// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// static_map_unittest.cc: Unit tests for StaticMap.
//
// Author: Siyang Xie (lambxsy@google.com)
#include <climits>
#include <map>
#include "breakpad_googletest_includes.h"
#include "processor/static_map-inl.h"
typedef int ValueType;
typedef int KeyType;
typedef google_breakpad::StaticMap< KeyType, ValueType > TestMap;
typedef std::map< KeyType, ValueType > StdMap;
template<typename Key, typename Value>
class SimpleMapSerializer {
public:
static char* Serialize(const std::map<Key, Value> &stdmap,
unsigned int* size = NULL) {
unsigned int size_per_node =
sizeof(uint32_t) + sizeof(Key) + sizeof(Value);
unsigned int memsize = sizeof(int32_t) + size_per_node * stdmap.size();
if (size) *size = memsize;
// Allocate memory for serialized data:
char* mem = reinterpret_cast<char*>(operator new(memsize));
char* address = mem;
// Writer the number of nodes:
new (address) uint32_t(static_cast<uint32_t>(stdmap.size()));
address += sizeof(uint32_t);
// Nodes' offset:
uint32_t* offsets = reinterpret_cast<uint32_t*>(address);
address += sizeof(uint32_t) * stdmap.size();
// Keys:
Key* keys = reinterpret_cast<Key*>(address);
address += sizeof(Key) * stdmap.size();
// Traversing map:
typename std::map<Key, Value>::const_iterator iter = stdmap.begin();
for (int index = 0; iter != stdmap.end(); ++iter, ++index) {
offsets[index] = static_cast<unsigned int>(address - mem);
keys[index] = iter->first;
new (address) Value(iter->second);
address += sizeof(Value);
}
return mem;
}
};
class TestInvalidMap : public ::testing::Test {
protected:
void SetUp() {
memset(data, 0, kMemorySize);
}
// 40 Bytes memory can hold a StaticMap with up to 3 nodes.
static const int kMemorySize = 40;
char data[kMemorySize];
TestMap test_map;
};
TEST_F(TestInvalidMap, TestNegativeNumberNodes) {
memset(data, 0xff, sizeof(uint32_t)); // Set the number of nodes = -1
test_map = TestMap(data);
ASSERT_FALSE(test_map.ValidateInMemoryStructure());
}
TEST_F(TestInvalidMap, TestWrongOffsets) {
uint32_t* header = reinterpret_cast<uint32_t*>(data);
const uint32_t kNumNodes = 2;
const uint32_t kHeaderOffset =
sizeof(uint32_t) + kNumNodes * (sizeof(uint32_t) + sizeof(KeyType));
header[0] = kNumNodes;
header[1] = kHeaderOffset + 3; // Wrong offset for first node
test_map = TestMap(data);
ASSERT_FALSE(test_map.ValidateInMemoryStructure());
header[1] = kHeaderOffset; // Correct offset for first node
header[2] = kHeaderOffset - 1; // Wrong offset for second node
test_map = TestMap(data);
ASSERT_FALSE(test_map.ValidateInMemoryStructure());
}
TEST_F(TestInvalidMap, TestUnSortedKeys) {
uint32_t* header = reinterpret_cast<uint32_t*>(data);
const uint32_t kNumNodes = 2;
const uint32_t kHeaderOffset =
sizeof(uint32_t) + kNumNodes * (sizeof(uint32_t) + sizeof(KeyType));
header[0] = kNumNodes;
header[1] = kHeaderOffset;
header[2] = kHeaderOffset + sizeof(ValueType);
KeyType* keys = reinterpret_cast<KeyType*>(
data + (kNumNodes + 1) * sizeof(uint32_t));
// Set keys in non-increasing order.
keys[0] = 10;
keys[1] = 7;
test_map = TestMap(data);
ASSERT_FALSE(test_map.ValidateInMemoryStructure());
}
class TestValidMap : public ::testing::Test {
protected:
void SetUp() {
int testcase = 0;
// Empty map.
map_data[testcase] =
serializer.Serialize(std_map[testcase], &size[testcase]);
test_map[testcase] = TestMap(map_data[testcase]);
++testcase;
// Single element.
std_map[testcase].insert(std::make_pair(2, 8));
map_data[testcase] =
serializer.Serialize(std_map[testcase], &size[testcase]);
test_map[testcase] = TestMap(map_data[testcase]);
++testcase;
// 100 elements.
for (int i = 0; i < 100; ++i)
std_map[testcase].insert(std::make_pair(i, 2 * i));
map_data[testcase] =
serializer.Serialize(std_map[testcase], &size[testcase]);
test_map[testcase] = TestMap(map_data[testcase]);
++testcase;
// 1000 random elements.
for (int i = 0; i < 1000; ++i)
std_map[testcase].insert(std::make_pair(rand(), rand()));
map_data[testcase] =
serializer.Serialize(std_map[testcase], &size[testcase]);
test_map[testcase] = TestMap(map_data[testcase]);
// Set correct size of memory allocation for each test case.
unsigned int size_per_node =
sizeof(uint32_t) + sizeof(KeyType) + sizeof(ValueType);
for (testcase = 0; testcase < kNumberTestCases; ++testcase) {
correct_size[testcase] =
sizeof(uint32_t) + std_map[testcase].size() * size_per_node;
}
}
void TearDown() {
for (int i = 0;i < kNumberTestCases; ++i)
delete map_data[i];
}
void IteratorTester(int test_case) {
// scan through:
iter_test = test_map[test_case].begin();
iter_std = std_map[test_case].begin();
for (; iter_test != test_map[test_case].end() &&
iter_std != std_map[test_case].end();
++iter_test, ++iter_std) {
ASSERT_EQ(iter_test.GetKey(), iter_std->first);
ASSERT_EQ(*(iter_test.GetValuePtr()), iter_std->second);
}
ASSERT_TRUE(iter_test == test_map[test_case].end()
&& iter_std == std_map[test_case].end());
// Boundary testcase.
if (!std_map[test_case].empty()) {
// rear boundary case:
iter_test = test_map[test_case].end();
iter_std = std_map[test_case].end();
--iter_std;
--iter_test;
ASSERT_EQ(iter_test.GetKey(), iter_std->first);
ASSERT_EQ(*(iter_test.GetValuePtr()), iter_std->second);
++iter_test;
++iter_std;
ASSERT_TRUE(iter_test == test_map[test_case].end());
--iter_test;
--iter_std;
ASSERT_TRUE(iter_test != test_map[test_case].end());
ASSERT_TRUE(iter_test == test_map[test_case].last());
ASSERT_EQ(iter_test.GetKey(), iter_std->first);
ASSERT_EQ(*(iter_test.GetValuePtr()), iter_std->second);
// front boundary case:
iter_test = test_map[test_case].begin();
--iter_test;
ASSERT_TRUE(iter_test == test_map[test_case].begin());
}
}
void CompareLookupResult(int test_case) {
bool found1 = (iter_test != test_map[test_case].end());
bool found2 = (iter_std != std_map[test_case].end());
ASSERT_EQ(found1, found2);
if (found1 && found2) {
ASSERT_EQ(iter_test.GetKey(), iter_std->first);
ASSERT_EQ(*(iter_test.GetValuePtr()), iter_std->second);
}
}
void FindTester(int test_case, const KeyType &key) {
iter_test = test_map[test_case].find(key);
iter_std = std_map[test_case].find(key);
CompareLookupResult(test_case);
}
void LowerBoundTester(int test_case, const KeyType &key) {
iter_test = test_map[test_case].lower_bound(key);
iter_std = std_map[test_case].lower_bound(key);
CompareLookupResult(test_case);
}
void UpperBoundTester(int test_case, const KeyType &key) {
iter_test = test_map[test_case].upper_bound(key);
iter_std = std_map[test_case].upper_bound(key);
CompareLookupResult(test_case);
}
void LookupTester(int test_case) {
StdMap::const_iterator iter;
// Test find():
for (iter = std_map[test_case].begin();
iter != std_map[test_case].end();
++iter) {
FindTester(test_case, iter->first);
FindTester(test_case, iter->first + 1);
FindTester(test_case, iter->first - 1);
}
FindTester(test_case, INT_MIN);
FindTester(test_case, INT_MAX);
// random test:
for (int i = 0; i < rand()%5000 + 5000; ++i)
FindTester(test_case, rand());
// Test lower_bound():
for (iter = std_map[test_case].begin();
iter != std_map[test_case].end();
++iter) {
LowerBoundTester(test_case, iter->first);
LowerBoundTester(test_case, iter->first + 1);
LowerBoundTester(test_case, iter->first - 1);
}
LowerBoundTester(test_case, INT_MIN);
LowerBoundTester(test_case, INT_MAX);
// random test:
for (int i = 0; i < rand()%5000 + 5000; ++i)
LowerBoundTester(test_case, rand());
// Test upper_bound():
for (iter = std_map[test_case].begin();
iter != std_map[test_case].end();
++iter) {
UpperBoundTester(test_case, iter->first);
UpperBoundTester(test_case, iter->first + 1);
UpperBoundTester(test_case, iter->first - 1);
}
UpperBoundTester(test_case, INT_MIN);
UpperBoundTester(test_case, INT_MAX);
// random test:
for (int i = 0; i < rand()%5000 + 5000; ++i)
UpperBoundTester(test_case, rand());
}
static const int kNumberTestCases = 4;
StdMap std_map[kNumberTestCases];
TestMap test_map[kNumberTestCases];
TestMap::const_iterator iter_test;
StdMap::const_iterator iter_std;
char* map_data[kNumberTestCases];
unsigned int size[kNumberTestCases];
unsigned int correct_size[kNumberTestCases];
SimpleMapSerializer<KeyType, ValueType> serializer;
};
TEST_F(TestValidMap, TestEmptyMap) {
int test_case = 0;
// Assert memory size allocated during serialization is correct.
ASSERT_EQ(correct_size[test_case], size[test_case]);
// Sanity check of serialized data:
ASSERT_TRUE(test_map[test_case].ValidateInMemoryStructure());
ASSERT_EQ(std_map[test_case].empty(), test_map[test_case].empty());
ASSERT_EQ(std_map[test_case].size(), test_map[test_case].size());
// Test Iterator.
IteratorTester(test_case);
// Test lookup operations.
LookupTester(test_case);
}
TEST_F(TestValidMap, TestSingleElement) {
int test_case = 1;
// Assert memory size allocated during serialization is correct.
ASSERT_EQ(correct_size[test_case], size[test_case]);
// Sanity check of serialized data:
ASSERT_TRUE(test_map[test_case].ValidateInMemoryStructure());
ASSERT_EQ(std_map[test_case].empty(), test_map[test_case].empty());
ASSERT_EQ(std_map[test_case].size(), test_map[test_case].size());
// Test Iterator.
IteratorTester(test_case);
// Test lookup operations.
LookupTester(test_case);
}
TEST_F(TestValidMap, Test100Elements) {
int test_case = 2;
// Assert memory size allocated during serialization is correct.
ASSERT_EQ(correct_size[test_case], size[test_case]);
// Sanity check of serialized data:
ASSERT_TRUE(test_map[test_case].ValidateInMemoryStructure());
ASSERT_EQ(std_map[test_case].empty(), test_map[test_case].empty());
ASSERT_EQ(std_map[test_case].size(), test_map[test_case].size());
// Test Iterator.
IteratorTester(test_case);
// Test lookup operations.
LookupTester(test_case);
}
TEST_F(TestValidMap, Test1000RandomElements) {
int test_case = 3;
// Assert memory size allocated during serialization is correct.
ASSERT_EQ(correct_size[test_case], size[test_case]);
// Sanity check of serialized data:
ASSERT_TRUE(test_map[test_case].ValidateInMemoryStructure());
ASSERT_EQ(std_map[test_case].empty(), test_map[test_case].empty());
ASSERT_EQ(std_map[test_case].size(), test_map[test_case].size());
// Test Iterator.
IteratorTester(test_case);
// Test lookup operations.
LookupTester(test_case);
}
int main(int argc, char *argv[]) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}