// Copyright (C) 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/********************************************************************
* Copyright (c) 1997-2016, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
#include "unicode/ustring.h"
#include "unicode/uchar.h"
#include "unicode/uniset.h"
#include "unicode/putil.h"
#include "unicode/uscript.h"
#include "cstring.h"
#include "hash.h"
#include "patternprops.h"
#include "normalizer2impl.h"
#include "uparse.h"
#include "ucdtest.h"
static const char *ignorePropNames[]={
"FC_NFKC",
"NFD_QC",
"NFC_QC",
"NFKD_QC",
"NFKC_QC",
"Expands_On_NFD",
"Expands_On_NFC",
"Expands_On_NFKD",
"Expands_On_NFKC",
"NFKC_CF"
};
UnicodeTest::UnicodeTest()
{
UErrorCode errorCode=U_ZERO_ERROR;
unknownPropertyNames=new U_NAMESPACE_QUALIFIER Hashtable(errorCode);
if(U_FAILURE(errorCode)) {
delete unknownPropertyNames;
unknownPropertyNames=NULL;
}
// Ignore some property names altogether.
for(int32_t i=0; i<UPRV_LENGTHOF(ignorePropNames); ++i) {
unknownPropertyNames->puti(UnicodeString(ignorePropNames[i], -1, US_INV), 1, errorCode);
}
}
UnicodeTest::~UnicodeTest()
{
delete unknownPropertyNames;
}
void UnicodeTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ )
{
if(exec) {
logln("TestSuite UnicodeTest: ");
}
TESTCASE_AUTO_BEGIN;
TESTCASE_AUTO(TestAdditionalProperties);
TESTCASE_AUTO(TestBinaryValues);
TESTCASE_AUTO(TestConsistency);
TESTCASE_AUTO(TestPatternProperties);
TESTCASE_AUTO(TestScriptMetadata);
TESTCASE_AUTO(TestBidiPairedBracketType);
TESTCASE_AUTO(TestEmojiProperties);
TESTCASE_AUTO_END;
}
//====================================================
// private data used by the tests
//====================================================
// test DerivedCoreProperties.txt -------------------------------------------
// copied from genprops.c
static int32_t
getTokenIndex(const char *const tokens[], int32_t countTokens, const char *s) {
const char *t, *z;
int32_t i, j;
s=u_skipWhitespace(s);
for(i=0; i<countTokens; ++i) {
t=tokens[i];
if(t!=NULL) {
for(j=0;; ++j) {
if(t[j]!=0) {
if(s[j]!=t[j]) {
break;
}
} else {
z=u_skipWhitespace(s+j);
if(*z==';' || *z==0) {
return i;
} else {
break;
}
}
}
}
}
return -1;
}
static const char *const
derivedPropsNames[]={
"Math",
"Alphabetic",
"Lowercase",
"Uppercase",
"ID_Start",
"ID_Continue",
"XID_Start",
"XID_Continue",
"Default_Ignorable_Code_Point",
"Full_Composition_Exclusion",
"Grapheme_Extend",
"Grapheme_Link", /* Unicode 5 moves this property here from PropList.txt */
"Grapheme_Base",
"Cased",
"Case_Ignorable",
"Changes_When_Lowercased",
"Changes_When_Uppercased",
"Changes_When_Titlecased",
"Changes_When_Casefolded",
"Changes_When_Casemapped",
"Changes_When_NFKC_Casefolded"
};
static const UProperty
derivedPropsIndex[]={
UCHAR_MATH,
UCHAR_ALPHABETIC,
UCHAR_LOWERCASE,
UCHAR_UPPERCASE,
UCHAR_ID_START,
UCHAR_ID_CONTINUE,
UCHAR_XID_START,
UCHAR_XID_CONTINUE,
UCHAR_DEFAULT_IGNORABLE_CODE_POINT,
UCHAR_FULL_COMPOSITION_EXCLUSION,
UCHAR_GRAPHEME_EXTEND,
UCHAR_GRAPHEME_LINK,
UCHAR_GRAPHEME_BASE,
UCHAR_CASED,
UCHAR_CASE_IGNORABLE,
UCHAR_CHANGES_WHEN_LOWERCASED,
UCHAR_CHANGES_WHEN_UPPERCASED,
UCHAR_CHANGES_WHEN_TITLECASED,
UCHAR_CHANGES_WHEN_CASEFOLDED,
UCHAR_CHANGES_WHEN_CASEMAPPED,
UCHAR_CHANGES_WHEN_NFKC_CASEFOLDED
};
static int32_t numErrors[UPRV_LENGTHOF(derivedPropsIndex)]={ 0 };
enum { MAX_ERRORS=50 };
U_CFUNC void U_CALLCONV
derivedPropsLineFn(void *context,
char *fields[][2], int32_t /* fieldCount */,
UErrorCode *pErrorCode)
{
UnicodeTest *me=(UnicodeTest *)context;
uint32_t start, end;
int32_t i;
u_parseCodePointRange(fields[0][0], &start, &end, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
me->errln("UnicodeTest: syntax error in DerivedCoreProperties.txt or DerivedNormalizationProps.txt field 0 at %s\n", fields[0][0]);
return;
}
/* parse derived binary property name, ignore unknown names */
i=getTokenIndex(derivedPropsNames, UPRV_LENGTHOF(derivedPropsNames), fields[1][0]);
if(i<0) {
UnicodeString propName(fields[1][0], (int32_t)(fields[1][1]-fields[1][0]));
propName.trim();
if(me->unknownPropertyNames->find(propName)==NULL) {
UErrorCode errorCode=U_ZERO_ERROR;
me->unknownPropertyNames->puti(propName, 1, errorCode);
me->errln("UnicodeTest warning: unknown property name '%s' in DerivedCoreProperties.txt or DerivedNormalizationProps.txt\n", fields[1][0]);
}
return;
}
me->derivedProps[i].add(start, end);
}
void UnicodeTest::TestAdditionalProperties() {
#if !UCONFIG_NO_NORMALIZATION
// test DerivedCoreProperties.txt and DerivedNormalizationProps.txt
if(UPRV_LENGTHOF(derivedProps)<UPRV_LENGTHOF(derivedPropsNames)) {
errln("error: UnicodeTest::derivedProps[] too short, need at least %d UnicodeSets\n",
UPRV_LENGTHOF(derivedPropsNames));
return;
}
if(UPRV_LENGTHOF(derivedPropsIndex)!=UPRV_LENGTHOF(derivedPropsNames)) {
errln("error in ucdtest.cpp: UPRV_LENGTHOF(derivedPropsIndex)!=UPRV_LENGTHOF(derivedPropsNames)\n");
return;
}
char path[500];
if(getUnidataPath(path) == NULL) {
errln("unable to find path to source/data/unidata/");
return;
}
char *basename=strchr(path, 0);
strcpy(basename, "DerivedCoreProperties.txt");
char *fields[2][2];
UErrorCode errorCode=U_ZERO_ERROR;
u_parseDelimitedFile(path, ';', fields, 2, derivedPropsLineFn, this, &errorCode);
if(U_FAILURE(errorCode)) {
errln("error parsing DerivedCoreProperties.txt: %s\n", u_errorName(errorCode));
return;
}
strcpy(basename, "DerivedNormalizationProps.txt");
u_parseDelimitedFile(path, ';', fields, 2, derivedPropsLineFn, this, &errorCode);
if(U_FAILURE(errorCode)) {
errln("error parsing DerivedNormalizationProps.txt: %s\n", u_errorName(errorCode));
return;
}
// now we have all derived core properties in the UnicodeSets
// run them all through the API
int32_t rangeCount, range;
uint32_t i;
UChar32 start, end;
// test all TRUE properties
for(i=0; i<UPRV_LENGTHOF(derivedPropsNames); ++i) {
rangeCount=derivedProps[i].getRangeCount();
for(range=0; range<rangeCount && numErrors[i]<MAX_ERRORS; ++range) {
start=derivedProps[i].getRangeStart(range);
end=derivedProps[i].getRangeEnd(range);
for(; start<=end; ++start) {
if(!u_hasBinaryProperty(start, derivedPropsIndex[i])) {
dataerrln("UnicodeTest error: u_hasBinaryProperty(U+%04lx, %s)==FALSE is wrong", start, derivedPropsNames[i]);
if(++numErrors[i]>=MAX_ERRORS) {
dataerrln("Too many errors, moving to the next test");
break;
}
}
}
}
}
// invert all properties
for(i=0; i<UPRV_LENGTHOF(derivedPropsNames); ++i) {
derivedProps[i].complement();
}
// test all FALSE properties
for(i=0; i<UPRV_LENGTHOF(derivedPropsNames); ++i) {
rangeCount=derivedProps[i].getRangeCount();
for(range=0; range<rangeCount && numErrors[i]<MAX_ERRORS; ++range) {
start=derivedProps[i].getRangeStart(range);
end=derivedProps[i].getRangeEnd(range);
for(; start<=end; ++start) {
if(u_hasBinaryProperty(start, derivedPropsIndex[i])) {
errln("UnicodeTest error: u_hasBinaryProperty(U+%04lx, %s)==TRUE is wrong\n", start, derivedPropsNames[i]);
if(++numErrors[i]>=MAX_ERRORS) {
errln("Too many errors, moving to the next test");
break;
}
}
}
}
}
#endif /* !UCONFIG_NO_NORMALIZATION */
}
void UnicodeTest::TestBinaryValues() {
/*
* Unicode 5.1 explicitly defines binary property value aliases.
* Verify that they are all recognized.
*/
UErrorCode errorCode=U_ZERO_ERROR;
UnicodeSet alpha(UNICODE_STRING_SIMPLE("[:Alphabetic:]"), errorCode);
if(U_FAILURE(errorCode)) {
dataerrln("UnicodeSet([:Alphabetic:]) failed - %s", u_errorName(errorCode));
return;
}
static const char *const falseValues[]={ "N", "No", "F", "False" };
static const char *const trueValues[]={ "Y", "Yes", "T", "True" };
int32_t i;
for(i=0; i<UPRV_LENGTHOF(falseValues); ++i) {
UnicodeString pattern=UNICODE_STRING_SIMPLE("[:Alphabetic=:]");
pattern.insert(pattern.length()-2, UnicodeString(falseValues[i], -1, US_INV));
errorCode=U_ZERO_ERROR;
UnicodeSet set(pattern, errorCode);
if(U_FAILURE(errorCode)) {
errln("UnicodeSet([:Alphabetic=%s:]) failed - %s\n", falseValues[i], u_errorName(errorCode));
continue;
}
set.complement();
if(set!=alpha) {
errln("UnicodeSet([:Alphabetic=%s:]).complement()!=UnicodeSet([:Alphabetic:])\n", falseValues[i]);
}
}
for(i=0; i<UPRV_LENGTHOF(trueValues); ++i) {
UnicodeString pattern=UNICODE_STRING_SIMPLE("[:Alphabetic=:]");
pattern.insert(pattern.length()-2, UnicodeString(trueValues[i], -1, US_INV));
errorCode=U_ZERO_ERROR;
UnicodeSet set(pattern, errorCode);
if(U_FAILURE(errorCode)) {
errln("UnicodeSet([:Alphabetic=%s:]) failed - %s\n", trueValues[i], u_errorName(errorCode));
continue;
}
if(set!=alpha) {
errln("UnicodeSet([:Alphabetic=%s:])!=UnicodeSet([:Alphabetic:])\n", trueValues[i]);
}
}
}
void UnicodeTest::TestConsistency() {
#if !UCONFIG_NO_NORMALIZATION
/*
* Test for an example that getCanonStartSet() delivers
* all characters that compose from the input one,
* even in multiple steps.
* For example, the set for "I" (0049) should contain both
* I-diaeresis (00CF) and I-diaeresis-acute (1E2E).
* In general, the set for the middle such character should be a subset
* of the set for the first.
*/
IcuTestErrorCode errorCode(*this, "TestConsistency");
const Normalizer2 *nfd=Normalizer2::getNFDInstance(errorCode);
const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode);
if(!nfcImpl->ensureCanonIterData(errorCode) || errorCode.isFailure()) {
dataerrln("Normalizer2::getInstance(NFD) or Normalizer2Factory::getNFCImpl() failed - %s\n",
errorCode.errorName());
errorCode.reset();
return;
}
UnicodeSet set1, set2;
if (nfcImpl->getCanonStartSet(0x49, set1)) {
/* enumerate all characters that are plausible to be latin letters */
for(UChar start=0xa0; start<0x2000; ++start) {
UnicodeString decomp=nfd->normalize(UnicodeString(start), errorCode);
if(decomp.length()>1 && decomp[0]==0x49) {
set2.add(start);
}
}
if (set1!=set2) {
errln("[canon start set of 0049] != [all c with canon decomp with 0049]");
}
// This was available in cucdtst.c but the test had to move to intltest
// because the new internal normalization functions are in C++.
//compareUSets(set1, set2,
// "[canon start set of 0049]", "[all c with canon decomp with 0049]",
// TRUE);
} else {
errln("NFC.getCanonStartSet() returned FALSE");
}
#endif
}
/**
* Test various implementations of Pattern_Syntax & Pattern_White_Space.
*/
void UnicodeTest::TestPatternProperties() {
IcuTestErrorCode errorCode(*this, "TestPatternProperties()");
UnicodeSet syn_pp;
UnicodeSet syn_prop(UNICODE_STRING_SIMPLE("[:Pattern_Syntax:]"), errorCode);
UnicodeSet syn_list(
"[!-/\\:-@\\[-\\^`\\{-~"
"\\u00A1-\\u00A7\\u00A9\\u00AB\\u00AC\\u00AE\\u00B0\\u00B1\\u00B6\\u00BB\\u00BF\\u00D7\\u00F7"
"\\u2010-\\u2027\\u2030-\\u203E\\u2041-\\u2053\\u2055-\\u205E\\u2190-\\u245F\\u2500-\\u2775"
"\\u2794-\\u2BFF\\u2E00-\\u2E7F\\u3001-\\u3003\\u3008-\\u3020\\u3030\\uFD3E\\uFD3F\\uFE45\\uFE46]", errorCode);
UnicodeSet ws_pp;
UnicodeSet ws_prop(UNICODE_STRING_SIMPLE("[:Pattern_White_Space:]"), errorCode);
UnicodeSet ws_list(UNICODE_STRING_SIMPLE("[\\u0009-\\u000D\\ \\u0085\\u200E\\u200F\\u2028\\u2029]"), errorCode);
UnicodeSet syn_ws_pp;
UnicodeSet syn_ws_prop(syn_prop);
syn_ws_prop.addAll(ws_prop);
for(UChar32 c=0; c<=0xffff; ++c) {
if(PatternProps::isSyntax(c)) {
syn_pp.add(c);
}
if(PatternProps::isWhiteSpace(c)) {
ws_pp.add(c);
}
if(PatternProps::isSyntaxOrWhiteSpace(c)) {
syn_ws_pp.add(c);
}
}
compareUSets(syn_pp, syn_prop,
"PatternProps.isSyntax()", "[:Pattern_Syntax:]", TRUE);
compareUSets(syn_pp, syn_list,
"PatternProps.isSyntax()", "[Pattern_Syntax ranges]", TRUE);
compareUSets(ws_pp, ws_prop,
"PatternProps.isWhiteSpace()", "[:Pattern_White_Space:]", TRUE);
compareUSets(ws_pp, ws_list,
"PatternProps.isWhiteSpace()", "[Pattern_White_Space ranges]", TRUE);
compareUSets(syn_ws_pp, syn_ws_prop,
"PatternProps.isSyntaxOrWhiteSpace()",
"[[:Pattern_Syntax:][:Pattern_White_Space:]]", TRUE);
}
// So far only minimal port of Java & cucdtst.c compareUSets().
UBool
UnicodeTest::compareUSets(const UnicodeSet &a, const UnicodeSet &b,
const char *a_name, const char *b_name,
UBool diffIsError) {
UBool same= a==b;
if(!same && diffIsError) {
errln("Sets are different: %s vs. %s\n", a_name, b_name);
}
return same;
}
namespace {
/**
* Maps a special script code to the most common script of its encoded characters.
*/
UScriptCode getCharScript(UScriptCode script) {
switch(script) {
case USCRIPT_HAN_WITH_BOPOMOFO:
case USCRIPT_SIMPLIFIED_HAN:
case USCRIPT_TRADITIONAL_HAN:
return USCRIPT_HAN;
case USCRIPT_JAPANESE:
return USCRIPT_HIRAGANA;
case USCRIPT_JAMO:
case USCRIPT_KOREAN:
return USCRIPT_HANGUL;
case USCRIPT_SYMBOLS_EMOJI:
return USCRIPT_SYMBOLS;
default:
return script;
}
}
} // namespace
void UnicodeTest::TestScriptMetadata() {
IcuTestErrorCode errorCode(*this, "TestScriptMetadata()");
UnicodeSet rtl("[[:bc=R:][:bc=AL:]-[:Cn:]-[:sc=Common:]]", errorCode);
// So far, sample characters are uppercase.
// Georgian is special.
UnicodeSet cased("[[:Lu:]-[:sc=Common:]-[:sc=Geor:]]", errorCode);
for(int32_t sci = 0; sci < USCRIPT_CODE_LIMIT; ++sci) {
UScriptCode sc = (UScriptCode)sci;
// Run the test with -v to see which script has failures:
// .../intltest$ make && ./intltest utility/UnicodeTest/TestScriptMetadata -v | grep -C 6 FAIL
logln(uscript_getShortName(sc));
UScriptUsage usage = uscript_getUsage(sc);
UnicodeString sample = uscript_getSampleUnicodeString(sc);
UnicodeSet scriptSet;
scriptSet.applyIntPropertyValue(UCHAR_SCRIPT, sc, errorCode);
if(usage == USCRIPT_USAGE_NOT_ENCODED) {
assertTrue("not encoded, no sample", sample.isEmpty());
assertFalse("not encoded, not RTL", uscript_isRightToLeft(sc));
assertFalse("not encoded, not LB letters", uscript_breaksBetweenLetters(sc));
assertFalse("not encoded, not cased", uscript_isCased(sc));
assertTrue("not encoded, no characters", scriptSet.isEmpty());
} else {
assertFalse("encoded, has a sample character", sample.isEmpty());
UChar32 firstChar = sample.char32At(0);
UScriptCode charScript = getCharScript(sc);
assertEquals("script(sample(script))",
(int32_t)charScript, (int32_t)uscript_getScript(firstChar, errorCode));
assertEquals("RTL vs. set", (UBool)rtl.contains(firstChar), (UBool)uscript_isRightToLeft(sc));
assertEquals("cased vs. set", (UBool)cased.contains(firstChar), (UBool)uscript_isCased(sc));
assertEquals("encoded, has characters", (UBool)(sc == charScript), (UBool)(!scriptSet.isEmpty()));
if(uscript_isRightToLeft(sc)) {
rtl.removeAll(scriptSet);
}
if(uscript_isCased(sc)) {
cased.removeAll(scriptSet);
}
}
}
UnicodeString pattern;
assertEquals("no remaining RTL characters",
UnicodeString("[]"), rtl.toPattern(pattern));
assertEquals("no remaining cased characters",
UnicodeString("[]"), cased.toPattern(pattern));
assertTrue("Hani breaks between letters", uscript_breaksBetweenLetters(USCRIPT_HAN));
assertTrue("Thai breaks between letters", uscript_breaksBetweenLetters(USCRIPT_THAI));
assertFalse("Latn does not break between letters", uscript_breaksBetweenLetters(USCRIPT_LATIN));
}
void UnicodeTest::TestBidiPairedBracketType() {
// BidiBrackets-6.3.0.txt says:
//
// The set of code points listed in this file was originally derived
// using the character properties General_Category (gc), Bidi_Class (bc),
// Bidi_Mirrored (Bidi_M), and Bidi_Mirroring_Glyph (bmg), as follows:
// two characters, A and B, form a pair if A has gc=Ps and B has gc=Pe,
// both have bc=ON and Bidi_M=Y, and bmg of A is B. Bidi_Paired_Bracket
// maps A to B and vice versa, and their Bidi_Paired_Bracket_Type
// property values are Open and Close, respectively.
IcuTestErrorCode errorCode(*this, "TestBidiPairedBracketType()");
UnicodeSet bpt("[:^bpt=n:]", errorCode);
assertTrue("bpt!=None is not empty", !bpt.isEmpty());
// The following should always be true.
UnicodeSet mirrored("[:Bidi_M:]", errorCode);
UnicodeSet other_neutral("[:bc=ON:]", errorCode);
assertTrue("bpt!=None is a subset of Bidi_M", mirrored.containsAll(bpt));
assertTrue("bpt!=None is a subset of bc=ON", other_neutral.containsAll(bpt));
// The following are true at least initially in Unicode 6.3.
UnicodeSet bpt_open("[:bpt=o:]", errorCode);
UnicodeSet bpt_close("[:bpt=c:]", errorCode);
UnicodeSet ps("[:Ps:]", errorCode);
UnicodeSet pe("[:Pe:]", errorCode);
assertTrue("bpt=Open is a subset of Ps", ps.containsAll(bpt_open));
assertTrue("bpt=Close is a subset of Pe", pe.containsAll(bpt_close));
}
void UnicodeTest::TestEmojiProperties() {
assertFalse("space is not Emoji", u_hasBinaryProperty(0x20, UCHAR_EMOJI));
assertTrue("shooting star is Emoji", u_hasBinaryProperty(0x1F320, UCHAR_EMOJI));
IcuTestErrorCode errorCode(*this, "TestEmojiProperties()");
UnicodeSet emoji("[:Emoji:]", errorCode);
assertTrue("lots of Emoji", emoji.size() > 700);
assertTrue("shooting star is Emoji_Presentation",
u_hasBinaryProperty(0x1F320, UCHAR_EMOJI_PRESENTATION));
assertTrue("Fitzpatrick 6 is Emoji_Modifier",
u_hasBinaryProperty(0x1F3FF, UCHAR_EMOJI_MODIFIER));
assertTrue("happy person is Emoji_Modifier_Base",
u_hasBinaryProperty(0x1F64B, UCHAR_EMOJI_MODIFIER_BASE));
}