// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEBLOCKMATRIX_H
#define EIGEN_SPARSEBLOCKMATRIX_H
namespace Eigen {
/** \ingroup SparseCore_Module
*
* \class BlockSparseMatrix
*
* \brief A versatile sparse matrix representation where each element is a block
*
* This class provides routines to manipulate block sparse matrices stored in a
* BSR-like representation. There are two main types :
*
* 1. All blocks have the same number of rows and columns, called block size
* in the following. In this case, if this block size is known at compile time,
* it can be given as a template parameter like
* \code
* BlockSparseMatrix<Scalar, 3, ColMajor> bmat(b_rows, b_cols);
* \endcode
* Here, bmat is a b_rows x b_cols block sparse matrix
* where each coefficient is a 3x3 dense matrix.
* If the block size is fixed but will be given at runtime,
* \code
* BlockSparseMatrix<Scalar, Dynamic, ColMajor> bmat(b_rows, b_cols);
* bmat.setBlockSize(block_size);
* \endcode
*
* 2. The second case is for variable-block sparse matrices.
* Here each block has its own dimensions. The only restriction is that all the blocks
* in a row (resp. a column) should have the same number of rows (resp. of columns).
* It is thus required in this case to describe the layout of the matrix by calling
* setBlockLayout(rowBlocks, colBlocks).
*
* In any of the previous case, the matrix can be filled by calling setFromTriplets().
* A regular sparse matrix can be converted to a block sparse matrix and vice versa.
* It is obviously required to describe the block layout beforehand by calling either
* setBlockSize() for fixed-size blocks or setBlockLayout for variable-size blocks.
*
* \tparam _Scalar The Scalar type
* \tparam _BlockAtCompileTime The block layout option. It takes the following values
* Dynamic : block size known at runtime
* a numeric number : fixed-size block known at compile time
*/
template<typename _Scalar, int _BlockAtCompileTime=Dynamic, int _Options=ColMajor, typename _StorageIndex=int> class BlockSparseMatrix;
template<typename BlockSparseMatrixT> class BlockSparseMatrixView;
namespace internal {
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _Index>
struct traits<BlockSparseMatrix<_Scalar,_BlockAtCompileTime,_Options, _Index> >
{
typedef _Scalar Scalar;
typedef _Index Index;
typedef Sparse StorageKind; // FIXME Where is it used ??
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
BlockSize = _BlockAtCompileTime,
Flags = _Options | NestByRefBit | LvalueBit,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename BlockSparseMatrixT>
struct traits<BlockSparseMatrixView<BlockSparseMatrixT> >
{
typedef Ref<Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > Scalar;
typedef Ref<Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > RealScalar;
};
// Function object to sort a triplet list
template<typename Iterator, bool IsColMajor>
struct TripletComp
{
typedef typename Iterator::value_type Triplet;
bool operator()(const Triplet& a, const Triplet& b)
{ if(IsColMajor)
return ((a.col() == b.col() && a.row() < b.row()) || (a.col() < b.col()));
else
return ((a.row() == b.row() && a.col() < b.col()) || (a.row() < b.row()));
}
};
} // end namespace internal
/* Proxy to view the block sparse matrix as a regular sparse matrix */
template<typename BlockSparseMatrixT>
class BlockSparseMatrixView : public SparseMatrixBase<BlockSparseMatrixT>
{
public:
typedef Ref<typename BlockSparseMatrixT::BlockScalar> Scalar;
typedef Ref<typename BlockSparseMatrixT::BlockRealScalar> RealScalar;
typedef typename BlockSparseMatrixT::Index Index;
typedef BlockSparseMatrixT Nested;
enum {
Flags = BlockSparseMatrixT::Options,
Options = BlockSparseMatrixT::Options,
RowsAtCompileTime = BlockSparseMatrixT::RowsAtCompileTime,
ColsAtCompileTime = BlockSparseMatrixT::ColsAtCompileTime,
MaxColsAtCompileTime = BlockSparseMatrixT::MaxColsAtCompileTime,
MaxRowsAtCompileTime = BlockSparseMatrixT::MaxRowsAtCompileTime
};
public:
BlockSparseMatrixView(const BlockSparseMatrixT& spblockmat)
: m_spblockmat(spblockmat)
{}
Index outerSize() const
{
return (Flags&RowMajorBit) == 1 ? this->rows() : this->cols();
}
Index cols() const
{
return m_spblockmat.blockCols();
}
Index rows() const
{
return m_spblockmat.blockRows();
}
Scalar coeff(Index row, Index col)
{
return m_spblockmat.coeff(row, col);
}
Scalar coeffRef(Index row, Index col)
{
return m_spblockmat.coeffRef(row, col);
}
// Wrapper to iterate over all blocks
class InnerIterator : public BlockSparseMatrixT::BlockInnerIterator
{
public:
InnerIterator(const BlockSparseMatrixView& mat, Index outer)
: BlockSparseMatrixT::BlockInnerIterator(mat.m_spblockmat, outer)
{}
};
protected:
const BlockSparseMatrixT& m_spblockmat;
};
// Proxy to view a regular vector as a block vector
template<typename BlockSparseMatrixT, typename VectorType>
class BlockVectorView
{
public:
enum {
BlockSize = BlockSparseMatrixT::BlockSize,
ColsAtCompileTime = VectorType::ColsAtCompileTime,
RowsAtCompileTime = VectorType::RowsAtCompileTime,
Flags = VectorType::Flags
};
typedef Ref<const Matrix<typename BlockSparseMatrixT::Scalar, (RowsAtCompileTime==1)? 1 : BlockSize, (ColsAtCompileTime==1)? 1 : BlockSize> >Scalar;
typedef typename BlockSparseMatrixT::Index Index;
public:
BlockVectorView(const BlockSparseMatrixT& spblockmat, const VectorType& vec)
: m_spblockmat(spblockmat),m_vec(vec)
{ }
inline Index cols() const
{
return m_vec.cols();
}
inline Index size() const
{
return m_spblockmat.blockRows();
}
inline Scalar coeff(Index bi) const
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.middleRows(startRow, rowSize);
}
inline Scalar coeff(Index bi, Index j) const
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.block(startRow, j, rowSize, 1);
}
protected:
const BlockSparseMatrixT& m_spblockmat;
const VectorType& m_vec;
};
template<typename VectorType, typename Index> class BlockVectorReturn;
// Proxy to view a regular vector as a block vector
template<typename BlockSparseMatrixT, typename VectorType>
class BlockVectorReturn
{
public:
enum {
ColsAtCompileTime = VectorType::ColsAtCompileTime,
RowsAtCompileTime = VectorType::RowsAtCompileTime,
Flags = VectorType::Flags
};
typedef Ref<Matrix<typename VectorType::Scalar, RowsAtCompileTime, ColsAtCompileTime> > Scalar;
typedef typename BlockSparseMatrixT::Index Index;
public:
BlockVectorReturn(const BlockSparseMatrixT& spblockmat, VectorType& vec)
: m_spblockmat(spblockmat),m_vec(vec)
{ }
inline Index size() const
{
return m_spblockmat.blockRows();
}
inline Scalar coeffRef(Index bi)
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.middleRows(startRow, rowSize);
}
inline Scalar coeffRef(Index bi, Index j)
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.block(startRow, j, rowSize, 1);
}
protected:
const BlockSparseMatrixT& m_spblockmat;
VectorType& m_vec;
};
// Block version of the sparse dense product
template<typename Lhs, typename Rhs>
class BlockSparseTimeDenseProduct;
namespace internal {
template<typename BlockSparseMatrixT, typename VecType>
struct traits<BlockSparseTimeDenseProduct<BlockSparseMatrixT, VecType> >
{
typedef Dense StorageKind;
typedef MatrixXpr XprKind;
typedef typename BlockSparseMatrixT::Scalar Scalar;
typedef typename BlockSparseMatrixT::Index Index;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = 0,
CoeffReadCost = internal::traits<BlockSparseMatrixT>::CoeffReadCost
};
};
} // end namespace internal
template<typename Lhs, typename Rhs>
class BlockSparseTimeDenseProduct
: public ProductBase<BlockSparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(BlockSparseTimeDenseProduct)
BlockSparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{}
template<typename Dest> void scaleAndAddTo(Dest& dest, const typename Rhs::Scalar& alpha) const
{
BlockVectorReturn<Lhs,Dest> tmpDest(m_lhs, dest);
internal::sparse_time_dense_product( BlockSparseMatrixView<Lhs>(m_lhs), BlockVectorView<Lhs, Rhs>(m_lhs, m_rhs), tmpDest, alpha);
}
private:
BlockSparseTimeDenseProduct& operator=(const BlockSparseTimeDenseProduct&);
};
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
class BlockSparseMatrix : public SparseMatrixBase<BlockSparseMatrix<_Scalar,_BlockAtCompileTime, _Options,_StorageIndex> >
{
public:
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef _StorageIndex StorageIndex;
typedef typename internal::ref_selector<BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex> >::type Nested;
enum {
Options = _Options,
Flags = Options,
BlockSize=_BlockAtCompileTime,
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
IsVectorAtCompileTime = 0,
IsColMajor = Flags&RowMajorBit ? 0 : 1
};
typedef Matrix<Scalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockScalar;
typedef Matrix<RealScalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockRealScalar;
typedef typename internal::conditional<_BlockAtCompileTime==Dynamic, Scalar, BlockScalar>::type BlockScalarReturnType;
typedef BlockSparseMatrix<Scalar, BlockSize, IsColMajor ? ColMajor : RowMajor, StorageIndex> PlainObject;
public:
// Default constructor
BlockSparseMatrix()
: m_innerBSize(0),m_outerBSize(0),m_innerOffset(0),m_outerOffset(0),
m_nonzerosblocks(0),m_values(0),m_blockPtr(0),m_indices(0),
m_outerIndex(0),m_blockSize(BlockSize)
{ }
/**
* \brief Construct and resize
*
*/
BlockSparseMatrix(Index brow, Index bcol)
: m_innerBSize(IsColMajor ? brow : bcol),
m_outerBSize(IsColMajor ? bcol : brow),
m_innerOffset(0),m_outerOffset(0),m_nonzerosblocks(0),
m_values(0),m_blockPtr(0),m_indices(0),
m_outerIndex(0),m_blockSize(BlockSize)
{ }
/**
* \brief Copy-constructor
*/
BlockSparseMatrix(const BlockSparseMatrix& other)
: m_innerBSize(other.m_innerBSize),m_outerBSize(other.m_outerBSize),
m_nonzerosblocks(other.m_nonzerosblocks),m_nonzeros(other.m_nonzeros),
m_blockPtr(0),m_blockSize(other.m_blockSize)
{
// should we allow copying between variable-size blocks and fixed-size blocks ??
eigen_assert(m_blockSize == BlockSize && " CAN NOT COPY BETWEEN FIXED-SIZE AND VARIABLE-SIZE BLOCKS");
std::copy(other.m_innerOffset, other.m_innerOffset+m_innerBSize+1, m_innerOffset);
std::copy(other.m_outerOffset, other.m_outerOffset+m_outerBSize+1, m_outerOffset);
std::copy(other.m_values, other.m_values+m_nonzeros, m_values);
if(m_blockSize != Dynamic)
std::copy(other.m_blockPtr, other.m_blockPtr+m_nonzerosblocks, m_blockPtr);
std::copy(other.m_indices, other.m_indices+m_nonzerosblocks, m_indices);
std::copy(other.m_outerIndex, other.m_outerIndex+m_outerBSize, m_outerIndex);
}
friend void swap(BlockSparseMatrix& first, BlockSparseMatrix& second)
{
std::swap(first.m_innerBSize, second.m_innerBSize);
std::swap(first.m_outerBSize, second.m_outerBSize);
std::swap(first.m_innerOffset, second.m_innerOffset);
std::swap(first.m_outerOffset, second.m_outerOffset);
std::swap(first.m_nonzerosblocks, second.m_nonzerosblocks);
std::swap(first.m_nonzeros, second.m_nonzeros);
std::swap(first.m_values, second.m_values);
std::swap(first.m_blockPtr, second.m_blockPtr);
std::swap(first.m_indices, second.m_indices);
std::swap(first.m_outerIndex, second.m_outerIndex);
std::swap(first.m_BlockSize, second.m_blockSize);
}
BlockSparseMatrix& operator=(BlockSparseMatrix other)
{
//Copy-and-swap paradigm ... avoid leaked data if thrown
swap(*this, other);
return *this;
}
// Destructor
~BlockSparseMatrix()
{
delete[] m_outerIndex;
delete[] m_innerOffset;
delete[] m_outerOffset;
delete[] m_indices;
delete[] m_blockPtr;
delete[] m_values;
}
/**
* \brief Constructor from a sparse matrix
*
*/
template<typename MatrixType>
inline BlockSparseMatrix(const MatrixType& spmat) : m_blockSize(BlockSize)
{
EIGEN_STATIC_ASSERT((m_blockSize != Dynamic), THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE);
*this = spmat;
}
/**
* \brief Assignment from a sparse matrix with the same storage order
*
* Convert from a sparse matrix to block sparse matrix.
* \warning Before calling this function, tt is necessary to call
* either setBlockLayout() (matrices with variable-size blocks)
* or setBlockSize() (for fixed-size blocks).
*/
template<typename MatrixType>
inline BlockSparseMatrix& operator=(const MatrixType& spmat)
{
eigen_assert((m_innerBSize != 0 && m_outerBSize != 0)
&& "Trying to assign to a zero-size matrix, call resize() first");
eigen_assert(((MatrixType::Options&RowMajorBit) != IsColMajor) && "Wrong storage order");
typedef SparseMatrix<bool,MatrixType::Options,typename MatrixType::Index> MatrixPatternType;
MatrixPatternType blockPattern(blockRows(), blockCols());
m_nonzeros = 0;
// First, compute the number of nonzero blocks and their locations
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
// Browse each outer block and compute the structure
std::vector<bool> nzblocksFlag(m_innerBSize,false); // Record the existing blocks
blockPattern.startVec(bj);
for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
{
typename MatrixType::InnerIterator it_spmat(spmat, j);
for(; it_spmat; ++it_spmat)
{
StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
if(!nzblocksFlag[bi])
{
// Save the index of this nonzero block
nzblocksFlag[bi] = true;
blockPattern.insertBackByOuterInnerUnordered(bj, bi) = true;
// Compute the total number of nonzeros (including explicit zeros in blocks)
m_nonzeros += blockOuterSize(bj) * blockInnerSize(bi);
}
}
} // end current outer block
}
blockPattern.finalize();
// Allocate the internal arrays
setBlockStructure(blockPattern);
for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
// Now copy the values
for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
{
// Browse the outer block column by column (for column-major matrices)
typename MatrixType::InnerIterator it_spmat(spmat, j);
for(; it_spmat; ++it_spmat)
{
StorageIndex idx = 0; // Position of this block in the column block
StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
// Go to the inner block where this element belongs to
while(bi > m_indices[m_outerIndex[bj]+idx]) ++idx; // Not expensive for ordered blocks
StorageIndex idxVal;// Get the right position in the array of values for this element
if(m_blockSize == Dynamic)
{
// Offset from all blocks before ...
idxVal = m_blockPtr[m_outerIndex[bj]+idx];
// ... and offset inside the block
idxVal += (j - blockOuterIndex(bj)) * blockOuterSize(bj) + it_spmat.index() - m_innerOffset[bi];
}
else
{
// All blocks before
idxVal = (m_outerIndex[bj] + idx) * m_blockSize * m_blockSize;
// inside the block
idxVal += (j - blockOuterIndex(bj)) * m_blockSize + (it_spmat.index()%m_blockSize);
}
// Insert the value
m_values[idxVal] = it_spmat.value();
} // end of this column
} // end of this block
} // end of this outer block
return *this;
}
/**
* \brief Set the nonzero block pattern of the matrix
*
* Given a sparse matrix describing the nonzero block pattern,
* this function prepares the internal pointers for values.
* After calling this function, any *nonzero* block (bi, bj) can be set
* with a simple call to coeffRef(bi,bj).
*
*
* \warning Before calling this function, tt is necessary to call
* either setBlockLayout() (matrices with variable-size blocks)
* or setBlockSize() (for fixed-size blocks).
*
* \param blockPattern Sparse matrix of boolean elements describing the block structure
*
* \sa setBlockLayout() \sa setBlockSize()
*/
template<typename MatrixType>
void setBlockStructure(const MatrixType& blockPattern)
{
resize(blockPattern.rows(), blockPattern.cols());
reserve(blockPattern.nonZeros());
// Browse the block pattern and set up the various pointers
m_outerIndex[0] = 0;
if(m_blockSize == Dynamic) m_blockPtr[0] = 0;
for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
//Browse each outer block
//First, copy and save the indices of nonzero blocks
//FIXME : find a way to avoid this ...
std::vector<int> nzBlockIdx;
typename MatrixType::InnerIterator it(blockPattern, bj);
for(; it; ++it)
{
nzBlockIdx.push_back(it.index());
}
std::sort(nzBlockIdx.begin(), nzBlockIdx.end());
// Now, fill block indices and (eventually) pointers to blocks
for(StorageIndex idx = 0; idx < nzBlockIdx.size(); ++idx)
{
StorageIndex offset = m_outerIndex[bj]+idx; // offset in m_indices
m_indices[offset] = nzBlockIdx[idx];
if(m_blockSize == Dynamic)
m_blockPtr[offset] = m_blockPtr[offset-1] + blockInnerSize(nzBlockIdx[idx]) * blockOuterSize(bj);
// There is no blockPtr for fixed-size blocks... not needed !???
}
// Save the pointer to the next outer block
m_outerIndex[bj+1] = m_outerIndex[bj] + nzBlockIdx.size();
}
}
/**
* \brief Set the number of rows and columns blocks
*/
inline void resize(Index brow, Index bcol)
{
m_innerBSize = IsColMajor ? brow : bcol;
m_outerBSize = IsColMajor ? bcol : brow;
}
/**
* \brief set the block size at runtime for fixed-size block layout
*
* Call this only for fixed-size blocks
*/
inline void setBlockSize(Index blockSize)
{
m_blockSize = blockSize;
}
/**
* \brief Set the row and column block layouts,
*
* This function set the size of each row and column block.
* So this function should be used only for blocks with variable size.
* \param rowBlocks : Number of rows per row block
* \param colBlocks : Number of columns per column block
* \sa resize(), setBlockSize()
*/
inline void setBlockLayout(const VectorXi& rowBlocks, const VectorXi& colBlocks)
{
const VectorXi& innerBlocks = IsColMajor ? rowBlocks : colBlocks;
const VectorXi& outerBlocks = IsColMajor ? colBlocks : rowBlocks;
eigen_assert(m_innerBSize == innerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
eigen_assert(m_outerBSize == outerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
m_outerBSize = outerBlocks.size();
// starting index of blocks... cumulative sums
m_innerOffset = new StorageIndex[m_innerBSize+1];
m_outerOffset = new StorageIndex[m_outerBSize+1];
m_innerOffset[0] = 0;
m_outerOffset[0] = 0;
std::partial_sum(&innerBlocks[0], &innerBlocks[m_innerBSize-1]+1, &m_innerOffset[1]);
std::partial_sum(&outerBlocks[0], &outerBlocks[m_outerBSize-1]+1, &m_outerOffset[1]);
// Compute the total number of nonzeros
m_nonzeros = 0;
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
for(StorageIndex bi = 0; bi < m_innerBSize; ++bi)
m_nonzeros += outerBlocks[bj] * innerBlocks[bi];
}
/**
* \brief Allocate the internal array of pointers to blocks and their inner indices
*
* \note For fixed-size blocks, call setBlockSize() to set the block.
* And For variable-size blocks, call setBlockLayout() before using this function
*
* \param nonzerosblocks Number of nonzero blocks. The total number of nonzeros is
* is computed in setBlockLayout() for variable-size blocks
* \sa setBlockSize()
*/
inline void reserve(const Index nonzerosblocks)
{
eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) &&
"TRYING TO RESERVE ZERO-SIZE MATRICES, CALL resize() first");
//FIXME Should free if already allocated
m_outerIndex = new StorageIndex[m_outerBSize+1];
m_nonzerosblocks = nonzerosblocks;
if(m_blockSize != Dynamic)
{
m_nonzeros = nonzerosblocks * (m_blockSize * m_blockSize);
m_blockPtr = 0;
}
else
{
// m_nonzeros is already computed in setBlockLayout()
m_blockPtr = new StorageIndex[m_nonzerosblocks+1];
}
m_indices = new StorageIndex[m_nonzerosblocks+1];
m_values = new Scalar[m_nonzeros];
}
/**
* \brief Fill values in a matrix from a triplet list.
*
* Each triplet item has a block stored in an Eigen dense matrix.
* The InputIterator class should provide the functions row(), col() and value()
*
* \note For fixed-size blocks, call setBlockSize() before this function.
*
* FIXME Do not accept duplicates
*/
template<typename InputIterator>
void setFromTriplets(const InputIterator& begin, const InputIterator& end)
{
eigen_assert((m_innerBSize!=0 && m_outerBSize !=0) && "ZERO BLOCKS, PLEASE CALL resize() before");
/* First, sort the triplet list
* FIXME This can be unnecessarily expensive since only the inner indices have to be sorted
* The best approach is like in SparseMatrix::setFromTriplets()
*/
internal::TripletComp<InputIterator, IsColMajor> tripletcomp;
std::sort(begin, end, tripletcomp);
/* Count the number of rows and column blocks,
* and the number of nonzero blocks per outer dimension
*/
VectorXi rowBlocks(m_innerBSize); // Size of each block row
VectorXi colBlocks(m_outerBSize); // Size of each block column
rowBlocks.setZero(); colBlocks.setZero();
VectorXi nzblock_outer(m_outerBSize); // Number of nz blocks per outer vector
VectorXi nz_outer(m_outerBSize); // Number of nz per outer vector...for variable-size blocks
nzblock_outer.setZero();
nz_outer.setZero();
for(InputIterator it(begin); it !=end; ++it)
{
eigen_assert(it->row() >= 0 && it->row() < this->blockRows() && it->col() >= 0 && it->col() < this->blockCols());
eigen_assert((it->value().rows() == it->value().cols() && (it->value().rows() == m_blockSize))
|| (m_blockSize == Dynamic));
if(m_blockSize == Dynamic)
{
eigen_assert((rowBlocks[it->row()] == 0 || rowBlocks[it->row()] == it->value().rows()) &&
"NON CORRESPONDING SIZES FOR ROW BLOCKS");
eigen_assert((colBlocks[it->col()] == 0 || colBlocks[it->col()] == it->value().cols()) &&
"NON CORRESPONDING SIZES FOR COLUMN BLOCKS");
rowBlocks[it->row()] =it->value().rows();
colBlocks[it->col()] = it->value().cols();
}
nz_outer(IsColMajor ? it->col() : it->row()) += it->value().rows() * it->value().cols();
nzblock_outer(IsColMajor ? it->col() : it->row())++;
}
// Allocate member arrays
if(m_blockSize == Dynamic) setBlockLayout(rowBlocks, colBlocks);
StorageIndex nzblocks = nzblock_outer.sum();
reserve(nzblocks);
// Temporary markers
VectorXi block_id(m_outerBSize); // To be used as a block marker during insertion
// Setup outer index pointers and markers
m_outerIndex[0] = 0;
if (m_blockSize == Dynamic) m_blockPtr[0] = 0;
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
m_outerIndex[bj+1] = m_outerIndex[bj] + nzblock_outer(bj);
block_id(bj) = m_outerIndex[bj];
if(m_blockSize==Dynamic)
{
m_blockPtr[m_outerIndex[bj+1]] = m_blockPtr[m_outerIndex[bj]] + nz_outer(bj);
}
}
// Fill the matrix
for(InputIterator it(begin); it!=end; ++it)
{
StorageIndex outer = IsColMajor ? it->col() : it->row();
StorageIndex inner = IsColMajor ? it->row() : it->col();
m_indices[block_id(outer)] = inner;
StorageIndex block_size = it->value().rows()*it->value().cols();
StorageIndex nz_marker = blockPtr(block_id[outer]);
memcpy(&(m_values[nz_marker]), it->value().data(), block_size * sizeof(Scalar));
if(m_blockSize == Dynamic)
{
m_blockPtr[block_id(outer)+1] = m_blockPtr[block_id(outer)] + block_size;
}
block_id(outer)++;
}
// An alternative when the outer indices are sorted...no need to use an array of markers
// for(Index bcol = 0; bcol < m_outerBSize; ++bcol)
// {
// Index id = 0, id_nz = 0, id_nzblock = 0;
// for(InputIterator it(begin); it!=end; ++it)
// {
// while (id<bcol) // one pass should do the job unless there are empty columns
// {
// id++;
// m_outerIndex[id+1]=m_outerIndex[id];
// }
// m_outerIndex[id+1] += 1;
// m_indices[id_nzblock]=brow;
// Index block_size = it->value().rows()*it->value().cols();
// m_blockPtr[id_nzblock+1] = m_blockPtr[id_nzblock] + block_size;
// id_nzblock++;
// memcpy(&(m_values[id_nz]),it->value().data(), block_size*sizeof(Scalar));
// id_nz += block_size;
// }
// while(id < m_outerBSize-1) // Empty columns at the end
// {
// id++;
// m_outerIndex[id+1]=m_outerIndex[id];
// }
// }
}
/**
* \returns the number of rows
*/
inline Index rows() const
{
// return blockRows();
return (IsColMajor ? innerSize() : outerSize());
}
/**
* \returns the number of cols
*/
inline Index cols() const
{
// return blockCols();
return (IsColMajor ? outerSize() : innerSize());
}
inline Index innerSize() const
{
if(m_blockSize == Dynamic) return m_innerOffset[m_innerBSize];
else return (m_innerBSize * m_blockSize) ;
}
inline Index outerSize() const
{
if(m_blockSize == Dynamic) return m_outerOffset[m_outerBSize];
else return (m_outerBSize * m_blockSize) ;
}
/** \returns the number of rows grouped by blocks */
inline Index blockRows() const
{
return (IsColMajor ? m_innerBSize : m_outerBSize);
}
/** \returns the number of columns grouped by blocks */
inline Index blockCols() const
{
return (IsColMajor ? m_outerBSize : m_innerBSize);
}
inline Index outerBlocks() const { return m_outerBSize; }
inline Index innerBlocks() const { return m_innerBSize; }
/** \returns the block index where outer belongs to */
inline Index outerToBlock(Index outer) const
{
eigen_assert(outer < outerSize() && "OUTER INDEX OUT OF BOUNDS");
if(m_blockSize != Dynamic)
return (outer / m_blockSize); // Integer division
StorageIndex b_outer = 0;
while(m_outerOffset[b_outer] <= outer) ++b_outer;
return b_outer - 1;
}
/** \returns the block index where inner belongs to */
inline Index innerToBlock(Index inner) const
{
eigen_assert(inner < innerSize() && "OUTER INDEX OUT OF BOUNDS");
if(m_blockSize != Dynamic)
return (inner / m_blockSize); // Integer division
StorageIndex b_inner = 0;
while(m_innerOffset[b_inner] <= inner) ++b_inner;
return b_inner - 1;
}
/**
*\returns a reference to the (i,j) block as an Eigen Dense Matrix
*/
Ref<BlockScalar> coeffRef(Index brow, Index bcol)
{
eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
eigen_assert(bcol < blockCols() && "BLOCK nzblocksFlagCOLUMN OUT OF BOUNDS");
StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
StorageIndex inner = IsColMajor ? brow : bcol;
StorageIndex outer = IsColMajor ? bcol : brow;
StorageIndex offset = m_outerIndex[outer];
while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner)
offset++;
if(m_indices[offset] == inner)
{
return Map<BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize);
}
else
{
//FIXME the block does not exist, Insert it !!!!!!!!!
eigen_assert("DYNAMIC INSERTION IS NOT YET SUPPORTED");
}
}
/**
* \returns the value of the (i,j) block as an Eigen Dense Matrix
*/
Map<const BlockScalar> coeff(Index brow, Index bcol) const
{
eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
eigen_assert(bcol < blockCols() && "BLOCK COLUMN OUT OF BOUNDS");
StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
StorageIndex inner = IsColMajor ? brow : bcol;
StorageIndex outer = IsColMajor ? bcol : brow;
StorageIndex offset = m_outerIndex[outer];
while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner) offset++;
if(m_indices[offset] == inner)
{
return Map<const BlockScalar> (&(m_values[blockPtr(offset)]), rsize, csize);
}
else
// return BlockScalar::Zero(rsize, csize);
eigen_assert("NOT YET SUPPORTED");
}
// Block Matrix times vector product
template<typename VecType>
BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType> operator*(const VecType& lhs) const
{
return BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType>(*this, lhs);
}
/** \returns the number of nonzero blocks */
inline Index nonZerosBlocks() const { return m_nonzerosblocks; }
/** \returns the total number of nonzero elements, including eventual explicit zeros in blocks */
inline Index nonZeros() const { return m_nonzeros; }
inline BlockScalarReturnType *valuePtr() {return static_cast<BlockScalarReturnType *>(m_values);}
// inline Scalar *valuePtr(){ return m_values; }
inline StorageIndex *innerIndexPtr() {return m_indices; }
inline const StorageIndex *innerIndexPtr() const {return m_indices; }
inline StorageIndex *outerIndexPtr() {return m_outerIndex; }
inline const StorageIndex* outerIndexPtr() const {return m_outerIndex; }
/** \brief for compatibility purposes with the SparseMatrix class */
inline bool isCompressed() const {return true;}
/**
* \returns the starting index of the bi row block
*/
inline Index blockRowsIndex(Index bi) const
{
return IsColMajor ? blockInnerIndex(bi) : blockOuterIndex(bi);
}
/**
* \returns the starting index of the bj col block
*/
inline Index blockColsIndex(Index bj) const
{
return IsColMajor ? blockOuterIndex(bj) : blockInnerIndex(bj);
}
inline Index blockOuterIndex(Index bj) const
{
return (m_blockSize == Dynamic) ? m_outerOffset[bj] : (bj * m_blockSize);
}
inline Index blockInnerIndex(Index bi) const
{
return (m_blockSize == Dynamic) ? m_innerOffset[bi] : (bi * m_blockSize);
}
// Not needed ???
inline Index blockInnerSize(Index bi) const
{
return (m_blockSize == Dynamic) ? (m_innerOffset[bi+1] - m_innerOffset[bi]) : m_blockSize;
}
inline Index blockOuterSize(Index bj) const
{
return (m_blockSize == Dynamic) ? (m_outerOffset[bj+1]- m_outerOffset[bj]) : m_blockSize;
}
/**
* \brief Browse the matrix by outer index
*/
class InnerIterator; // Browse column by column
/**
* \brief Browse the matrix by block outer index
*/
class BlockInnerIterator; // Browse block by block
friend std::ostream & operator << (std::ostream & s, const BlockSparseMatrix& m)
{
for (StorageIndex j = 0; j < m.outerBlocks(); ++j)
{
BlockInnerIterator itb(m, j);
for(; itb; ++itb)
{
s << "("<<itb.row() << ", " << itb.col() << ")\n";
s << itb.value() <<"\n";
}
}
s << std::endl;
return s;
}
/**
* \returns the starting position of the block <id> in the array of values
*/
Index blockPtr(Index id) const
{
if(m_blockSize == Dynamic) return m_blockPtr[id];
else return id * m_blockSize * m_blockSize;
//return blockDynIdx(id, typename internal::conditional<(BlockSize==Dynamic), internal::true_type, internal::false_type>::type());
}
protected:
// inline Index blockDynIdx(Index id, internal::true_type) const
// {
// return m_blockPtr[id];
// }
// inline Index blockDynIdx(Index id, internal::false_type) const
// {
// return id * BlockSize * BlockSize;
// }
// To be implemented
// Insert a block at a particular location... need to make a room for that
Map<BlockScalar> insert(Index brow, Index bcol);
Index m_innerBSize; // Number of block rows
Index m_outerBSize; // Number of block columns
StorageIndex *m_innerOffset; // Starting index of each inner block (size m_innerBSize+1)
StorageIndex *m_outerOffset; // Starting index of each outer block (size m_outerBSize+1)
Index m_nonzerosblocks; // Total nonzeros blocks (lower than m_innerBSize x m_outerBSize)
Index m_nonzeros; // Total nonzeros elements
Scalar *m_values; //Values stored block column after block column (size m_nonzeros)
StorageIndex *m_blockPtr; // Pointer to the beginning of each block in m_values, size m_nonzeroblocks ... null for fixed-size blocks
StorageIndex *m_indices; //Inner block indices, size m_nonzerosblocks ... OK
StorageIndex *m_outerIndex; // Starting pointer of each block column in m_indices (size m_outerBSize)... OK
Index m_blockSize; // Size of a block for fixed-size blocks, otherwise -1
};
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::BlockInnerIterator
{
public:
enum{
Flags = _Options
};
BlockInnerIterator(const BlockSparseMatrix& mat, const Index outer)
: m_mat(mat),m_outer(outer),
m_id(mat.m_outerIndex[outer]),
m_end(mat.m_outerIndex[outer+1])
{
}
inline BlockInnerIterator& operator++() {m_id++; return *this; }
inline const Map<const BlockScalar> value() const
{
return Map<const BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
rows(),cols());
}
inline Map<BlockScalar> valueRef()
{
return Map<BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
rows(),cols());
}
// Block inner index
inline Index index() const {return m_mat.m_indices[m_id]; }
inline Index outer() const { return m_outer; }
// block row index
inline Index row() const {return index(); }
// block column index
inline Index col() const {return outer(); }
// FIXME Number of rows in the current block
inline Index rows() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_innerOffset[index()+1] - m_mat.m_innerOffset[index()]) : m_mat.m_blockSize; }
// Number of columns in the current block ...
inline Index cols() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_outerOffset[m_outer+1]-m_mat.m_outerOffset[m_outer]) : m_mat.m_blockSize;}
inline operator bool() const { return (m_id < m_end); }
protected:
const BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, StorageIndex>& m_mat;
const Index m_outer;
Index m_id;
Index m_end;
};
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::InnerIterator
{
public:
InnerIterator(const BlockSparseMatrix& mat, Index outer)
: m_mat(mat),m_outerB(mat.outerToBlock(outer)),m_outer(outer),
itb(mat, mat.outerToBlock(outer)),
m_offset(outer - mat.blockOuterIndex(m_outerB))
{
if (itb)
{
m_id = m_mat.blockInnerIndex(itb.index());
m_start = m_id;
m_end = m_mat.blockInnerIndex(itb.index()+1);
}
}
inline InnerIterator& operator++()
{
m_id++;
if (m_id >= m_end)
{
++itb;
if (itb)
{
m_id = m_mat.blockInnerIndex(itb.index());
m_start = m_id;
m_end = m_mat.blockInnerIndex(itb.index()+1);
}
}
return *this;
}
inline const Scalar& value() const
{
return itb.value().coeff(m_id - m_start, m_offset);
}
inline Scalar& valueRef()
{
return itb.valueRef().coeff(m_id - m_start, m_offset);
}
inline Index index() const { return m_id; }
inline Index outer() const {return m_outer; }
inline Index col() const {return outer(); }
inline Index row() const { return index();}
inline operator bool() const
{
return itb;
}
protected:
const BlockSparseMatrix& m_mat;
const Index m_outer;
const Index m_outerB;
BlockInnerIterator itb; // Iterator through the blocks
const Index m_offset; // Position of this column in the block
Index m_start; // starting inner index of this block
Index m_id; // current inner index in the block
Index m_end; // starting inner index of the next block
};
} // end namespace Eigen
#endif // EIGEN_SPARSEBLOCKMATRIX_H