C++程序  |  306行  |  8.78 KB

/* @(#)k_rem_pio2.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
#include  <LibConfig.h>
#include  <sys/EfiCdefs.h>
#if defined(LIBM_SCCS) && !defined(lint)
__RCSID("$NetBSD: k_rem_pio2.c,v 1.11 2003/01/04 23:43:03 wiz Exp $");
#endif

/*
 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 * double x[],y[]; int e0,nx,prec; int ipio2[];
 *
 * __kernel_rem_pio2 return the last three digits of N with
 *    y = x - N*pi/2
 * so that |y| < pi/2.
 *
 * The method is to compute the integer (mod 8) and fraction parts of
 * (2/pi)*x without doing the full multiplication. In general we
 * skip the part of the product that are known to be a huge integer (
 * more accurately, = 0 mod 8 ). Thus the number of operations are
 * independent of the exponent of the input.
 *
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
 *
 * Input parameters:
 *  x[] The input value (must be positive) is broken into nx
 *    pieces of 24-bit integers in double precision format.
 *    x[i] will be the i-th 24 bit of x. The scaled exponent
 *    of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
 *    match x's up to 24 bits.
 *
 *    Example of breaking a double positive z into x[0]+x[1]+x[2]:
 *      e0 = ilogb(z)-23
 *      z  = scalbn(z,-e0)
 *    for i = 0,1,2
 *      x[i] = floor(z)
 *      z    = (z-x[i])*2**24
 *
 *
 *  y[] output result in an array of double precision numbers.
 *    The dimension of y[] is:
 *      24-bit  precision 1
 *      53-bit  precision 2
 *      64-bit  precision 2
 *      113-bit precision 3
 *    The actual value is the sum of them. Thus for 113-bit
 *    precison, one may have to do something like:
 *
 *    long double t,w,r_head, r_tail;
 *    t = (long double)y[2] + (long double)y[1];
 *    w = (long double)y[0];
 *    r_head = t+w;
 *    r_tail = w - (r_head - t);
 *
 *  e0  The exponent of x[0]
 *
 *  nx  dimension of x[]
 *
 *    prec  an integer indicating the precision:
 *      0 24  bits (single)
 *      1 53  bits (double)
 *      2 64  bits (extended)
 *      3 113 bits (quad)
 *
 *  ipio2[]
 *    integer array, contains the (24*i)-th to (24*i+23)-th
 *    bit of 2/pi after binary point. The corresponding
 *    floating value is
 *
 *      ipio2[i] * 2^(-24(i+1)).
 *
 * External function:
 *  double scalbn(), floor();
 *
 *
 * Here is the description of some local variables:
 *
 *  jk  jk+1 is the initial number of terms of ipio2[] needed
 *    in the computation. The recommended value is 2,3,4,
 *    6 for single, double, extended,and quad.
 *
 *  jz  local integer variable indicating the number of
 *    terms of ipio2[] used.
 *
 *  jx  nx - 1
 *
 *  jv  index for pointing to the suitable ipio2[] for the
 *    computation. In general, we want
 *      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 *    is an integer. Thus
 *      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 *    Hence jv = max(0,(e0-3)/24).
 *
 *  jp  jp+1 is the number of terms in PIo2[] needed, jp = jk.
 *
 *  q[] double array with integral value, representing the
 *    24-bits chunk of the product of x and 2/pi.
 *
 *  q0  the corresponding exponent of q[0]. Note that the
 *    exponent for q[i] would be q0-24*i.
 *
 *  PIo2[]  double precision array, obtained by cutting pi/2
 *    into 24 bits chunks.
 *
 *  f[] ipio2[] in floating point
 *
 *  iq[]  integer array by breaking up q[] in 24-bits chunk.
 *
 *  fq[]  final product of x*(2/pi) in fq[0],..,fq[jk]
 *
 *  ih  integer. If >0 it indicates q[] is >= 0.5, hence
 *    it also indicates the *sign* of the result.
 *
 */


/*
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

#include "math.h"
#include "math_private.h"

static const int init_jk[] = {2,3,4,6}; /* initial value for jk */

static const double PIo2[] = {
  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};

static const double
zero   = 0.0,
one    = 1.0,
two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */

int
__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
{
  int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
  double z,fw,f[20],fq[20],q[20];

    /* initialize jk*/
  jk = init_jk[prec];
  jp = jk;

    /* determine jx,jv,q0, note that 3>q0 */
  jx =  nx-1;
  jv = (e0-3)/24; if(jv<0) jv=0;
  q0 =  e0-24*(jv+1);

    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
  j = jv-jx; m = jx+jk;
  for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];

    /* compute q[0],q[1],...q[jk] */
  for (i=0;i<=jk;i++) {
      for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
  }

  jz = jk;
recompute:
    /* distill q[] into iq[] reversingly */
  for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
      fw    =  (double)((int32_t)(twon24* z));
      iq[i] =  (int32_t)(z-two24*fw);
      z     =  q[j-1]+fw;
  }

    /* compute n */
  z  = scalbn(z,q0);    /* actual value of z */
  z -= 8.0*floor(z*0.125);    /* trim off integer >= 8 */
  n  = (int32_t) z;
  z -= (double)n;
  ih = 0;
  if(q0>0) {  /* need iq[jz-1] to determine n */
      i  = (iq[jz-1]>>(24-q0)); n += i;
      iq[jz-1] -= i<<(24-q0);
      ih = iq[jz-1]>>(23-q0);
  }
  else if(q0==0) ih = iq[jz-1]>>23;
  else if(z>=0.5) ih=2;

  if(ih>0) {  /* q > 0.5 */
      n += 1; carry = 0;
      for(i=0;i<jz ;i++) {  /* compute 1-q */
    j = iq[i];
    if(carry==0) {
        if(j!=0) {
      carry = 1; iq[i] = 0x1000000- j;
        }
    } else  iq[i] = 0xffffff - j;
      }
      if(q0>0) {    /* rare case: chance is 1 in 12 */
          switch(q0) {
          case 1:
           iq[jz-1] &= 0x7fffff; break;
        case 2:
           iq[jz-1] &= 0x3fffff; break;
          }
      }
      if(ih==2) {
    z = one - z;
    if(carry!=0) z -= scalbn(one,q0);
      }
  }

    /* check if recomputation is needed */
  if(z==zero) {
      j = 0;
      for (i=jz-1;i>=jk;i--) j |= iq[i];
      if(j==0) { /* need recomputation */
    for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */

    for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
        f[jx+i] = (double) ipio2[jv+i];
        for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
        q[i] = fw;
    }
    jz += k;
    goto recompute;
      }
  }

    /* chop off zero terms */
  if(z==0.0) {
      jz -= 1; q0 -= 24;
      while(iq[jz]==0) { jz--; q0-=24;}
  } else { /* break z into 24-bit if necessary */
      z = scalbn(z,-q0);
      if(z>=two24) {
    fw = (double)((int32_t)(twon24*z));
    iq[jz] = (int32_t)(z-two24*fw);
    jz += 1; q0 += 24;
    iq[jz] = (int32_t) fw;
      } else iq[jz] = (int32_t) z ;
  }

    /* convert integer "bit" chunk to floating-point value */
  fw = scalbn(one,q0);
  for(i=jz;i>=0;i--) {
      q[i] = fw*(double)iq[i]; fw*=twon24;
  }

    /* compute PIo2[0,...,jp]*q[jz,...,0] */
  for(i=jz;i>=0;i--) {
      for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
      fq[jz-i] = fw;
  }

    /* compress fq[] into y[] */
  switch(prec) {
      case 0:
    fw = 0.0;
    for (i=jz;i>=0;i--) fw += fq[i];
    y[0] = (ih==0)? fw: -fw;
    break;
      case 1:
      case 2:
    fw = 0.0;
    for (i=jz;i>=0;i--) fw += fq[i];
    y[0] = (ih==0)? fw: -fw;
    fw = fq[0]-fw;
    for (i=1;i<=jz;i++) fw += fq[i];
    y[1] = (ih==0)? fw: -fw;
    break;
      case 3: /* painful */
    for (i=jz;i>0;i--) {
        fw      = fq[i-1]+fq[i];
        fq[i]  += fq[i-1]-fw;
        fq[i-1] = fw;
    }
    for (i=jz;i>1;i--) {
        fw      = fq[i-1]+fq[i];
        fq[i]  += fq[i-1]-fw;
        fq[i-1] = fw;
    }
    for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
    if(ih==0) {
        y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
    } else {
        y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
    }
  }
  return n&7;
}