/*
* blkmap64_rb.c --- Simple rb-tree implementation for bitmaps
*
* (C)2010 Red Hat, Inc., Lukas Czerner <lczerner@redhat.com>
*
* %Begin-Header%
* This file may be redistributed under the terms of the GNU Public
* License.
* %End-Header%
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <fcntl.h>
#include <time.h>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if HAVE_LINUX_TYPES_H
#include <linux/types.h>
#endif
#include "ext2_fs.h"
#include "ext2fsP.h"
#include "bmap64.h"
#include "rbtree.h"
#include <limits.h>
struct bmap_rb_extent {
struct rb_node node;
__u64 start;
__u64 count;
};
struct ext2fs_rb_private {
struct rb_root root;
struct bmap_rb_extent *wcursor;
struct bmap_rb_extent *rcursor;
struct bmap_rb_extent *rcursor_next;
#ifdef ENABLE_BMAP_STATS_OPS
__u64 mark_hit;
__u64 test_hit;
#endif
};
inline static struct bmap_rb_extent *node_to_extent(struct rb_node *node)
{
/*
* This depends on the fact the struct rb_node is at the
* beginning of the bmap_rb_extent structure. We use this
* instead of the ext2fs_rb_entry macro because it causes gcc
* -Wall to generate a huge amount of noise.
*/
return (struct bmap_rb_extent *) node;
}
static int rb_insert_extent(__u64 start, __u64 count,
struct ext2fs_rb_private *);
static void rb_get_new_extent(struct bmap_rb_extent **, __u64, __u64);
/* #define DEBUG_RB */
#ifdef DEBUG_RB
static void print_tree(struct rb_root *root)
{
struct rb_node *node = NULL;
struct bmap_rb_extent *ext;
printf("\t\t\t=================================\n");
node = ext2fs_rb_first(root);
for (node = ext2fs_rb_first(root); node != NULL;
node = ext2fs_rb_next(node)) {
ext = node_to_extent(node);
printf("\t\t\t--> (%llu -> %llu)\n",
ext->start, ext->start + ext->count);
}
printf("\t\t\t=================================\n");
}
static void check_tree(struct rb_root *root, const char *msg)
{
struct rb_node *node;
struct bmap_rb_extent *ext, *old = NULL;
for (node = ext2fs_rb_first(root); node;
node = ext2fs_rb_next(node)) {
ext = node_to_extent(node);
if (ext->count == 0) {
printf("Tree Error: count is zero\n");
printf("extent: %llu -> %llu (%llu)\n", ext->start,
ext->start + ext->count, ext->count);
goto err_out;
}
if (ext->start + ext->count < ext->start) {
printf("Tree Error: start or count is crazy\n");
printf("extent: %llu -> %llu (%llu)\n", ext->start,
ext->start + ext->count, ext->count);
goto err_out;
}
if (old) {
if (old->start > ext->start) {
printf("Tree Error: start is crazy\n");
printf("extent: %llu -> %llu (%llu)\n",
old->start, old->start + old->count,
old->count);
printf("extent next: %llu -> %llu (%llu)\n",
ext->start, ext->start + ext->count,
ext->count);
goto err_out;
}
if ((old->start + old->count) >= ext->start) {
printf("Tree Error: extent is crazy\n");
printf("extent: %llu -> %llu (%llu)\n",
old->start, old->start + old->count,
old->count);
printf("extent next: %llu -> %llu (%llu)\n",
ext->start, ext->start + ext->count,
ext->count);
goto err_out;
}
}
old = ext;
}
return;
err_out:
printf("%s\n", msg);
print_tree(root);
exit(1);
}
#else
#define check_tree(root, msg) do {} while (0)
#define print_tree(root) do {} while (0)
#endif
static void rb_get_new_extent(struct bmap_rb_extent **ext, __u64 start,
__u64 count)
{
struct bmap_rb_extent *new_ext;
int retval;
retval = ext2fs_get_mem(sizeof (struct bmap_rb_extent),
&new_ext);
if (retval)
abort();
new_ext->start = start;
new_ext->count = count;
*ext = new_ext;
}
inline
static void rb_free_extent(struct ext2fs_rb_private *bp,
struct bmap_rb_extent *ext)
{
if (bp->wcursor == ext)
bp->wcursor = NULL;
if (bp->rcursor == ext)
bp->rcursor = NULL;
if (bp->rcursor_next == ext)
bp->rcursor_next = NULL;
ext2fs_free_mem(&ext);
}
static errcode_t rb_alloc_private_data (ext2fs_generic_bitmap bitmap)
{
struct ext2fs_rb_private *bp;
errcode_t retval;
retval = ext2fs_get_mem(sizeof (struct ext2fs_rb_private), &bp);
if (retval)
return retval;
bp->root = RB_ROOT;
bp->rcursor = NULL;
bp->rcursor_next = NULL;
bp->wcursor = NULL;
#ifdef ENABLE_BMAP_STATS_OPS
bp->test_hit = 0;
bp->mark_hit = 0;
#endif
bitmap->private = (void *) bp;
return 0;
}
static errcode_t rb_new_bmap(ext2_filsys fs EXT2FS_ATTR((unused)),
ext2fs_generic_bitmap bitmap)
{
errcode_t retval;
retval = rb_alloc_private_data (bitmap);
if (retval)
return retval;
return 0;
}
static void rb_free_tree(struct rb_root *root)
{
struct bmap_rb_extent *ext;
struct rb_node *node, *next;
for (node = ext2fs_rb_first(root); node; node = next) {
next = ext2fs_rb_next(node);
ext = node_to_extent(node);
ext2fs_rb_erase(node, root);
ext2fs_free_mem(&ext);
}
}
static void rb_free_bmap(ext2fs_generic_bitmap bitmap)
{
struct ext2fs_rb_private *bp;
bp = (struct ext2fs_rb_private *) bitmap->private;
rb_free_tree(&bp->root);
ext2fs_free_mem(&bp);
bp = 0;
}
static errcode_t rb_copy_bmap(ext2fs_generic_bitmap src,
ext2fs_generic_bitmap dest)
{
struct ext2fs_rb_private *src_bp, *dest_bp;
struct bmap_rb_extent *src_ext, *dest_ext;
struct rb_node *dest_node, *src_node, *dest_last, **n;
errcode_t retval = 0;
retval = rb_alloc_private_data (dest);
if (retval)
return retval;
src_bp = (struct ext2fs_rb_private *) src->private;
dest_bp = (struct ext2fs_rb_private *) dest->private;
src_bp->rcursor = NULL;
dest_bp->rcursor = NULL;
src_node = ext2fs_rb_first(&src_bp->root);
while (src_node) {
src_ext = node_to_extent(src_node);
retval = ext2fs_get_mem(sizeof (struct bmap_rb_extent),
&dest_ext);
if (retval)
break;
memcpy(dest_ext, src_ext, sizeof(struct bmap_rb_extent));
dest_node = &dest_ext->node;
n = &dest_bp->root.rb_node;
dest_last = NULL;
if (*n) {
dest_last = ext2fs_rb_last(&dest_bp->root);
n = &(dest_last)->rb_right;
}
ext2fs_rb_link_node(dest_node, dest_last, n);
ext2fs_rb_insert_color(dest_node, &dest_bp->root);
src_node = ext2fs_rb_next(src_node);
}
return retval;
}
static void rb_truncate(__u64 new_max, struct rb_root *root)
{
struct bmap_rb_extent *ext;
struct rb_node *node;
node = ext2fs_rb_last(root);
while (node) {
ext = node_to_extent(node);
if ((ext->start + ext->count - 1) <= new_max)
break;
else if (ext->start > new_max) {
ext2fs_rb_erase(node, root);
ext2fs_free_mem(&ext);
node = ext2fs_rb_last(root);
continue;
} else
ext->count = new_max - ext->start + 1;
}
}
static errcode_t rb_resize_bmap(ext2fs_generic_bitmap bmap,
__u64 new_end, __u64 new_real_end)
{
struct ext2fs_rb_private *bp;
bp = (struct ext2fs_rb_private *) bmap->private;
bp->rcursor = NULL;
bp->wcursor = NULL;
rb_truncate(((new_end < bmap->end) ? new_end : bmap->end) - bmap->start,
&bp->root);
bmap->end = new_end;
bmap->real_end = new_real_end;
if (bmap->end < bmap->real_end)
rb_insert_extent(bmap->end + 1 - bmap->start,
bmap->real_end - bmap->end, bp);
return 0;
}
inline static int
rb_test_bit(struct ext2fs_rb_private *bp, __u64 bit)
{
struct bmap_rb_extent *rcursor, *next_ext = NULL;
struct rb_node *parent = NULL, *next;
struct rb_node **n = &bp->root.rb_node;
struct bmap_rb_extent *ext;
rcursor = bp->rcursor;
if (!rcursor)
goto search_tree;
if (bit >= rcursor->start && bit < rcursor->start + rcursor->count) {
#ifdef ENABLE_BMAP_STATS_OPS
bp->test_hit++;
#endif
return 1;
}
next_ext = bp->rcursor_next;
if (!next_ext) {
next = ext2fs_rb_next(&rcursor->node);
if (next)
next_ext = node_to_extent(next);
bp->rcursor_next = next_ext;
}
if (next_ext) {
if ((bit >= rcursor->start + rcursor->count) &&
(bit < next_ext->start)) {
#ifdef BMAP_STATS_OPS
bp->test_hit++;
#endif
return 0;
}
}
bp->rcursor = NULL;
bp->rcursor_next = NULL;
rcursor = bp->wcursor;
if (!rcursor)
goto search_tree;
if (bit >= rcursor->start && bit < rcursor->start + rcursor->count)
return 1;
search_tree:
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (bit < ext->start)
n = &(*n)->rb_left;
else if (bit >= (ext->start + ext->count))
n = &(*n)->rb_right;
else {
bp->rcursor = ext;
bp->rcursor_next = NULL;
return 1;
}
}
return 0;
}
static int rb_insert_extent(__u64 start, __u64 count,
struct ext2fs_rb_private *bp)
{
struct rb_root *root = &bp->root;
struct rb_node *parent = NULL, **n = &root->rb_node;
struct rb_node *new_node, *node, *next;
struct bmap_rb_extent *new_ext;
struct bmap_rb_extent *ext;
int retval = 0;
bp->rcursor_next = NULL;
ext = bp->wcursor;
if (ext) {
if (start >= ext->start &&
start <= (ext->start + ext->count)) {
#ifdef ENABLE_BMAP_STATS_OPS
bp->mark_hit++;
#endif
goto got_extent;
}
}
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (start < ext->start) {
n = &(*n)->rb_left;
} else if (start > (ext->start + ext->count)) {
n = &(*n)->rb_right;
} else {
got_extent:
if ((start + count) <= (ext->start + ext->count))
return 1;
if ((ext->start + ext->count) == start)
retval = 0;
else
retval = 1;
count += (start - ext->start);
start = ext->start;
new_ext = ext;
new_node = &ext->node;
goto skip_insert;
}
}
rb_get_new_extent(&new_ext, start, count);
new_node = &new_ext->node;
ext2fs_rb_link_node(new_node, parent, n);
ext2fs_rb_insert_color(new_node, root);
bp->wcursor = new_ext;
node = ext2fs_rb_prev(new_node);
if (node) {
ext = node_to_extent(node);
if ((ext->start + ext->count) == start) {
start = ext->start;
count += ext->count;
ext2fs_rb_erase(node, root);
rb_free_extent(bp, ext);
}
}
skip_insert:
/* See if we can merge extent to the right */
for (node = ext2fs_rb_next(new_node); node != NULL; node = next) {
next = ext2fs_rb_next(node);
ext = node_to_extent(node);
if ((ext->start + ext->count) <= start)
continue;
/* No more merging */
if ((start + count) < ext->start)
break;
/* ext is embedded in new_ext interval */
if ((start + count) >= (ext->start + ext->count)) {
ext2fs_rb_erase(node, root);
rb_free_extent(bp, ext);
continue;
} else {
/* merge ext with new_ext */
count += ((ext->start + ext->count) -
(start + count));
ext2fs_rb_erase(node, root);
rb_free_extent(bp, ext);
break;
}
}
new_ext->start = start;
new_ext->count = count;
return retval;
}
static int rb_remove_extent(__u64 start, __u64 count,
struct ext2fs_rb_private *bp)
{
struct rb_root *root = &bp->root;
struct rb_node *parent = NULL, **n = &root->rb_node;
struct rb_node *node;
struct bmap_rb_extent *ext;
__u64 new_start, new_count;
int retval = 0;
if (ext2fs_rb_empty_root(root))
return 0;
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (start < ext->start) {
n = &(*n)->rb_left;
continue;
} else if (start >= (ext->start + ext->count)) {
n = &(*n)->rb_right;
continue;
}
if ((start > ext->start) &&
(start + count) < (ext->start + ext->count)) {
/* We have to split extent into two */
new_start = start + count;
new_count = (ext->start + ext->count) - new_start;
ext->count = start - ext->start;
rb_insert_extent(new_start, new_count, bp);
return 1;
}
if ((start + count) >= (ext->start + ext->count)) {
ext->count = start - ext->start;
retval = 1;
}
if (0 == ext->count) {
parent = ext2fs_rb_next(&ext->node);
ext2fs_rb_erase(&ext->node, root);
rb_free_extent(bp, ext);
break;
}
if (start == ext->start) {
ext->start += count;
ext->count -= count;
return 1;
}
}
/* See if we should delete or truncate extent on the right */
for (; parent != NULL; parent = node) {
node = ext2fs_rb_next(parent);
ext = node_to_extent(parent);
if ((ext->start + ext->count) <= start)
continue;
/* No more extents to be removed/truncated */
if ((start + count) < ext->start)
break;
/* The entire extent is within the region to be removed */
if ((start + count) >= (ext->start + ext->count)) {
ext2fs_rb_erase(parent, root);
rb_free_extent(bp, ext);
retval = 1;
continue;
} else {
/* modify the last extent in reigon to be removed */
ext->count -= ((start + count) - ext->start);
ext->start = start + count;
retval = 1;
break;
}
}
return retval;
}
static int rb_mark_bmap(ext2fs_generic_bitmap bitmap, __u64 arg)
{
struct ext2fs_rb_private *bp;
int retval;
bp = (struct ext2fs_rb_private *) bitmap->private;
arg -= bitmap->start;
retval = rb_insert_extent(arg, 1, bp);
check_tree(&bp->root, __func__);
return retval;
}
static int rb_unmark_bmap(ext2fs_generic_bitmap bitmap, __u64 arg)
{
struct ext2fs_rb_private *bp;
int retval;
bp = (struct ext2fs_rb_private *) bitmap->private;
arg -= bitmap->start;
retval = rb_remove_extent(arg, 1, bp);
check_tree(&bp->root, __func__);
return retval;
}
inline
static int rb_test_bmap(ext2fs_generic_bitmap bitmap, __u64 arg)
{
struct ext2fs_rb_private *bp;
bp = (struct ext2fs_rb_private *) bitmap->private;
arg -= bitmap->start;
return rb_test_bit(bp, arg);
}
static void rb_mark_bmap_extent(ext2fs_generic_bitmap bitmap, __u64 arg,
unsigned int num)
{
struct ext2fs_rb_private *bp;
bp = (struct ext2fs_rb_private *) bitmap->private;
arg -= bitmap->start;
rb_insert_extent(arg, num, bp);
check_tree(&bp->root, __func__);
}
static void rb_unmark_bmap_extent(ext2fs_generic_bitmap bitmap, __u64 arg,
unsigned int num)
{
struct ext2fs_rb_private *bp;
bp = (struct ext2fs_rb_private *) bitmap->private;
arg -= bitmap->start;
rb_remove_extent(arg, num, bp);
check_tree(&bp->root, __func__);
}
static int rb_test_clear_bmap_extent(ext2fs_generic_bitmap bitmap,
__u64 start, unsigned int len)
{
struct rb_node *parent = NULL, **n;
struct rb_node *node, *next;
struct ext2fs_rb_private *bp;
struct bmap_rb_extent *ext;
int retval = 1;
bp = (struct ext2fs_rb_private *) bitmap->private;
n = &bp->root.rb_node;
start -= bitmap->start;
if (len == 0 || ext2fs_rb_empty_root(&bp->root))
return 1;
/*
* If we find nothing, we should examine whole extent, but
* when we find match, the extent is not clean, thus be return
* false.
*/
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (start < ext->start) {
n = &(*n)->rb_left;
} else if (start >= (ext->start + ext->count)) {
n = &(*n)->rb_right;
} else {
/*
* We found extent int the tree -> extent is not
* clean
*/
return 0;
}
}
node = parent;
while (node) {
next = ext2fs_rb_next(node);
ext = node_to_extent(node);
node = next;
if ((ext->start + ext->count) <= start)
continue;
/* No more merging */
if ((start + len) <= ext->start)
break;
retval = 0;
break;
}
return retval;
}
static errcode_t rb_set_bmap_range(ext2fs_generic_bitmap bitmap,
__u64 start, size_t num, void *in)
{
struct ext2fs_rb_private *bp;
unsigned char *cp = in;
size_t i;
int first_set = -1;
bp = (struct ext2fs_rb_private *) bitmap->private;
for (i = 0; i < num; i++) {
if ((i & 7) == 0) {
unsigned char c = cp[i/8];
if (c == 0xFF) {
if (first_set == -1)
first_set = i;
i += 7;
continue;
}
if ((c == 0x00) && (first_set == -1)) {
i += 7;
continue;
}
}
if (ext2fs_test_bit(i, in)) {
if (first_set == -1)
first_set = i;
continue;
}
if (first_set == -1)
continue;
rb_insert_extent(start + first_set - bitmap->start,
i - first_set, bp);
check_tree(&bp->root, __func__);
first_set = -1;
}
if (first_set != -1) {
rb_insert_extent(start + first_set - bitmap->start,
num - first_set, bp);
check_tree(&bp->root, __func__);
}
return 0;
}
static errcode_t rb_get_bmap_range(ext2fs_generic_bitmap bitmap,
__u64 start, size_t num, void *out)
{
struct rb_node *parent = NULL, *next, **n;
struct ext2fs_rb_private *bp;
struct bmap_rb_extent *ext;
__u64 count, pos;
bp = (struct ext2fs_rb_private *) bitmap->private;
n = &bp->root.rb_node;
start -= bitmap->start;
if (ext2fs_rb_empty_root(&bp->root))
return 0;
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (start < ext->start) {
n = &(*n)->rb_left;
} else if (start >= (ext->start + ext->count)) {
n = &(*n)->rb_right;
} else
break;
}
memset(out, 0, (num + 7) >> 3);
for (; parent != NULL; parent = next) {
next = ext2fs_rb_next(parent);
ext = node_to_extent(parent);
pos = ext->start;
count = ext->count;
if (pos >= start + num)
break;
if (pos < start) {
if (pos + count < start)
continue;
count -= start - pos;
pos = start;
}
if (pos + count > start + num)
count = start + num - pos;
while (count > 0) {
if ((count >= 8) &&
((pos - start) % 8) == 0) {
int nbytes = count >> 3;
int offset = (pos - start) >> 3;
memset(((char *) out) + offset, 0xFF, nbytes);
pos += nbytes << 3;
count -= nbytes << 3;
continue;
}
ext2fs_fast_set_bit64((pos - start), out);
pos++;
count--;
}
}
return 0;
}
static void rb_clear_bmap(ext2fs_generic_bitmap bitmap)
{
struct ext2fs_rb_private *bp;
bp = (struct ext2fs_rb_private *) bitmap->private;
rb_free_tree(&bp->root);
bp->rcursor = NULL;
bp->rcursor_next = NULL;
bp->wcursor = NULL;
check_tree(&bp->root, __func__);
}
static errcode_t rb_find_first_zero(ext2fs_generic_bitmap bitmap,
__u64 start, __u64 end, __u64 *out)
{
struct rb_node *parent = NULL, **n;
struct ext2fs_rb_private *bp;
struct bmap_rb_extent *ext;
bp = (struct ext2fs_rb_private *) bitmap->private;
n = &bp->root.rb_node;
start -= bitmap->start;
end -= bitmap->start;
if (start > end)
return EINVAL;
if (ext2fs_rb_empty_root(&bp->root))
return ENOENT;
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (start < ext->start) {
n = &(*n)->rb_left;
} else if (start >= (ext->start + ext->count)) {
n = &(*n)->rb_right;
} else if (ext->start + ext->count <= end) {
*out = ext->start + ext->count + bitmap->start;
return 0;
} else
return ENOENT;
}
*out = start + bitmap->start;
return 0;
}
static errcode_t rb_find_first_set(ext2fs_generic_bitmap bitmap,
__u64 start, __u64 end, __u64 *out)
{
struct rb_node *parent = NULL, **n;
struct rb_node *node;
struct ext2fs_rb_private *bp;
struct bmap_rb_extent *ext;
bp = (struct ext2fs_rb_private *) bitmap->private;
n = &bp->root.rb_node;
start -= bitmap->start;
end -= bitmap->start;
if (start > end)
return EINVAL;
if (ext2fs_rb_empty_root(&bp->root))
return ENOENT;
while (*n) {
parent = *n;
ext = node_to_extent(parent);
if (start < ext->start) {
n = &(*n)->rb_left;
} else if (start >= (ext->start + ext->count)) {
n = &(*n)->rb_right;
} else {
/* The start bit is set */
*out = start + bitmap->start;
return 0;
}
}
node = parent;
ext = node_to_extent(node);
if (ext->start < start) {
node = ext2fs_rb_next(node);
if (node == NULL)
return ENOENT;
ext = node_to_extent(node);
}
if (ext->start <= end) {
*out = ext->start + bitmap->start;
return 0;
}
return ENOENT;
}
#ifdef ENABLE_BMAP_STATS
static void rb_print_stats(ext2fs_generic_bitmap bitmap)
{
struct ext2fs_rb_private *bp;
struct rb_node *node = NULL;
struct bmap_rb_extent *ext;
__u64 count = 0;
__u64 max_size = 0;
__u64 min_size = ULONG_MAX;
__u64 size = 0, avg_size = 0;
double eff;
#ifdef ENABLE_BMAP_STATS_OPS
__u64 mark_all, test_all;
double m_hit = 0.0, t_hit = 0.0;
#endif
bp = (struct ext2fs_rb_private *) bitmap->private;
for (node = ext2fs_rb_first(&bp->root); node != NULL;
node = ext2fs_rb_next(node)) {
ext = node_to_extent(node);
count++;
if (ext->count > max_size)
max_size = ext->count;
if (ext->count < min_size)
min_size = ext->count;
size += ext->count;
}
if (count)
avg_size = size / count;
if (min_size == ULONG_MAX)
min_size = 0;
eff = (double)((count * sizeof(struct bmap_rb_extent)) << 3) /
(bitmap->real_end - bitmap->start);
#ifdef ENABLE_BMAP_STATS_OPS
mark_all = bitmap->stats.mark_count + bitmap->stats.mark_ext_count;
test_all = bitmap->stats.test_count + bitmap->stats.test_ext_count;
if (mark_all)
m_hit = ((double)bp->mark_hit / mark_all) * 100;
if (test_all)
t_hit = ((double)bp->test_hit / test_all) * 100;
fprintf(stderr, "%16llu cache hits on test (%.2f%%)\n"
"%16llu cache hits on mark (%.2f%%)\n",
bp->test_hit, t_hit, bp->mark_hit, m_hit);
#endif
fprintf(stderr, "%16llu extents (%llu bytes)\n",
count, ((count * sizeof(struct bmap_rb_extent)) +
sizeof(struct ext2fs_rb_private)));
fprintf(stderr, "%16llu bits minimum size\n",
min_size);
fprintf(stderr, "%16llu bits maximum size\n"
"%16llu bits average size\n",
max_size, avg_size);
fprintf(stderr, "%16llu bits set in bitmap (out of %llu)\n", size,
bitmap->real_end - bitmap->start);
fprintf(stderr,
"%16.4lf memory / bitmap bit memory ratio (bitarray = 1)\n",
eff);
}
#else
static void rb_print_stats(ext2fs_generic_bitmap bitmap EXT2FS_ATTR((unused)))
{
}
#endif
struct ext2_bitmap_ops ext2fs_blkmap64_rbtree = {
.type = EXT2FS_BMAP64_RBTREE,
.new_bmap = rb_new_bmap,
.free_bmap = rb_free_bmap,
.copy_bmap = rb_copy_bmap,
.resize_bmap = rb_resize_bmap,
.mark_bmap = rb_mark_bmap,
.unmark_bmap = rb_unmark_bmap,
.test_bmap = rb_test_bmap,
.test_clear_bmap_extent = rb_test_clear_bmap_extent,
.mark_bmap_extent = rb_mark_bmap_extent,
.unmark_bmap_extent = rb_unmark_bmap_extent,
.set_bmap_range = rb_set_bmap_range,
.get_bmap_range = rb_get_bmap_range,
.clear_bmap = rb_clear_bmap,
.print_stats = rb_print_stats,
.find_first_zero = rb_find_first_zero,
.find_first_set = rb_find_first_set,
};