/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Shader precision tests.
*
* \note Floating-point case uses R32UI render target and uses
* floatBitsToUint() in shader to write out floating-point value bits.
* This is done since ES3 core doesn't support FP render targets.
*//*--------------------------------------------------------------------*/
#include "es3fShaderPrecisionTests.hpp"
#include "tcuVector.hpp"
#include "tcuTestLog.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuFloat.hpp"
#include "tcuFormatUtil.hpp"
#include "gluRenderContext.hpp"
#include "gluShaderProgram.hpp"
#include "gluShaderUtil.hpp"
#include "gluDrawUtil.hpp"
#include "deRandom.hpp"
#include "deString.h"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include <algorithm>
namespace deqp
{
namespace gles3
{
namespace Functional
{
using std::string;
using std::vector;
using std::ostringstream;
using tcu::TestLog;
enum
{
FRAMEBUFFER_WIDTH = 32,
FRAMEBUFFER_HEIGHT = 32
};
static glu::ShaderProgram* createFloatPrecisionEvalProgram (const glu::RenderContext& context, glu::Precision precision, const char* evalOp, bool isVertexCase)
{
glu::DataType type = glu::TYPE_FLOAT;
glu::DataType outType = glu::TYPE_UINT;
const char* typeName = glu::getDataTypeName(type);
const char* outTypeName = glu::getDataTypeName(outType);
const char* precName = glu::getPrecisionName(precision);
ostringstream vtx;
ostringstream frag;
ostringstream& op = isVertexCase ? vtx : frag;
vtx << "#version 300 es\n"
<< "in highp vec4 a_position;\n"
<< "in " << precName << " " << typeName << " a_in0;\n"
<< "in " << precName << " " << typeName << " a_in1;\n";
frag << "#version 300 es\n"
<< "layout(location = 0) out highp " << outTypeName << " o_out;\n";
if (isVertexCase)
{
vtx << "flat out " << precName << " " << typeName << " v_out;\n";
frag << "flat in " << precName << " " << typeName << " v_out;\n";
}
else
{
vtx << "flat out " << precName << " " << typeName << " v_in0;\n"
<< "flat out " << precName << " " << typeName << " v_in1;\n";
frag << "flat in " << precName << " " << typeName << " v_in0;\n"
<< "flat in " << precName << " " << typeName << " v_in1;\n";
}
vtx << "\nvoid main (void)\n{\n"
<< " gl_Position = a_position;\n";
frag << "\nvoid main (void)\n{\n";
op << "\t" << precName << " " << typeName << " in0 = " << (isVertexCase ? "a_" : "v_") << "in0;\n"
<< "\t" << precName << " " << typeName << " in1 = " << (isVertexCase ? "a_" : "v_") << "in1;\n";
if (!isVertexCase)
op << "\t" << precName << " " << typeName << " res;\n";
op << "\t" << (isVertexCase ? "v_out" : "res") << " = " << evalOp << ";\n";
if (isVertexCase)
{
frag << " o_out = floatBitsToUint(v_out);\n";
}
else
{
vtx << " v_in0 = a_in0;\n"
<< " v_in1 = a_in1;\n";
frag << " o_out = floatBitsToUint(res);\n";
}
vtx << "}\n";
frag << "}\n";
return new glu::ShaderProgram(context, glu::makeVtxFragSources(vtx.str(), frag.str()));
}
static glu::ShaderProgram* createIntUintPrecisionEvalProgram (const glu::RenderContext& context, glu::DataType type, glu::Precision precision, const char* evalOp, bool isVertexCase)
{
const char* typeName = glu::getDataTypeName(type);
const char* precName = glu::getPrecisionName(precision);
ostringstream vtx;
ostringstream frag;
ostringstream& op = isVertexCase ? vtx : frag;
vtx << "#version 300 es\n"
<< "in highp vec4 a_position;\n"
<< "in " << precName << " " << typeName << " a_in0;\n"
<< "in " << precName << " " << typeName << " a_in1;\n";
frag << "#version 300 es\n"
<< "layout(location = 0) out " << precName << " " << typeName << " o_out;\n";
if (isVertexCase)
{
vtx << "flat out " << precName << " " << typeName << " v_out;\n";
frag << "flat in " << precName << " " << typeName << " v_out;\n";
}
else
{
vtx << "flat out " << precName << " " << typeName << " v_in0;\n"
<< "flat out " << precName << " " << typeName << " v_in1;\n";
frag << "flat in " << precName << " " << typeName << " v_in0;\n"
<< "flat in " << precName << " " << typeName << " v_in1;\n";
}
vtx << "\nvoid main (void)\n{\n"
<< " gl_Position = a_position;\n";
frag << "\nvoid main (void)\n{\n";
op << "\t" << precName << " " << typeName << " in0 = " << (isVertexCase ? "a_" : "v_") << "in0;\n"
<< "\t" << precName << " " << typeName << " in1 = " << (isVertexCase ? "a_" : "v_") << "in1;\n";
op << "\t" << (isVertexCase ? "v_" : "o_") << "out = " << evalOp << ";\n";
if (isVertexCase)
{
frag << " o_out = v_out;\n";
}
else
{
vtx << " v_in0 = a_in0;\n"
<< " v_in1 = a_in1;\n";
}
vtx << "}\n";
frag << "}\n";
return new glu::ShaderProgram(context, glu::makeVtxFragSources(vtx.str(), frag.str()));
}
class ShaderFloatPrecisionCase : public TestCase
{
public:
typedef double (*EvalFunc) (double in0, double in1);
ShaderFloatPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, const tcu::Vec2& rangeA, const tcu::Vec2& rangeB, bool isVertexCase);
~ShaderFloatPrecisionCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
protected:
bool compare (float in0, float in1, double reference, float result);
private:
ShaderFloatPrecisionCase (const ShaderFloatPrecisionCase& other);
ShaderFloatPrecisionCase& operator= (const ShaderFloatPrecisionCase& other);
// Case parameters.
std::string m_op;
EvalFunc m_evalFunc;
glu::Precision m_precision;
tcu::Vec2 m_rangeA;
tcu::Vec2 m_rangeB;
bool m_isVertexCase;
int m_numTestsPerIter;
int m_numIters;
de::Random m_rnd;
// Iteration state.
glu::ShaderProgram* m_program;
deUint32 m_framebuffer;
deUint32 m_renderbuffer;
int m_iterNdx;
};
ShaderFloatPrecisionCase::ShaderFloatPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, const tcu::Vec2& rangeA, const tcu::Vec2& rangeB, bool isVertexCase)
: TestCase (context, name, desc)
, m_op (op)
, m_evalFunc (evalFunc)
, m_precision (precision)
, m_rangeA (rangeA)
, m_rangeB (rangeB)
, m_isVertexCase (isVertexCase)
, m_numTestsPerIter (32)
, m_numIters (4)
, m_rnd (deStringHash(name))
, m_program (DE_NULL)
, m_framebuffer (0)
, m_renderbuffer (0)
, m_iterNdx (0)
{
}
ShaderFloatPrecisionCase::~ShaderFloatPrecisionCase (void)
{
ShaderFloatPrecisionCase::deinit();
}
void ShaderFloatPrecisionCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
TestLog& log = m_testCtx.getLog();
DE_ASSERT(!m_program && !m_framebuffer && !m_renderbuffer);
// Create program.
m_program = createFloatPrecisionEvalProgram(m_context.getRenderContext(), m_precision, m_op.c_str(), m_isVertexCase);
log << *m_program;
TCU_CHECK(m_program->isOk());
// Create framebuffer.
gl.genFramebuffers(1, &m_framebuffer);
gl.genRenderbuffers(1, &m_renderbuffer);
gl.bindRenderbuffer(GL_RENDERBUFFER, m_renderbuffer);
gl.renderbufferStorage(GL_RENDERBUFFER, GL_R32UI, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_renderbuffer);
GLU_EXPECT_NO_ERROR(gl.getError(), "Post framebuffer setup");
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer());
// Initialize test result to pass.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
m_iterNdx = 0;
}
void ShaderFloatPrecisionCase::deinit (void)
{
delete m_program;
if (m_framebuffer)
m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_framebuffer);
if (m_renderbuffer)
m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_renderbuffer);
m_program = DE_NULL;
m_framebuffer = 0;
m_renderbuffer = 0;
}
bool ShaderFloatPrecisionCase::compare (float in0, float in1, double reference, float result)
{
// Comparison is done using 64-bit reference value to accurately evaluate rounding mode error.
// If 32-bit reference value is used, 2 bits of rounding error must be allowed.
// For mediump and lowp types the comparison currently allows 3 bits of rounding error:
// two bits from conversions and one from actual operation.
// \todo [2013-09-30 pyry] Make this more strict: determine if rounding can actually happen.
const int mantissaBits = m_precision == glu::PRECISION_HIGHP ? 23 : 10;
const int numPrecBits = 52 - mantissaBits;
const int in0Exp = tcu::Float32(in0).exponent();
const int in1Exp = tcu::Float32(in1).exponent();
const int resExp = tcu::Float32(result).exponent();
const int numLostBits = de::max(de::max(in0Exp-resExp, in1Exp-resExp), 0); // Lost due to mantissa shift.
const int roundingUlpError = m_precision == glu::PRECISION_HIGHP ? 1 : 3;
const int maskBits = numLostBits + numPrecBits;
m_testCtx.getLog() << TestLog::Message << "Assuming " << mantissaBits << " mantissa bits, " << numLostBits << " bits lost in operation, and " << roundingUlpError << " ULP rounding error."
<< TestLog::EndMessage;
{
const deUint64 refBits = tcu::Float64(reference).bits();
const deUint64 resBits = tcu::Float64(result).bits();
const deUint64 accurateRefBits = maskBits < 64 ? refBits >> (deUint64)maskBits : 0u;
const deUint64 accurateResBits = maskBits < 64 ? resBits >> (deUint64)maskBits : 0u;
const deUint64 ulpDiff = (deUint64)de::abs((deInt64)accurateRefBits - (deInt64)accurateResBits);
if (ulpDiff > (deUint64)roundingUlpError)
{
m_testCtx.getLog() << TestLog::Message << "ERROR: comparison failed! ULP diff (ignoring lost/undefined bits) = " << ulpDiff << TestLog::EndMessage;
return false;
}
else
return true;
}
}
ShaderFloatPrecisionCase::IterateResult ShaderFloatPrecisionCase::iterate (void)
{
// Constant data.
const float position[] =
{
-1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
};
const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
const int numVertices = 4;
float in0Arr[4] = { 0.0f };
float in1Arr[4] = { 0.0f };
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
vector<glu::VertexArrayBinding> vertexArrays;
// Image read from GL.
std::vector<float> pixels (FRAMEBUFFER_WIDTH*FRAMEBUFFER_HEIGHT*4);
// \todo [2012-05-03 pyry] Could be cached.
deUint32 prog = m_program->getProgram();
gl.useProgram(prog);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
vertexArrays.push_back(glu::va::Float("a_position", 4, numVertices, 0, &position[0]));
vertexArrays.push_back(glu::va::Float("a_in0", 1, numVertices, 0, &in0Arr[0]));
vertexArrays.push_back(glu::va::Float("a_in1", 1, numVertices, 0, &in1Arr[0]));
GLU_EXPECT_NO_ERROR(gl.getError(), "After program setup");
// Compute values and reference.
for (int testNdx = 0; testNdx < m_numTestsPerIter; testNdx++)
{
const float in0 = m_rnd.getFloat(m_rangeA.x(), m_rangeA.y());
const float in1 = m_rnd.getFloat(m_rangeB.x(), m_rangeB.y());
const double refD = m_evalFunc((double)in0, (double)in1);
const float refF = tcu::Float64(refD).asFloat(); // Uses RTE rounding mode.
log << TestLog::Message << "iter " << m_iterNdx << ", test " << testNdx << ": "
<< "in0 = " << in0 << " / " << tcu::toHex(tcu::Float32(in0).bits())
<< ", in1 = " << in1 << " / " << tcu::toHex(tcu::Float32(in1).bits())
<< TestLog::EndMessage
<< TestLog::Message << " reference = " << refF << " / " << tcu::toHex(tcu::Float32(refF).bits()) << TestLog::EndMessage;
std::fill(&in0Arr[0], &in0Arr[0] + DE_LENGTH_OF_ARRAY(in0Arr), in0);
std::fill(&in1Arr[0], &in1Arr[0] + DE_LENGTH_OF_ARRAY(in1Arr), in1);
glu::draw(m_context.getRenderContext(), prog, (int)vertexArrays.size(), &vertexArrays[0],
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
gl.readPixels(0, 0, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT, GL_RGBA_INTEGER, GL_UNSIGNED_INT, &pixels[0]);
GLU_EXPECT_NO_ERROR(gl.getError(), "After render");
log << TestLog::Message << " result = " << pixels[0] << " / " << tcu::toHex(tcu::Float32(pixels[0]).bits()) << TestLog::EndMessage;
// Verify results
{
const bool firstPixelOk = compare(in0, in1, refD, pixels[0]);
if (firstPixelOk)
{
// Check that rest of pixels match to first one.
const deUint32 firstPixelBits = tcu::Float32(pixels[0]).bits();
bool allPixelsOk = true;
for (int y = 0; y < FRAMEBUFFER_HEIGHT; y++)
{
for (int x = 0; x < FRAMEBUFFER_WIDTH; x++)
{
const deUint32 pixelBits = tcu::Float32(pixels[(y*FRAMEBUFFER_WIDTH + x)*4]).bits();
if (pixelBits != firstPixelBits)
{
log << TestLog::Message << "ERROR: Inconsistent results, got " << tcu::toHex(pixelBits) << " at (" << x << ", " << y << ")" << TestLog::EndMessage;
allPixelsOk = false;
}
}
if (!allPixelsOk)
break;
}
if (!allPixelsOk)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Inconsistent values in framebuffer");
}
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Result comparison failed");
}
if (m_testCtx.getTestResult() != QP_TEST_RESULT_PASS)
break;
}
gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer());
GLU_EXPECT_NO_ERROR(gl.getError(), "After iteration");
m_iterNdx += 1;
return (m_iterNdx < m_numIters && m_testCtx.getTestResult() == QP_TEST_RESULT_PASS) ? CONTINUE : STOP;
}
class ShaderIntPrecisionCase : public TestCase
{
public:
typedef int (*EvalFunc) (int a, int b);
ShaderIntPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::IVec2& rangeA, const tcu::IVec2& rangeB, bool isVertexCase);
~ShaderIntPrecisionCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
ShaderIntPrecisionCase (const ShaderIntPrecisionCase& other);
ShaderIntPrecisionCase& operator= (const ShaderIntPrecisionCase& other);
// Case parameters.
std::string m_op;
EvalFunc m_evalFunc;
glu::Precision m_precision;
int m_bits;
tcu::IVec2 m_rangeA;
tcu::IVec2 m_rangeB;
bool m_isVertexCase;
int m_numTestsPerIter;
int m_numIters;
de::Random m_rnd;
// Iteration state.
glu::ShaderProgram* m_program;
deUint32 m_framebuffer;
deUint32 m_renderbuffer;
int m_iterNdx;
};
ShaderIntPrecisionCase::ShaderIntPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::IVec2& rangeA, const tcu::IVec2& rangeB, bool isVertexCase)
: TestCase (context, name, desc)
, m_op (op)
, m_evalFunc (evalFunc)
, m_precision (precision)
, m_bits (bits)
, m_rangeA (rangeA)
, m_rangeB (rangeB)
, m_isVertexCase (isVertexCase)
, m_numTestsPerIter (32)
, m_numIters (4)
, m_rnd (deStringHash(name))
, m_program (DE_NULL)
, m_framebuffer (0)
, m_renderbuffer (0)
, m_iterNdx (0)
{
}
ShaderIntPrecisionCase::~ShaderIntPrecisionCase (void)
{
ShaderIntPrecisionCase::deinit();
}
void ShaderIntPrecisionCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
TestLog& log = m_testCtx.getLog();
DE_ASSERT(!m_program && !m_framebuffer && !m_renderbuffer);
// Create program.
m_program = createIntUintPrecisionEvalProgram(m_context.getRenderContext(), glu::TYPE_INT, m_precision, m_op.c_str(), m_isVertexCase);
log << *m_program;
TCU_CHECK(m_program->isOk());
// Create framebuffer.
gl.genFramebuffers(1, &m_framebuffer);
gl.genRenderbuffers(1, &m_renderbuffer);
gl.bindRenderbuffer(GL_RENDERBUFFER, m_renderbuffer);
gl.renderbufferStorage(GL_RENDERBUFFER, GL_R32I, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_renderbuffer);
GLU_EXPECT_NO_ERROR(gl.getError(), "Post framebuffer setup");
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer());
// Initialize test result to pass.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
m_iterNdx = 0;
log << TestLog::Message << "Number of accurate bits assumed = " << m_bits << TestLog::EndMessage;
}
void ShaderIntPrecisionCase::deinit (void)
{
delete m_program;
if (m_framebuffer)
m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_framebuffer);
if (m_renderbuffer)
m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_renderbuffer);
m_program = DE_NULL;
m_framebuffer = 0;
m_renderbuffer = 0;
}
ShaderIntPrecisionCase::IterateResult ShaderIntPrecisionCase::iterate (void)
{
// Constant data.
const float position[] =
{
-1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
};
const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
const int numVertices = 4;
int in0Arr[4] = { 0 };
int in1Arr[4] = { 0 };
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
deUint32 mask = m_bits == 32 ? 0xffffffffu : ((1u<<m_bits)-1);
vector<int> pixels (FRAMEBUFFER_WIDTH*FRAMEBUFFER_HEIGHT*4);
vector<glu::VertexArrayBinding> vertexArrays;
deUint32 prog = m_program->getProgram();
// \todo [2012-05-03 pyry] A bit hacky. getInt() should work fine with ranges like this.
bool isMaxRangeA = m_rangeA.x() == (int)0x80000000 && m_rangeA.y() == (int)0x7fffffff;
bool isMaxRangeB = m_rangeB.x() == (int)0x80000000 && m_rangeB.y() == (int)0x7fffffff;
gl.useProgram(prog);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
vertexArrays.push_back(glu::va::Float("a_position", 4, numVertices, 0, &position[0]));
vertexArrays.push_back(glu::va::Int32("a_in0", 1, numVertices, 0, &in0Arr[0]));
vertexArrays.push_back(glu::va::Int32("a_in1", 1, numVertices, 0, &in1Arr[0]));
GLU_EXPECT_NO_ERROR(gl.getError(), "After program setup");
// Compute values and reference.
for (int testNdx = 0; testNdx < m_numTestsPerIter; testNdx++)
{
int in0 = deSignExtendTo32(((isMaxRangeA ? (int)m_rnd.getUint32() : m_rnd.getInt(m_rangeA.x(), m_rangeA.y())) & mask), m_bits);
int in1 = deSignExtendTo32(((isMaxRangeB ? (int)m_rnd.getUint32() : m_rnd.getInt(m_rangeB.x(), m_rangeB.y())) & mask), m_bits);
int refMasked = m_evalFunc(in0, in1) & mask;
int refOut = deSignExtendTo32(refMasked, m_bits);
log << TestLog::Message << "iter " << m_iterNdx << ", test " << testNdx << ": "
<< "in0 = " << in0 << ", in1 = " << in1 << ", ref out = " << refOut << " / " << tcu::toHex(refMasked)
<< TestLog::EndMessage;
std::fill(&in0Arr[0], &in0Arr[0] + DE_LENGTH_OF_ARRAY(in0Arr), in0);
std::fill(&in1Arr[0], &in1Arr[0] + DE_LENGTH_OF_ARRAY(in1Arr), in1);
glu::draw(m_context.getRenderContext(), prog, (int)vertexArrays.size(), &vertexArrays[0],
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
gl.readPixels(0, 0, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT, GL_RGBA_INTEGER, GL_INT, &pixels[0]);
GLU_EXPECT_NO_ERROR(gl.getError(), "After render");
// Compare pixels.
for (int y = 0; y < FRAMEBUFFER_HEIGHT; y++)
{
for (int x = 0; x < FRAMEBUFFER_WIDTH; x++)
{
int cmpOut = pixels[(y*FRAMEBUFFER_WIDTH + x)*4];
int cmpMasked = cmpOut & mask;
if (cmpMasked != refMasked)
{
log << TestLog::Message << "Comparison failed (at " << x << ", " << y << "): "
<< "got " << cmpOut << " / " << tcu::toHex(cmpOut)
<< TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Fail");
return STOP;
}
}
}
}
gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer());
GLU_EXPECT_NO_ERROR(gl.getError(), "After iteration");
m_iterNdx += 1;
return (m_iterNdx < m_numIters) ? CONTINUE : STOP;
}
class ShaderUintPrecisionCase : public TestCase
{
public:
typedef deUint32 (*EvalFunc) (deUint32 a, deUint32 b);
ShaderUintPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::UVec2& rangeA, const tcu::UVec2& rangeB, bool isVertexCase);
~ShaderUintPrecisionCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
ShaderUintPrecisionCase (const ShaderUintPrecisionCase& other);
ShaderUintPrecisionCase& operator= (const ShaderUintPrecisionCase& other);
// Case parameters.
std::string m_op;
EvalFunc m_evalFunc;
glu::Precision m_precision;
int m_bits;
tcu::UVec2 m_rangeA;
tcu::UVec2 m_rangeB;
bool m_isVertexCase;
int m_numTestsPerIter;
int m_numIters;
de::Random m_rnd;
// Iteration state.
glu::ShaderProgram* m_program;
deUint32 m_framebuffer;
deUint32 m_renderbuffer;
int m_iterNdx;
};
ShaderUintPrecisionCase::ShaderUintPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::UVec2& rangeA, const tcu::UVec2& rangeB, bool isVertexCase)
: TestCase (context, name, desc)
, m_op (op)
, m_evalFunc (evalFunc)
, m_precision (precision)
, m_bits (bits)
, m_rangeA (rangeA)
, m_rangeB (rangeB)
, m_isVertexCase (isVertexCase)
, m_numTestsPerIter (32)
, m_numIters (4)
, m_rnd (deStringHash(name))
, m_program (DE_NULL)
, m_framebuffer (0)
, m_renderbuffer (0)
, m_iterNdx (0)
{
}
ShaderUintPrecisionCase::~ShaderUintPrecisionCase (void)
{
ShaderUintPrecisionCase::deinit();
}
void ShaderUintPrecisionCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
TestLog& log = m_testCtx.getLog();
DE_ASSERT(!m_program && !m_framebuffer && !m_renderbuffer);
// Create program.
m_program = createIntUintPrecisionEvalProgram(m_context.getRenderContext(), glu::TYPE_UINT, m_precision, m_op.c_str(), m_isVertexCase);
log << *m_program;
TCU_CHECK(m_program->isOk());
// Create framebuffer.
gl.genFramebuffers(1, &m_framebuffer);
gl.genRenderbuffers(1, &m_renderbuffer);
gl.bindRenderbuffer(GL_RENDERBUFFER, m_renderbuffer);
gl.renderbufferStorage(GL_RENDERBUFFER, GL_R32UI, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_renderbuffer);
GLU_EXPECT_NO_ERROR(gl.getError(), "Post framebuffer setup");
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer());
// Initialize test result to pass.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
m_iterNdx = 0;
log << TestLog::Message << "Number of accurate bits assumed = " << m_bits << TestLog::EndMessage;
}
void ShaderUintPrecisionCase::deinit (void)
{
delete m_program;
if (m_framebuffer)
m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_framebuffer);
if (m_renderbuffer)
m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_renderbuffer);
m_program = DE_NULL;
m_framebuffer = 0;
m_renderbuffer = 0;
}
ShaderUintPrecisionCase::IterateResult ShaderUintPrecisionCase::iterate (void)
{
// Constant data.
const float position[] =
{
-1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
};
const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
const int numVertices = 4;
deUint32 in0Arr[4] = { 0 };
deUint32 in1Arr[4] = { 0 };
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
deUint32 mask = m_bits == 32 ? 0xffffffffu : ((1u<<m_bits)-1);
vector<deUint32> pixels (FRAMEBUFFER_WIDTH*FRAMEBUFFER_HEIGHT*4);
vector<glu::VertexArrayBinding> vertexArrays;
deUint32 prog = m_program->getProgram();
// \todo [2012-05-03 pyry] A bit hacky.
bool isMaxRangeA = m_rangeA.x() == 0 && m_rangeA.y() == 0xffffffff;
bool isMaxRangeB = m_rangeB.x() == 0 && m_rangeB.y() == 0xffffffff;
gl.useProgram(prog);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
vertexArrays.push_back(glu::va::Float("a_position", 4, numVertices, 0, &position[0]));
vertexArrays.push_back(glu::va::Uint32("a_in0", 1, numVertices, 0, &in0Arr[0]));
vertexArrays.push_back(glu::va::Uint32("a_in1", 1, numVertices, 0, &in1Arr[0]));
GLU_EXPECT_NO_ERROR(gl.getError(), "After program setup");
// Compute values and reference.
for (int testNdx = 0; testNdx < m_numTestsPerIter; testNdx++)
{
deUint32 in0 = (isMaxRangeA ? m_rnd.getUint32() : (m_rangeA.x() + m_rnd.getUint32()%(m_rangeA.y()-m_rangeA.x()+1))) & mask;
deUint32 in1 = (isMaxRangeB ? m_rnd.getUint32() : (m_rangeB.x() + m_rnd.getUint32()%(m_rangeB.y()-m_rangeB.x()+1))) & mask;
deUint32 refOut = m_evalFunc(in0, in1) & mask;
log << TestLog::Message << "iter " << m_iterNdx << ", test " << testNdx << ": "
<< "in0 = " << tcu::toHex(in0) << ", in1 = " << tcu::toHex(in1) << ", ref out = " << tcu::toHex(refOut)
<< TestLog::EndMessage;
std::fill(&in0Arr[0], &in0Arr[0] + DE_LENGTH_OF_ARRAY(in0Arr), in0);
std::fill(&in1Arr[0], &in1Arr[0] + DE_LENGTH_OF_ARRAY(in1Arr), in1);
glu::draw(m_context.getRenderContext(), prog, (int)vertexArrays.size(), &vertexArrays[0],
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
gl.readPixels(0, 0, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT, GL_RGBA_INTEGER, GL_UNSIGNED_INT, &pixels[0]);
GLU_EXPECT_NO_ERROR(gl.getError(), "After render");
// Compare pixels.
for (int y = 0; y < FRAMEBUFFER_HEIGHT; y++)
{
for (int x = 0; x < FRAMEBUFFER_WIDTH; x++)
{
deUint32 cmpOut = pixels[(y*FRAMEBUFFER_WIDTH + x)*4];
deUint32 cmpMasked = cmpOut & mask;
if (cmpMasked != refOut)
{
log << TestLog::Message << "Comparison failed (at " << x << ", " << y << "): "
<< "got " << tcu::toHex(cmpOut)
<< TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Fail");
return STOP;
}
}
}
}
gl.bindFramebuffer(GL_FRAMEBUFFER, 0);
GLU_EXPECT_NO_ERROR(gl.getError(), "After iteration");
m_iterNdx += 1;
return (m_iterNdx < m_numIters) ? CONTINUE : STOP;
}
ShaderPrecisionTests::ShaderPrecisionTests (Context& context)
: TestCaseGroup(context, "precision", "Shader precision requirements validation tests")
{
}
ShaderPrecisionTests::~ShaderPrecisionTests (void)
{
}
void ShaderPrecisionTests::init (void)
{
using tcu::add;
using tcu::sub;
using tcu::mul;
using tcu::div;
using tcu::Vec2;
using tcu::IVec2;
using tcu::UVec2;
// Exp = Emax-2, Mantissa = 0
float minF32 = tcu::Float32((1u<<31) | (0xfdu<<23) | 0x0u).asFloat();
float maxF32 = tcu::Float32((0u<<31) | (0xfdu<<23) | 0x0u).asFloat();
float minF16 = tcu::Float16((deUint16)((1u<<15) | (0x1du<<10) | 0x0u)).asFloat();
float maxF16 = tcu::Float16((deUint16)((0u<<15) | (0x1du<<10) | 0x0u)).asFloat();
tcu::Vec2 fullRange32F (minF32, maxF32);
tcu::Vec2 fullRange16F (minF16, maxF16);
tcu::IVec2 fullRange32I (0x80000000, 0x7fffffff);
tcu::IVec2 fullRange16I (-(1<<15), (1<<15)-1);
tcu::IVec2 fullRange8I (-(1<<7), (1<<7)-1);
tcu::UVec2 fullRange32U (0u, 0xffffffffu);
tcu::UVec2 fullRange16U (0u, 0xffffu);
tcu::UVec2 fullRange8U (0u, 0xffu);
// \note Right now it is not programmatically verified that the results shouldn't end up being inf/nan but
// actual values used are ok.
static const struct
{
const char* name;
const char* op;
ShaderFloatPrecisionCase::EvalFunc evalFunc;
glu::Precision precision;
tcu::Vec2 rangeA;
tcu::Vec2 rangeB;
} floatCases[] =
{
// Name Op Eval Precision RangeA RangeB
{ "highp_add", "in0 + in1", add<double>, glu::PRECISION_HIGHP, fullRange32F, fullRange32F },
{ "highp_sub", "in0 - in1", sub<double>, glu::PRECISION_HIGHP, fullRange32F, fullRange32F },
{ "highp_mul", "in0 * in1", mul<double>, glu::PRECISION_HIGHP, Vec2(-1e5f, 1e5f), Vec2(-1e5f, 1e5f) },
{ "highp_div", "in0 / in1", div<double>, glu::PRECISION_HIGHP, Vec2(-1e5f, 1e5f), Vec2(-1e5f, 1e5f) },
{ "mediump_add", "in0 + in1", add<double>, glu::PRECISION_MEDIUMP, fullRange16F, fullRange16F },
{ "mediump_sub", "in0 - in1", sub<double>, glu::PRECISION_MEDIUMP, fullRange16F, fullRange16F },
{ "mediump_mul", "in0 * in1", mul<double>, glu::PRECISION_MEDIUMP, Vec2(-1e2f, 1e2f), Vec2(-1e2f, 1e2f) },
{ "mediump_div", "in0 / in1", div<double>, glu::PRECISION_MEDIUMP, Vec2(-1e2f, 1e2f), Vec2(-1e2f, 1e2f) }
};
static const struct
{
const char* name;
const char* op;
ShaderIntPrecisionCase::EvalFunc evalFunc;
glu::Precision precision;
int bits;
tcu::IVec2 rangeA;
tcu::IVec2 rangeB;
} intCases[] =
{
// Name Op Eval Precision Bits RangeA RangeB
{ "highp_add", "in0 + in1", add<int>, glu::PRECISION_HIGHP, 32, fullRange32I, fullRange32I },
{ "highp_sub", "in0 - in1", sub<int>, glu::PRECISION_HIGHP, 32, fullRange32I, fullRange32I },
{ "highp_mul", "in0 * in1", mul<int>, glu::PRECISION_HIGHP, 32, fullRange32I, fullRange32I },
{ "highp_div", "in0 / in1", div<int>, glu::PRECISION_HIGHP, 32, fullRange32I, IVec2(-10000, -1) },
{ "mediump_add", "in0 + in1", add<int>, glu::PRECISION_MEDIUMP, 16, fullRange16I, fullRange16I },
{ "mediump_sub", "in0 - in1", sub<int>, glu::PRECISION_MEDIUMP, 16, fullRange16I, fullRange16I },
{ "mediump_mul", "in0 * in1", mul<int>, glu::PRECISION_MEDIUMP, 16, fullRange16I, fullRange16I },
{ "mediump_div", "in0 / in1", div<int>, glu::PRECISION_MEDIUMP, 16, fullRange16I, IVec2(1, 1000) },
{ "lowp_add", "in0 + in1", add<int>, glu::PRECISION_LOWP, 8, fullRange8I, fullRange8I },
{ "lowp_sub", "in0 - in1", sub<int>, glu::PRECISION_LOWP, 8, fullRange8I, fullRange8I },
{ "lowp_mul", "in0 * in1", mul<int>, glu::PRECISION_LOWP, 8, fullRange8I, fullRange8I },
{ "lowp_div", "in0 / in1", div<int>, glu::PRECISION_LOWP, 8, fullRange8I, IVec2(-50, -1) }
};
static const struct
{
const char* name;
const char* op;
ShaderUintPrecisionCase::EvalFunc evalFunc;
glu::Precision precision;
int bits;
tcu::UVec2 rangeA;
tcu::UVec2 rangeB;
} uintCases[] =
{
// Name Op Eval Precision Bits RangeA RangeB
{ "highp_add", "in0 + in1", add<deUint32>, glu::PRECISION_HIGHP, 32, fullRange32U, fullRange32U },
{ "highp_sub", "in0 - in1", sub<deUint32>, glu::PRECISION_HIGHP, 32, fullRange32U, fullRange32U },
{ "highp_mul", "in0 * in1", mul<deUint32>, glu::PRECISION_HIGHP, 32, fullRange32U, fullRange32U },
{ "highp_div", "in0 / in1", div<deUint32>, glu::PRECISION_HIGHP, 32, fullRange32U, UVec2(1u, 10000u) },
{ "mediump_add", "in0 + in1", add<deUint32>, glu::PRECISION_MEDIUMP, 16, fullRange16U, fullRange16U },
{ "mediump_sub", "in0 - in1", sub<deUint32>, glu::PRECISION_MEDIUMP, 16, fullRange16U, fullRange16U },
{ "mediump_mul", "in0 * in1", mul<deUint32>, glu::PRECISION_MEDIUMP, 16, fullRange16U, fullRange16U },
{ "mediump_div", "in0 / in1", div<deUint32>, glu::PRECISION_MEDIUMP, 16, fullRange16U, UVec2(1, 1000u) },
{ "lowp_add", "in0 + in1", add<deUint32>, glu::PRECISION_LOWP, 8, fullRange8U, fullRange8U },
{ "lowp_sub", "in0 - in1", sub<deUint32>, glu::PRECISION_LOWP, 8, fullRange8U, fullRange8U },
{ "lowp_mul", "in0 * in1", mul<deUint32>, glu::PRECISION_LOWP, 8, fullRange8U, fullRange8U },
{ "lowp_div", "in0 / in1", div<deUint32>, glu::PRECISION_LOWP, 8, fullRange8U, UVec2(1, 50u) }
};
tcu::TestCaseGroup* floatGroup = new tcu::TestCaseGroup(m_testCtx, "float", "Floating-point precision tests");
addChild(floatGroup);
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(floatCases); ndx++)
{
floatGroup->addChild(new ShaderFloatPrecisionCase(m_context,
(string(floatCases[ndx].name) + "_vertex").c_str(), "",
floatCases[ndx].op,
floatCases[ndx].evalFunc,
floatCases[ndx].precision,
floatCases[ndx].rangeA,
floatCases[ndx].rangeB,
true));
floatGroup->addChild(new ShaderFloatPrecisionCase(m_context,
(string(floatCases[ndx].name) + "_fragment").c_str(), "",
floatCases[ndx].op,
floatCases[ndx].evalFunc,
floatCases[ndx].precision,
floatCases[ndx].rangeA,
floatCases[ndx].rangeB,
false));
}
tcu::TestCaseGroup* intGroup = new tcu::TestCaseGroup(m_testCtx, "int", "Integer precision tests");
addChild(intGroup);
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(intCases); ndx++)
{
intGroup->addChild(new ShaderIntPrecisionCase(m_context,
(string(intCases[ndx].name) + "_vertex").c_str(), "",
intCases[ndx].op,
intCases[ndx].evalFunc,
intCases[ndx].precision,
intCases[ndx].bits,
intCases[ndx].rangeA,
intCases[ndx].rangeB,
true));
intGroup->addChild(new ShaderIntPrecisionCase(m_context,
(string(intCases[ndx].name) + "_fragment").c_str(), "",
intCases[ndx].op,
intCases[ndx].evalFunc,
intCases[ndx].precision,
intCases[ndx].bits,
intCases[ndx].rangeA,
intCases[ndx].rangeB,
false));
}
tcu::TestCaseGroup* uintGroup = new tcu::TestCaseGroup(m_testCtx, "uint", "Unsigned integer precision tests");
addChild(uintGroup);
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(uintCases); ndx++)
{
uintGroup->addChild(new ShaderUintPrecisionCase(m_context,
(string(uintCases[ndx].name) + "_vertex").c_str(), "",
uintCases[ndx].op,
uintCases[ndx].evalFunc,
uintCases[ndx].precision,
uintCases[ndx].bits,
uintCases[ndx].rangeA,
uintCases[ndx].rangeB,
true));
uintGroup->addChild(new ShaderUintPrecisionCase(m_context,
(string(uintCases[ndx].name) + "_fragment").c_str(), "",
uintCases[ndx].op,
uintCases[ndx].evalFunc,
uintCases[ndx].precision,
uintCases[ndx].bits,
uintCases[ndx].rangeA,
uintCases[ndx].rangeB,
false));
}
}
} // Functional
} // gles3
} // deqp