/*****************************************************************************/
// Copyright 2008 Adobe Systems Incorporated
// All Rights Reserved.
//
// NOTICE: Adobe permits you to use, modify, and distribute this file in
// accordance with the terms of the Adobe license agreement accompanying it.
/*****************************************************************************/
/* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_bad_pixels.cpp#1 $ */
/* $DateTime: 2012/05/30 13:28:51 $ */
/* $Change: 832332 $ */
/* $Author: tknoll $ */
/*****************************************************************************/
#include "dng_bad_pixels.h"
#include "dng_filter_task.h"
#include "dng_globals.h"
#include "dng_host.h"
#include "dng_image.h"
#include "dng_negative.h"
#include "dng_safe_arithmetic.h"
#include <algorithm>
/*****************************************************************************/
dng_opcode_FixBadPixelsConstant::dng_opcode_FixBadPixelsConstant
(uint32 constant,
uint32 bayerPhase)
: dng_filter_opcode (dngOpcode_FixBadPixelsConstant,
dngVersion_1_3_0_0,
0)
, fConstant (constant)
, fBayerPhase (bayerPhase)
{
}
/*****************************************************************************/
dng_opcode_FixBadPixelsConstant::dng_opcode_FixBadPixelsConstant
(dng_stream &stream)
: dng_filter_opcode (dngOpcode_FixBadPixelsConstant,
stream,
"FixBadPixelsConstant")
, fConstant (0)
, fBayerPhase (0)
{
if (stream.Get_uint32 () != 8)
{
ThrowBadFormat ();
}
fConstant = stream.Get_uint32 ();
fBayerPhase = stream.Get_uint32 ();
#if qDNGValidate
if (gVerbose)
{
printf ("Constant: %u\n", (unsigned) fConstant);
printf ("Bayer Phase: %u\n", (unsigned) fBayerPhase);
}
#endif
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsConstant::PutData (dng_stream &stream) const
{
stream.Put_uint32 (8);
stream.Put_uint32 (fConstant );
stream.Put_uint32 (fBayerPhase);
}
/*****************************************************************************/
dng_point dng_opcode_FixBadPixelsConstant::SrcRepeat ()
{
return dng_point (2, 2);
}
/*****************************************************************************/
dng_rect dng_opcode_FixBadPixelsConstant::SrcArea (const dng_rect &dstArea,
const dng_rect & /* imageBounds */)
{
dng_rect srcArea = dstArea;
srcArea.t -= 2;
srcArea.l -= 2;
srcArea.b += 2;
srcArea.r += 2;
return srcArea;
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsConstant::Prepare (dng_negative & /* negative */,
uint32 /* threadCount */,
const dng_point & /* tileSize */,
const dng_rect & /* imageBounds */,
uint32 imagePlanes,
uint32 bufferPixelType,
dng_memory_allocator & /* allocator */)
{
// This opcode is restricted to single channel images.
if (imagePlanes != 1)
{
ThrowBadFormat ();
}
// This opcode is restricted to 16-bit images.
if (bufferPixelType != ttShort)
{
ThrowBadFormat ();
}
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsConstant::ProcessArea (dng_negative & /* negative */,
uint32 /* threadIndex */,
dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer,
const dng_rect &dstArea,
const dng_rect & /* imageBounds */)
{
dstBuffer.CopyArea (srcBuffer,
dstArea,
0,
dstBuffer.fPlanes);
uint16 badPixel = (uint16) fConstant;
for (int32 dstRow = dstArea.t; dstRow < dstArea.b; dstRow++)
{
const uint16 *sPtr = srcBuffer.ConstPixel_uint16 (dstRow, dstArea.l, 0);
uint16 *dPtr = dstBuffer.DirtyPixel_uint16 (dstRow, dstArea.l, 0);
for (int32 dstCol = dstArea.l; dstCol < dstArea.r; dstCol++)
{
if (*sPtr == badPixel)
{
uint32 count = 0;
uint32 total = 0;
uint16 value;
if (IsGreen (dstRow, dstCol)) // Green pixel
{
value = sPtr [-srcBuffer.fRowStep - 1];
if (value != badPixel)
{
count += 1;
total += value;
}
value = sPtr [-srcBuffer.fRowStep + 1];
if (value != badPixel)
{
count += 1;
total += value;
}
value = sPtr [srcBuffer.fRowStep - 1];
if (value != badPixel)
{
count += 1;
total += value;
}
value = sPtr [srcBuffer.fRowStep + 1];
if (value != badPixel)
{
count += 1;
total += value;
}
}
else // Red/blue pixel.
{
value = sPtr [-srcBuffer.fRowStep * 2];
if (value != badPixel)
{
count += 1;
total += value;
}
value = sPtr [srcBuffer.fRowStep * 2];
if (value != badPixel)
{
count += 1;
total += value;
}
value = sPtr [-2];
if (value != badPixel)
{
count += 1;
total += value;
}
value = sPtr [2];
if (value != badPixel)
{
count += 1;
total += value;
}
}
if (count == 4) // Most common case.
{
*dPtr = (uint16) ((total + 2) >> 2);
}
else if (count > 0)
{
*dPtr = (uint16) ((total + (count >> 1)) / count);
}
}
sPtr++;
dPtr++;
}
}
}
/*****************************************************************************/
dng_bad_pixel_list::dng_bad_pixel_list ()
: fBadPoints ()
, fBadRects ()
{
}
/*****************************************************************************/
void dng_bad_pixel_list::AddPoint (const dng_point &pt)
{
fBadPoints.push_back (pt);
}
/*****************************************************************************/
void dng_bad_pixel_list::AddRect (const dng_rect &r)
{
fBadRects.push_back (r);
}
/*****************************************************************************/
static bool SortBadPoints (const dng_point &a,
const dng_point &b)
{
if (a.v < b.v)
return true;
if (a.v > b.v)
return false;
return a.h < b.h;
}
/*****************************************************************************/
static bool SortBadRects (const dng_rect &a,
const dng_rect &b)
{
if (a.t < b.t)
return true;
if (a.t > b.t)
return false;
if (a.l < b.l)
return true;
if (a.l > b.l)
return false;
if (a.b < b.b)
return true;
if (a.b > b.b)
return false;
return a.r < b.r;
}
/*****************************************************************************/
void dng_bad_pixel_list::Sort ()
{
if (PointCount () > 1)
{
std::sort (fBadPoints.begin (),
fBadPoints.end (),
SortBadPoints);
}
if (RectCount () > 1)
{
std::sort (fBadRects.begin (),
fBadRects.end (),
SortBadRects);
}
}
/*****************************************************************************/
bool dng_bad_pixel_list::IsPointIsolated (uint32 index,
uint32 radius) const
{
dng_point pt = Point (index);
// Search backward through bad point list.
for (int32 j = index - 1; j >= 0; j--)
{
const dng_point &pt2 = Point (j);
if (pt2.v < pt.v - (int32) radius)
{
break;
}
if (Abs_int32 (pt2.h - pt.h) <= radius)
{
return false;
}
}
// Search forward through bad point list.
for (uint32 k = index + 1; k < PointCount (); k++)
{
const dng_point &pt2 = Point (k);
if (pt2.v > pt.v + (int32) radius)
{
break;
}
if (Abs_int32 (pt2.h - pt.h) <= radius)
{
return false;
}
}
// Search through bad rectangle list.
dng_rect testRect (pt.v - radius,
pt.h - radius,
pt.v + radius + 1,
pt.h + radius + 1);
for (uint32 n = 0; n < RectCount (); n++)
{
if ((testRect & Rect (n)).NotEmpty ())
{
return false;
}
}
// Did not find point anywhere, so bad pixel is isolated.
return true;
}
/*****************************************************************************/
bool dng_bad_pixel_list::IsRectIsolated (uint32 index,
uint32 radius) const
{
dng_rect testRect = Rect (index);
testRect.t -= radius;
testRect.l -= radius;
testRect.b += radius;
testRect.r += radius;
for (uint32 n = 0; n < RectCount (); n++)
{
if (n != index)
{
if ((testRect & Rect (n)).NotEmpty ())
{
return false;
}
}
}
return true;
}
/*****************************************************************************/
bool dng_bad_pixel_list::IsPointValid (const dng_point &pt,
const dng_rect &imageBounds,
uint32 index) const
{
// The point must be in the image bounds to be valid.
if (pt.v < imageBounds.t ||
pt.h < imageBounds.l ||
pt.v >= imageBounds.b ||
pt.h >= imageBounds.r)
{
return false;
}
// Only search the bad point list if we have a starting search index.
if (index != kNoIndex)
{
// Search backward through bad point list.
for (int32 j = index - 1; j >= 0; j--)
{
const dng_point &pt2 = Point (j);
if (pt2.v < pt.v)
{
break;
}
if (pt2 == pt)
{
return false;
}
}
// Search forward through bad point list.
for (uint32 k = index + 1; k < PointCount (); k++)
{
const dng_point &pt2 = Point (k);
if (pt2.v > pt.v)
{
break;
}
if (pt2 == pt)
{
return false;
}
}
}
// Search through bad rectangle list.
for (uint32 n = 0; n < RectCount (); n++)
{
const dng_rect &r = Rect (n);
if (pt.v >= r.t &&
pt.h >= r.l &&
pt.v < r.b &&
pt.h < r.r)
{
return false;
}
}
// Did not find point anywhere, so pixel is valid.
return true;
}
/*****************************************************************************/
dng_opcode_FixBadPixelsList::dng_opcode_FixBadPixelsList
(AutoPtr<dng_bad_pixel_list> &list,
uint32 bayerPhase)
: dng_filter_opcode (dngOpcode_FixBadPixelsList,
dngVersion_1_3_0_0,
0)
, fList ()
, fBayerPhase (bayerPhase)
{
fList.Reset (list.Release ());
fList->Sort ();
}
/*****************************************************************************/
dng_opcode_FixBadPixelsList::dng_opcode_FixBadPixelsList (dng_stream &stream)
: dng_filter_opcode (dngOpcode_FixBadPixelsList,
stream,
"FixBadPixelsList")
, fList ()
, fBayerPhase (0)
{
uint32 size = stream.Get_uint32 ();
fBayerPhase = stream.Get_uint32 ();
uint32 pCount = stream.Get_uint32 ();
uint32 rCount = stream.Get_uint32 ();
uint32 expectedSize =
SafeUint32Add(12, SafeUint32Add(SafeUint32Mult(pCount, 8), SafeUint32Mult(rCount, 16)));
if (size != expectedSize)
{
ThrowBadFormat ();
}
fList.Reset (new dng_bad_pixel_list);
uint32 index;
for (index = 0; index < pCount; index++)
{
dng_point pt;
pt.v = stream.Get_int32 ();
pt.h = stream.Get_int32 ();
fList->AddPoint (pt);
}
for (index = 0; index < rCount; index++)
{
dng_rect r;
r.t = stream.Get_int32 ();
r.l = stream.Get_int32 ();
r.b = stream.Get_int32 ();
r.r = stream.Get_int32 ();
fList->AddRect (r);
}
fList->Sort ();
#if qDNGValidate
if (gVerbose)
{
printf ("Bayer Phase: %u\n", (unsigned) fBayerPhase);
printf ("Bad Pixels: %u\n", (unsigned) pCount);
for (index = 0; index < pCount && index < gDumpLineLimit; index++)
{
printf (" Pixel [%u]: v=%d, h=%d\n",
(unsigned) index,
(int) fList->Point (index).v,
(int) fList->Point (index).h);
}
if (pCount > gDumpLineLimit)
{
printf (" ... %u bad pixels skipped\n", (unsigned) (pCount - gDumpLineLimit));
}
printf ("Bad Rects: %u\n", (unsigned) rCount);
for (index = 0; index < rCount && index < gDumpLineLimit; index++)
{
printf (" Rect [%u]: t=%d, l=%d, b=%d, r=%d\n",
(unsigned) index,
(int) fList->Rect (index).t,
(int) fList->Rect (index).l,
(int) fList->Rect (index).b,
(int) fList->Rect (index).r);
}
if (rCount > gDumpLineLimit)
{
printf (" ... %u bad rects skipped\n", (unsigned) (rCount - gDumpLineLimit));
}
}
#endif
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::PutData (dng_stream &stream) const
{
uint32 pCount = fList->PointCount ();
uint32 rCount = fList->RectCount ();
stream.Put_uint32 (12 + pCount * 8 + rCount * 16);
stream.Put_uint32 (fBayerPhase);
stream.Put_uint32 (pCount);
stream.Put_uint32 (rCount);
uint32 index;
for (index = 0; index < pCount; index++)
{
const dng_point &pt (fList->Point (index));
stream.Put_int32 (pt.v);
stream.Put_int32 (pt.h);
}
for (index = 0; index < rCount; index++)
{
const dng_rect &r (fList->Rect (index));
stream.Put_int32 (r.t);
stream.Put_int32 (r.l);
stream.Put_int32 (r.b);
stream.Put_int32 (r.r);
}
}
/*****************************************************************************/
dng_rect dng_opcode_FixBadPixelsList::SrcArea (const dng_rect &dstArea,
const dng_rect & /* imageBounds */)
{
int32 padding = 0;
if (fList->PointCount ())
{
padding += kBadPointPadding;
}
if (fList->RectCount ())
{
padding += kBadRectPadding;
}
dng_rect srcArea = dstArea;
srcArea.t -= padding;
srcArea.l -= padding;
srcArea.b += padding;
srcArea.r += padding;
return srcArea;
}
/*****************************************************************************/
dng_point dng_opcode_FixBadPixelsList::SrcRepeat ()
{
return dng_point (2, 2);
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::Prepare (dng_negative & /* negative */,
uint32 /* threadCount */,
const dng_point & /* tileSize */,
const dng_rect & /* imageBounds */,
uint32 imagePlanes,
uint32 bufferPixelType,
dng_memory_allocator & /* allocator */)
{
// This opcode is restricted to single channel images.
if (imagePlanes != 1)
{
ThrowBadFormat ();
}
// This opcode is restricted to 16-bit images.
if (bufferPixelType != ttShort)
{
ThrowBadFormat ();
}
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::FixIsolatedPixel (dng_pixel_buffer &buffer,
dng_point &badPoint)
{
uint16 *p0 = buffer.DirtyPixel_uint16 (badPoint.v - 2, badPoint.h - 2, 0);
uint16 *p1 = buffer.DirtyPixel_uint16 (badPoint.v - 1, badPoint.h - 2, 0);
uint16 *p2 = buffer.DirtyPixel_uint16 (badPoint.v , badPoint.h - 2, 0);
uint16 *p3 = buffer.DirtyPixel_uint16 (badPoint.v + 1, badPoint.h - 2, 0);
uint16 *p4 = buffer.DirtyPixel_uint16 (badPoint.v + 2, badPoint.h - 2, 0);
uint32 est0;
uint32 est1;
uint32 est2;
uint32 est3;
uint32 grad0;
uint32 grad1;
uint32 grad2;
uint32 grad3;
if (IsGreen (badPoint.v, badPoint.h)) // Green pixel
{
// g00 b01 g02 b03 g04
// r10 g11 r12 g13 r14
// g20 b21 g22 b23 g24
// r30 g31 r32 g33 r34
// g40 b41 g42 b43 g44
int32 b01 = p0 [1];
int32 g02 = p0 [2];
int32 b03 = p0 [3];
int32 r10 = p1 [0];
int32 g11 = p1 [1];
int32 r12 = p1 [2];
int32 g13 = p1 [3];
int32 r14 = p1 [4];
int32 g20 = p2 [0];
int32 b21 = p2 [1];
int32 b23 = p2 [3];
int32 g24 = p2 [4];
int32 r30 = p3 [0];
int32 g31 = p3 [1];
int32 r32 = p3 [2];
int32 g33 = p3 [3];
int32 r34 = p3 [4];
int32 b41 = p4 [1];
int32 g42 = p4 [2];
int32 b43 = p4 [3];
est0 = g02 + g42;
grad0 = Abs_int32 (g02 - g42) +
Abs_int32 (g11 - g31) +
Abs_int32 (g13 - g33) +
Abs_int32 (b01 - b21) +
Abs_int32 (b03 - b23) +
Abs_int32 (b21 - b41) +
Abs_int32 (b23 - b43);
est1 = g11 + g33;
grad1 = Abs_int32 (g11 - g33) +
Abs_int32 (g02 - g24) +
Abs_int32 (g20 - g42) +
Abs_int32 (b01 - b23) +
Abs_int32 (r10 - r32) +
Abs_int32 (r12 - r34) +
Abs_int32 (b21 - b43);
est2 = g20 + g24;
grad2 = Abs_int32 (g20 - g24) +
Abs_int32 (g11 - g13) +
Abs_int32 (g31 - g33) +
Abs_int32 (r10 - r12) +
Abs_int32 (r30 - r32) +
Abs_int32 (r12 - r14) +
Abs_int32 (r32 - r34);
est3 = g13 + g31;
grad3 = Abs_int32 (g13 - g31) +
Abs_int32 (g02 - g20) +
Abs_int32 (g24 - g42) +
Abs_int32 (b03 - b21) +
Abs_int32 (r14 - r32) +
Abs_int32 (r12 - r30) +
Abs_int32 (b23 - b41);
}
else // Red/blue pixel
{
// b00 g01 b02 g03 b04
// g10 r11 g12 r13 g14
// b20 g21 b22 g23 b24
// g30 r31 g32 r33 g34
// b40 g41 b42 g43 b44
int32 b00 = p0 [0];
int32 g01 = p0 [1];
int32 b02 = p0 [2];
int32 g03 = p0 [3];
int32 b04 = p0 [4];
int32 g10 = p1 [0];
int32 r11 = p1 [1];
int32 g12 = p1 [2];
int32 r13 = p1 [3];
int32 g14 = p1 [4];
int32 b20 = p2 [0];
int32 g21 = p2 [1];
int32 g23 = p2 [3];
int32 b24 = p2 [4];
int32 g30 = p3 [0];
int32 r31 = p3 [1];
int32 g32 = p3 [2];
int32 r33 = p3 [3];
int32 g34 = p3 [4];
int32 b40 = p4 [0];
int32 g41 = p4 [1];
int32 b42 = p4 [2];
int32 g43 = p4 [3];
int32 b44 = p4 [4];
est0 = b02 + b42;
grad0 = Abs_int32 (b02 - b42) +
Abs_int32 (g12 - g32) +
Abs_int32 (g01 - g21) +
Abs_int32 (g21 - g41) +
Abs_int32 (g03 - g23) +
Abs_int32 (g23 - g43) +
Abs_int32 (r11 - r31) +
Abs_int32 (r13 - r33);
est1 = b00 + b44;
grad1 = Abs_int32 (b00 - b44) +
Abs_int32 (r11 - r33) +
Abs_int32 (g01 - g23) +
Abs_int32 (g10 - g32) +
Abs_int32 (g12 - g34) +
Abs_int32 (g21 - g43) +
Abs_int32 (b02 - b24) +
Abs_int32 (b20 - b42);
est2 = b20 + b24;
grad2 = Abs_int32 (b20 - b24) +
Abs_int32 (g21 - g23) +
Abs_int32 (g10 - g12) +
Abs_int32 (g12 - g14) +
Abs_int32 (g30 - g32) +
Abs_int32 (g32 - g34) +
Abs_int32 (r11 - r13) +
Abs_int32 (r31 - r33);
est3 = b04 + b40;
grad3 = Abs_int32 (b04 - b40) +
Abs_int32 (r13 - r31) +
Abs_int32 (g03 - g21) +
Abs_int32 (g14 - g32) +
Abs_int32 (g12 - g30) +
Abs_int32 (g23 - g41) +
Abs_int32 (b02 - b20) +
Abs_int32 (b24 - b42);
}
uint32 minGrad = Min_uint32 (grad0, grad1);
minGrad = Min_uint32 (minGrad, grad2);
minGrad = Min_uint32 (minGrad, grad3);
uint32 limit = (minGrad * 3) >> 1;
uint32 total = 0;
uint32 count = 0;
if (grad0 <= limit)
{
total += est0;
count += 2;
}
if (grad1 <= limit)
{
total += est1;
count += 2;
}
if (grad2 <= limit)
{
total += est2;
count += 2;
}
if (grad3 <= limit)
{
total += est3;
count += 2;
}
uint32 estimate = (total + (count >> 1)) / count;
p2 [2] = (uint16) estimate;
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::FixClusteredPixel (dng_pixel_buffer &buffer,
uint32 pointIndex,
const dng_rect &imageBounds)
{
const uint32 kNumSets = 3;
const uint32 kSetSize = 4;
static const int32 kOffset [kNumSets] [kSetSize] [2] =
{
{
{ -1, 1 },
{ -1, -1 },
{ 1, -1 },
{ 1, 1 }
},
{
{ -2, 0 },
{ 2, 0 },
{ 0, -2 },
{ 0, 2 }
},
{
{ -2, -2 },
{ -2, 2 },
{ 2, -2 },
{ 2, 2 }
}
};
dng_point badPoint = fList->Point (pointIndex);
bool isGreen = IsGreen (badPoint.v, badPoint.h);
uint16 *p = buffer.DirtyPixel_uint16 (badPoint.v, badPoint.h, 0);
for (uint32 set = 0; set < kNumSets; set++)
{
if (!isGreen && (kOffset [set] [0] [0] & 1) == 1)
{
continue;
}
uint32 total = 0;
uint32 count = 0;
for (uint32 entry = 0; entry < kSetSize; entry++)
{
dng_point offset (kOffset [set] [entry] [0],
kOffset [set] [entry] [1]);
if (fList->IsPointValid (badPoint + offset,
imageBounds,
pointIndex))
{
total += p [offset.v * buffer.fRowStep +
offset.h * buffer.fColStep];
count++;
}
}
if (count)
{
uint32 estimate = (total + (count >> 1)) / count;
p [0] = (uint16) estimate;
return;
}
}
// Unable to patch bad pixel. Leave pixel as is.
#if qDNGValidate
char s [256];
sprintf (s, "Unable to repair bad pixel, row %d, column %d",
(int) badPoint.v,
(int) badPoint.h);
ReportWarning (s);
#endif
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::FixSingleColumn (dng_pixel_buffer &buffer,
const dng_rect &badRect)
{
int32 cs = buffer.fColStep;
for (int32 row = badRect.t; row < badRect.b; row++)
{
uint16 *p0 = buffer.DirtyPixel_uint16 (row - 4, badRect.l - 4, 0);
uint16 *p1 = buffer.DirtyPixel_uint16 (row - 3, badRect.l - 4, 0);
uint16 *p2 = buffer.DirtyPixel_uint16 (row - 2, badRect.l - 4, 0);
uint16 *p3 = buffer.DirtyPixel_uint16 (row - 1, badRect.l - 4, 0);
uint16 *p4 = buffer.DirtyPixel_uint16 (row , badRect.l - 4, 0);
uint16 *p5 = buffer.DirtyPixel_uint16 (row + 1, badRect.l - 4, 0);
uint16 *p6 = buffer.DirtyPixel_uint16 (row + 2, badRect.l - 4, 0);
uint16 *p7 = buffer.DirtyPixel_uint16 (row + 3, badRect.l - 4, 0);
uint16 *p8 = buffer.DirtyPixel_uint16 (row + 4, badRect.l - 4, 0);
uint32 est0;
uint32 est1;
uint32 est2;
uint32 est3;
uint32 est4;
uint32 est5;
uint32 est6;
uint32 grad0;
uint32 grad1;
uint32 grad2;
uint32 grad3;
uint32 grad4;
uint32 grad5;
uint32 grad6;
uint32 lower = 0;
uint32 upper = 0x0FFFF;
if (IsGreen (row, badRect.l)) // Green pixel
{
// g00 b01 g02 b03 g04 b05 g06 b07 g08
// r10 g11 r12 g13 r14 g15 r16 g17 r18
// g20 b21 g22 b23 g24 b25 g26 b27 g28
// r30 g31 r32 g33 r34 g35 r36 g37 r38
// g40 b41 g42 b43 g44 b45 g46 b47 g48
// r50 g51 r52 g53 r54 g55 r56 g57 r58
// g60 b61 g62 b63 g64 b65 g66 b67 g68
// r70 g71 r72 g73 r74 g75 r76 g77 r78
// g80 b81 g82 b83 g84 b85 g86 b87 g88
int32 b03 = p0 [3 * cs];
int32 b05 = p0 [5 * cs];
int32 g11 = p1 [1 * cs];
int32 g13 = p1 [3 * cs];
int32 g15 = p1 [5 * cs];
int32 g17 = p1 [7 * cs];
int32 g22 = p2 [2 * cs];
int32 b23 = p2 [3 * cs];
int32 b25 = p2 [5 * cs];
int32 g26 = p2 [6 * cs];
int32 r30 = p3 [0 * cs];
int32 g31 = p3 [1 * cs];
int32 r32 = p3 [2 * cs];
int32 g33 = p3 [3 * cs];
int32 g35 = p3 [5 * cs];
int32 r36 = p3 [6 * cs];
int32 g37 = p3 [7 * cs];
int32 r38 = p3 [8 * cs];
int32 g40 = p4 [0 * cs];
int32 g42 = p4 [2 * cs];
int32 b43 = p4 [3 * cs];
int32 b45 = p4 [5 * cs];
int32 g46 = p4 [6 * cs];
int32 g48 = p4 [8 * cs];
int32 r50 = p5 [0 * cs];
int32 g51 = p5 [1 * cs];
int32 r52 = p5 [2 * cs];
int32 g53 = p5 [3 * cs];
int32 g55 = p5 [5 * cs];
int32 r56 = p5 [6 * cs];
int32 g57 = p5 [7 * cs];
int32 r58 = p5 [8 * cs];
int32 g62 = p6 [2 * cs];
int32 b63 = p6 [3 * cs];
int32 b65 = p6 [5 * cs];
int32 g66 = p6 [6 * cs];
int32 g71 = p7 [1 * cs];
int32 g73 = p7 [3 * cs];
int32 g75 = p7 [5 * cs];
int32 g77 = p7 [7 * cs];
int32 b83 = p8 [3 * cs];
int32 b85 = p8 [5 * cs];
// In case there is some green split, make an estimate of
// of the local difference between the greens, and adjust
// the estimated green values for the difference
// between the two types of green pixels when estimating
// across green types.
int32 split = ((g22 + g62 + g26 + g66) * 4 +
(g42 + g46 ) * 8 -
(g11 + g13 + g15 + g17) -
(g31 + g33 + g35 + g37) * 3 -
(g51 + g53 + g55 + g57) * 3 -
(g71 + g73 + g75 + g77) + 16) >> 5;
est0 = g13 + g75 + split * 2;
grad0 = Abs_int32 (g13 - g75) +
Abs_int32 (g15 - g46) +
Abs_int32 (g22 - g53) +
Abs_int32 (g35 - g66) +
Abs_int32 (g42 - g73) +
Abs_int32 (b03 - b65) +
Abs_int32 (b23 - b85);
est1 = g33 + g55 + split * 2;
grad1 = Abs_int32 (g33 - g55) +
Abs_int32 (g22 - g55) +
Abs_int32 (g33 - g66) +
Abs_int32 (g13 - g35) +
Abs_int32 (g53 - g75) +
Abs_int32 (b23 - b45) +
Abs_int32 (b43 - b65);
est2 = g31 + g57 + split * 2;
grad2 = Abs_int32 (g31 - g57) +
Abs_int32 (g33 - g46) +
Abs_int32 (g35 - g48) +
Abs_int32 (g40 - g53) +
Abs_int32 (g42 - g55) +
Abs_int32 (r30 - r56) +
Abs_int32 (r32 - r58);
est3 = g42 + g46;
grad3 = Abs_int32 (g42 - g46) * 2 +
Abs_int32 (g33 - g35) +
Abs_int32 (g53 - g55) +
Abs_int32 (b23 - b25) +
Abs_int32 (b43 - b45) +
Abs_int32 (b63 - b65);
est4 = g37 + g51 + split * 2;
grad4 = Abs_int32 (g37 - g51) +
Abs_int32 (g35 - g42) +
Abs_int32 (g33 - g40) +
Abs_int32 (g48 - g55) +
Abs_int32 (g46 - g53) +
Abs_int32 (r38 - r52) +
Abs_int32 (r36 - r50);
est5 = g35 + g53 + split * 2;
grad5 = Abs_int32 (g35 - g53) +
Abs_int32 (g26 - g53) +
Abs_int32 (g35 - g62) +
Abs_int32 (g15 - g33) +
Abs_int32 (g55 - g73) +
Abs_int32 (b25 - b43) +
Abs_int32 (b45 - b63);
est6 = g15 + g73 + split * 2;
grad6 = Abs_int32 (g15 - g73) +
Abs_int32 (g13 - g42) +
Abs_int32 (g26 - g55) +
Abs_int32 (g33 - g62) +
Abs_int32 (g46 - g75) +
Abs_int32 (b05 - b63) +
Abs_int32 (b25 - b83);
lower = Min_uint32 (Min_uint32 (g33, g35),
Min_uint32 (g53, g55));
upper = Max_uint32 (Max_uint32 (g33, g35),
Max_uint32 (g53, g55));
lower = Pin_int32 (0, lower + split, 65535);
upper = Pin_int32 (0, upper + split, 65535);
}
else // Red/blue pixel
{
// b00 g01 b02 g03 b04 g05 b06 g07 b08
// g10 r11 g12 r13 g14 r15 g16 r17 g18
// b20 g21 b22 g23 b24 g25 b26 g27 b28
// g30 r31 g32 r33 g34 r35 g36 r37 g38
// b40 g41 b42 g43 b44 g45 b46 g47 b48
// g50 r51 g52 r53 g54 r55 g56 r57 g58
// b60 g61 b62 g63 b64 g65 b66 g67 b68
// g70 r71 g72 r73 g74 r75 g76 r77 g78
// b80 g81 b82 g83 b84 g85 b86 g87 b88
int32 b02 = p0 [2 * cs];
int32 g03 = p0 [3 * cs];
int32 g05 = p0 [5 * cs];
int32 b06 = p0 [6 * cs];
int32 r13 = p1 [3 * cs];
int32 r15 = p1 [5 * cs];
int32 b20 = p2 [0 * cs];
int32 b22 = p2 [2 * cs];
int32 g23 = p2 [3 * cs];
int32 g25 = p2 [5 * cs];
int32 b26 = p2 [6 * cs];
int32 b28 = p2 [8 * cs];
int32 r31 = p3 [1 * cs];
int32 g32 = p3 [2 * cs];
int32 r33 = p3 [3 * cs];
int32 r35 = p3 [5 * cs];
int32 g36 = p3 [6 * cs];
int32 r37 = p3 [7 * cs];
int32 g41 = p4 [1 * cs];
int32 b42 = p4 [2 * cs];
int32 g43 = p4 [3 * cs];
int32 g45 = p4 [5 * cs];
int32 b46 = p4 [6 * cs];
int32 g47 = p4 [7 * cs];
int32 r51 = p5 [1 * cs];
int32 g52 = p5 [2 * cs];
int32 r53 = p5 [3 * cs];
int32 r55 = p5 [5 * cs];
int32 g56 = p5 [6 * cs];
int32 r57 = p5 [7 * cs];
int32 b60 = p6 [0 * cs];
int32 b62 = p6 [2 * cs];
int32 g63 = p6 [3 * cs];
int32 g65 = p6 [5 * cs];
int32 b66 = p6 [6 * cs];
int32 b68 = p6 [8 * cs];
int32 r73 = p7 [3 * cs];
int32 r75 = p7 [5 * cs];
int32 b82 = p8 [2 * cs];
int32 g83 = p8 [3 * cs];
int32 g85 = p8 [5 * cs];
int32 b86 = p8 [6 * cs];
est0 = b02 + b86;
grad0 = Abs_int32 (b02 - b86) +
Abs_int32 (r13 - r55) +
Abs_int32 (r33 - r75) +
Abs_int32 (g03 - g45) +
Abs_int32 (g23 - g65) +
Abs_int32 (g43 - g85);
est1 = b22 + b66;
grad1 = Abs_int32 (b22 - b66) +
Abs_int32 (r13 - r35) +
Abs_int32 (r33 - r55) +
Abs_int32 (r53 - r75) +
Abs_int32 (g23 - g45) +
Abs_int32 (g43 - g65);
est2 = b20 + b68;
grad2 = Abs_int32 (b20 - b68) +
Abs_int32 (r31 - r55) +
Abs_int32 (r33 - r57) +
Abs_int32 (g23 - g47) +
Abs_int32 (g32 - g56) +
Abs_int32 (g41 - g65);
est3 = b42 + b46;
grad3 = Abs_int32 (b42 - b46) +
Abs_int32 (r33 - r35) +
Abs_int32 (r53 - r55) +
Abs_int32 (g32 - g36) +
Abs_int32 (g43 - g43) +
Abs_int32 (g52 - g56);
est4 = b28 + b60;
grad4 = Abs_int32 (b28 - b60) +
Abs_int32 (r37 - r53) +
Abs_int32 (r35 - r51) +
Abs_int32 (g25 - g41) +
Abs_int32 (g36 - g52) +
Abs_int32 (g47 - g63);
est5 = b26 + b62;
grad5 = Abs_int32 (b26 - b62) +
Abs_int32 (r15 - r33) +
Abs_int32 (r35 - r53) +
Abs_int32 (r55 - r73) +
Abs_int32 (g25 - g43) +
Abs_int32 (g45 - g63);
est6 = b06 + b82;
grad6 = Abs_int32 (b06 - b82) +
Abs_int32 (r15 - r53) +
Abs_int32 (r35 - r73) +
Abs_int32 (g05 - g43) +
Abs_int32 (g25 - g63) +
Abs_int32 (g45 - g83);
lower = Min_uint32 (b42, b46);
upper = Max_uint32 (b42, b46);
}
uint32 minGrad = Min_uint32 (grad0, grad1);
minGrad = Min_uint32 (minGrad, grad2);
minGrad = Min_uint32 (minGrad, grad3);
minGrad = Min_uint32 (minGrad, grad4);
minGrad = Min_uint32 (minGrad, grad5);
minGrad = Min_uint32 (minGrad, grad6);
uint32 limit = (minGrad * 3) >> 1;
uint32 total = 0;
uint32 count = 0;
if (grad0 <= limit)
{
total += est0;
count += 2;
}
if (grad1 <= limit)
{
total += est1;
count += 2;
}
if (grad2 <= limit)
{
total += est2;
count += 2;
}
if (grad3 <= limit)
{
total += est3;
count += 2;
}
if (grad4 <= limit)
{
total += est4;
count += 2;
}
if (grad5 <= limit)
{
total += est5;
count += 2;
}
if (grad6 <= limit)
{
total += est6;
count += 2;
}
uint32 estimate = (total + (count >> 1)) / count;
p4 [4] = (uint16) Pin_uint32 (lower, estimate, upper);
}
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::FixSingleRow (dng_pixel_buffer &buffer,
const dng_rect &badRect)
{
dng_pixel_buffer tBuffer = buffer;
tBuffer.fArea = Transpose (buffer.fArea);
tBuffer.fRowStep = buffer.fColStep;
tBuffer.fColStep = buffer.fRowStep;
dng_rect tBadRect = Transpose (badRect);
FixSingleColumn (tBuffer, tBadRect);
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::FixClusteredRect (dng_pixel_buffer &buffer,
const dng_rect &badRect,
const dng_rect &imageBounds)
{
const uint32 kNumSets = 8;
const uint32 kSetSize = 8;
static const int32 kOffset [kNumSets] [kSetSize] [2] =
{
{
{ -1, 1 },
{ -1, -1 },
{ 1, -1 },
{ 1, 1 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 }
},
{
{ -2, 0 },
{ 2, 0 },
{ 0, -2 },
{ 0, 2 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 }
},
{
{ -2, -2 },
{ -2, 2 },
{ 2, -2 },
{ 2, 2 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 }
},
{
{ -1, -3 },
{ -3, -1 },
{ 1, -3 },
{ 3, -1 },
{ -1, 3 },
{ -3, 1 },
{ 1, 3 },
{ 3, 1 }
},
{
{ -4, 0 },
{ 4, 0 },
{ 0, -4 },
{ 0, 4 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 }
},
{
{ -3, -3 },
{ -3, 3 },
{ 3, -3 },
{ 3, 3 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 }
},
{
{ -2, -4 },
{ -4, -2 },
{ 2, -4 },
{ 4, -2 },
{ -2, 4 },
{ -4, 2 },
{ 2, 4 },
{ 4, 2 }
},
{
{ -4, -4 },
{ -4, 4 },
{ 4, -4 },
{ 4, 4 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 }
}
};
bool didFail = false;
for (int32 row = badRect.t; row < badRect.b; row++)
{
for (int32 col = badRect.l; col < badRect.r; col++)
{
uint16 *p = buffer.DirtyPixel_uint16 (row, col, 0);
bool isGreen = IsGreen (row, col);
bool didFixPixel = false;
for (uint32 set = 0; set < kNumSets && !didFixPixel; set++)
{
if (!isGreen && (kOffset [set] [0] [0] & 1) == 1)
{
continue;
}
uint32 total = 0;
uint32 count = 0;
for (uint32 entry = 0; entry < kSetSize; entry++)
{
dng_point offset (kOffset [set] [entry] [0],
kOffset [set] [entry] [1]);
if (offset.v == 0 &&
offset.h == 0)
{
break;
}
if (fList->IsPointValid (dng_point (row, col) + offset,
imageBounds))
{
total += p [offset.v * buffer.fRowStep +
offset.h * buffer.fColStep];
count++;
}
}
if (count)
{
uint32 estimate = (total + (count >> 1)) / count;
p [0] = (uint16) estimate;
didFixPixel = true;
}
}
if (!didFixPixel)
{
didFail = true;
}
}
}
#if qDNGValidate
if (didFail)
{
ReportWarning ("Unable to repair bad rectangle");
}
#endif
}
/*****************************************************************************/
void dng_opcode_FixBadPixelsList::ProcessArea (dng_negative & /* negative */,
uint32 /* threadIndex */,
dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer,
const dng_rect &dstArea,
const dng_rect &imageBounds)
{
uint32 pointCount = fList->PointCount ();
uint32 rectCount = fList->RectCount ();
dng_rect fixArea = dstArea;
if (rectCount)
{
fixArea.t -= kBadRectPadding;
fixArea.l -= kBadRectPadding;
fixArea.b += kBadRectPadding;
fixArea.r += kBadRectPadding;
}
bool didFixPoint = false;
if (pointCount)
{
for (uint32 pointIndex = 0; pointIndex < pointCount; pointIndex++)
{
dng_point badPoint = fList->Point (pointIndex);
if (badPoint.v >= fixArea.t &&
badPoint.h >= fixArea.l &&
badPoint.v < fixArea.b &&
badPoint.h < fixArea.r)
{
bool isIsolated = fList->IsPointIsolated (pointIndex,
kBadPointPadding);
if (isIsolated &&
badPoint.v >= imageBounds.t + kBadPointPadding &&
badPoint.h >= imageBounds.l + kBadPointPadding &&
badPoint.v < imageBounds.b - kBadPointPadding &&
badPoint.h < imageBounds.r - kBadPointPadding)
{
FixIsolatedPixel (srcBuffer,
badPoint);
}
else
{
FixClusteredPixel (srcBuffer,
pointIndex,
imageBounds);
}
didFixPoint = true;
}
}
}
if (rectCount)
{
if (didFixPoint)
{
srcBuffer.RepeatSubArea (imageBounds,
SrcRepeat ().v,
SrcRepeat ().h);
}
for (uint32 rectIndex = 0; rectIndex < rectCount; rectIndex++)
{
dng_rect badRect = fList->Rect (rectIndex);
dng_rect overlap = dstArea & badRect;
if (overlap.NotEmpty ())
{
bool isIsolated = fList->IsRectIsolated (rectIndex,
kBadRectPadding);
if (isIsolated &&
badRect.r == badRect.l + 1 &&
badRect.l >= imageBounds.l + SrcRepeat ().h &&
badRect.r <= imageBounds.r - SrcRepeat ().v)
{
FixSingleColumn (srcBuffer,
overlap);
}
else if (isIsolated &&
badRect.b == badRect.t + 1 &&
badRect.t >= imageBounds.t + SrcRepeat ().h &&
badRect.b <= imageBounds.b - SrcRepeat ().v)
{
FixSingleRow (srcBuffer,
overlap);
}
else
{
FixClusteredRect (srcBuffer,
overlap,
imageBounds);
}
}
}
}
dstBuffer.CopyArea (srcBuffer,
dstArea,
0,
dstBuffer.fPlanes);
}
/*****************************************************************************/