (ZoneMap::iterator i=ZONEINFO.begin(); i!=ZONEINFO.end(); ++i) {
zoneIDs[i->first] = z++;
zoneIDlist.push_back(i->first);
}
assert(z == (int32_t) ZONEINFO.size());
// 3. Merge aliases. Sometimes aliases link to other aliases; we
// resolve these into simplest possible sets.
map<string,set<string> > links2;
map<string,string> reverse2;
for (map<string,set<string> >::const_iterator i = links.begin();
i!=links.end(); ++i) {
string olson = i->first;
while (reverseLinks.find(olson) != reverseLinks.end()) {
olson = reverseLinks[olson];
}
for (set<string>::const_iterator j=i->second.begin(); j!=i->second.end(); ++j) {
links2[olson].insert(*j);
reverse2[*j] = olson;
}
}
links = links2;
reverseLinks = reverse2;
if (false) { // Debugging: Emit link map
for (map<string,set<string> >::const_iterator i = links.begin();
i!=links.end(); ++i) {
cout << i->first << ": ";
for (set<string>::const_iterator j=i->second.begin(); j!=i->second.end(); ++j) {
cout << *j << ", ";
}
cout << endl;
}
}
// 4. Update aliases
for (map<string,set<string> >::const_iterator i = links.begin();
i!=links.end(); ++i) {
const string& olson = i->first;
const set<string>& aliases = i->second;
ZONEINFO[olson].clearAliases();
ZONEINFO[olson].addAlias(zoneIDs[olson]);
for (set<string>::const_iterator j=aliases.begin();
j!=aliases.end(); ++j) {
assert(zoneIDs.find(olson) != zoneIDs.end());
assert(zoneIDs.find(*j) != zoneIDs.end());
assert(ZONEINFO.find(*j) != ZONEINFO.end());
ZONEINFO[*j].setAliasTo(zoneIDs[olson]);
ZONEINFO[olson].addAlias(zoneIDs[*j]);
}
}
// Once merging of final data is complete, we can optimize the type list
for (ZoneMap::iterator i=ZONEINFO.begin(); i!=ZONEINFO.end(); ++i) {
i->second.optimizeTypeList();
}
// Create the country map
map<string, string> icuRegions; // ICU's custom zone -> country override
map<string, set<string> > countryMap; // country -> set of zones
map<string, string> reverseCountryMap; // zone -> country
try {
// Read icuregions file to collect ICU's own zone-region mapping data.
ifstream frg(ICU_REGIONS);
if (frg) {
string line;
while (getline(frg, line)) {
if (line[0] == '#') continue;
string zone, country;
istringstream is(line);
is >> zone >> country;
if (zone.size() == 0) continue;
if (country.size() < 2) {
cerr << "Error: Can't parse " << line << " in " << ICU_REGIONS << endl;
return 1;
}
icuRegions[zone] = country;
}
} else {
cout << "No custom region map [icuregions]" << endl;
}
} catch (const exception& error) {
cerr << "Error: While reading " << ICU_REGIONS << ": " << error.what() << endl;
return 1;
}
try {
ifstream f(zonetab.c_str());
if (!f) {
cerr << "Error: Unable to open " << zonetab << endl;
return 1;
}
int32_t n = 0;
string line;
while (getline(f, line)) {
string::size_type lb = line.find('#');
if (lb != string::npos) {
line.resize(lb); // trim comments
}
string country, coord, zone;
istringstream is(line);
is >> country >> coord >> zone;
if (country.size() == 0) continue;
if (country.size() != 2 || zone.size() < 1) {
cerr << "Error: Can't parse " << line << " in " << zonetab << endl;
return 1;
}
if (ZONEINFO.find(zone) == ZONEINFO.end()) {
cerr << "Error: Country maps to invalid zone " << zone
<< " in " << zonetab << endl;
return 1;
}
if (icuRegions.find(zone) != icuRegions.end()) {
// Custom override
string customCountry = icuRegions[zone];
cout << "Region Mapping: custom override for " << zone
<< " " << country << " -> " << customCountry << endl;
country = customCountry;
}
countryMap[country].insert(zone);
reverseCountryMap[zone] = country;
//cerr << (n+1) << ": " << country << " <=> " << zone << endl;
++n;
}
cout << "Finished reading " << n
<< " country entries from " << zonetab << endl;
} catch (const exception& error) {
cerr << "Error: While reading " << zonetab << ": " << error.what() << endl;
return 1;
}
// Merge ICU's own zone-region mapping data
for (map<string,string>::const_iterator i = icuRegions.begin();
i != icuRegions.end(); ++i) {
const string& zid(i->first);
if (reverseCountryMap.find(zid) != reverseCountryMap.end()) {
continue;
}
cout << "Region Mapping: custom data zone=" << zid
<< ", region=" << i->second << endl;
reverseCountryMap[zid] = i->second;
countryMap[i->second].insert(zid);
}
// Merge ICU aliases into country map. Don't merge any alias
// that already has a country map, since that doesn't make sense.
// E.g. "Link Europe/Oslo Arctic/Longyearbyen" doesn't mean we
// should cross-map the countries between these two zones.
for (map<string,set<string> >::const_iterator i = links.begin();
i!=links.end(); ++i) {
const string& olson(i->first);
if (reverseCountryMap.find(olson) == reverseCountryMap.end()) {
continue;
}
string c = reverseCountryMap[olson];
const set<string>& aliases(i->second);
for (set<string>::const_iterator j=aliases.begin();
j != aliases.end(); ++j) {
if (reverseCountryMap.find(*j) == reverseCountryMap.end()) {
countryMap[c].insert(*j);
reverseCountryMap[*j] = c;
//cerr << "Aliased country: " << c << " <=> " << *j << endl;
}
}
}
// Create a pseudo-country containing all zones belonging to no country
set<string> nocountry;
for (ZoneMap::iterator i=ZONEINFO.begin(); i!=ZONEINFO.end(); ++i) {
if (reverseCountryMap.find(i->first) == reverseCountryMap.end()) {
nocountry.insert(i->first);
}
}
countryMap[""] = nocountry;
// Get local time & year for below
time_t sec;
time(&sec);
struct tm* now = localtime(&sec);
int32_t thisYear = now->tm_year + 1900;
string filename = TZ_RESOURCE_NAME + ".txt";
// Write out a resource-bundle source file containing data for
// all zones.
ofstream file(filename.c_str());
if (file) {
file << "//---------------------------------------------------------" << endl
<< "// Copyright (C) 2016 and later: Unicode, Inc. and others." << endl
<< "// License & terms of use: http://www.unicode.org/copyright.html#License" << endl
<< "//---------------------------------------------------------" << endl
<< "// Build tool: tz2icu" << endl
<< "// Build date: " << asctime(now) /* << endl -- asctime emits CR */
<< "// tz database: ftp://ftp.iana.org/tz/" << endl
<< "// tz version: " << version << endl
<< "// ICU version: " << U_ICU_VERSION << endl
<< "//---------------------------------------------------------" << endl
<< "// >> !!! >> THIS IS A MACHINE-GENERATED FILE << !!! <<" << endl
<< "// >> !!! >>> DO NOT EDIT <<< !!! <<" << endl
<< "//---------------------------------------------------------" << endl
<< endl
<< TZ_RESOURCE_NAME << ":table(nofallback) {" << endl
<< " TZVersion { \"" << version << "\" }" << endl
<< " Zones:array { " << endl
<< ZONEINFO // Zones (the actual data)
<< " }" << endl;
// Names correspond to the Zones list, used for binary searching.
printStringList ( file, ZONEINFO ); // print the Names list
// Final Rules are used if requested by the zone
file << " Rules { " << endl;
// Emit final rules
int32_t frc = 0;
for(map<string,FinalRule>::iterator i=finalRules.begin();
i!=finalRules.end(); ++i) {
const string& id = i->first;
const FinalRule& r = i->second;
file << " " << id << ":intvector {" << endl;
r.print(file);
file << " } //_#" << frc++ << endl;
}
file << " }" << endl;
// Emit country (region) map.
if (ICU44PLUS) {
file << " Regions:array {" << endl;
int32_t zn = 0;
for (ZoneMap::iterator i=ZONEINFO.begin(); i!=ZONEINFO.end(); ++i) {
map<string, string>::iterator cit = reverseCountryMap.find(i->first);
if (cit == reverseCountryMap.end()) {
file << " \"001\",";
} else {
file << " \"" << cit->second << "\", ";
}
file << "//Z#" << zn++ << " " << i->first << endl;
}
file << " }" << endl;
} else {
file << " Regions { " << endl;
int32_t rc = 0;
for (map<string, set<string> >::const_iterator i=countryMap.begin();
i != countryMap.end(); ++i) {
string country = i->first;
const set<string>& zones(i->second);
file << " ";
if(country[0]==0) {
file << "Default";
}
file << country << ":intvector { ";
bool first = true;
for (set<string>::const_iterator j=zones.begin();
j != zones.end(); ++j) {
if (!first) file << ", ";
first = false;
if (zoneIDs.find(*j) == zoneIDs.end()) {
cerr << "Error: Nonexistent zone in country map: " << *j << endl;
return 1;
}
file << zoneIDs[*j]; // emit the zone's index number
}
file << " } //R#" << rc++ << endl;
}
file << " }" << endl;
}
file << "}" << endl;
}
file.close();
if (file) { // recheck error bit
cout << "Finished writing " << TZ_RESOURCE_NAME << ".txt" << endl;
} else {
cerr << "Error: Unable to open/write to " << TZ_RESOURCE_NAME << ".txt" << endl;
return 1;
}
}
//eof