/*
* Copyright (c) 2014-2015, Linaro Ltd and Contributors. All rights reserved.
* Copyright (c) 2014-2015, Hisilicon Ltd and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl31.h>
#include <bl_common.h>
#include <cci400.h>
#include <console.h>
#include <debug.h>
#include <hisi_ipc.h>
#include <hisi_pwrc.h>
#include <mmio.h>
#include <platform.h>
#include <stddef.h>
#include <hi6220_regs_ao.h>
#include <hi6220.h>
#include "hikey_def.h"
#include "hikey_private.h"
/*******************************************************************************
* Declarations of linker defined symbols which will help us find the layout
* of trusted RAM
******************************************************************************/
extern unsigned long __RO_START__;
extern unsigned long __RO_END__;
extern unsigned long __COHERENT_RAM_START__;
extern unsigned long __COHERENT_RAM_END__;
/*
* The next 2 constants identify the extents of the code & RO data region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses.
*/
#define BL31_RO_BASE (unsigned long)(&__RO_START__)
#define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
* refer to page-aligned addresses.
*/
#define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
/******************************************************************************
* Placeholder variables for copying the arguments that have been passed to
* BL3-1 from BL2.
******************************************************************************/
static entry_point_info_t bl32_ep_info;
static entry_point_info_t bl33_ep_info;
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* the security state specified. BL3-3 corresponds to the non-secure image type
* while BL3-2 corresponds to the secure image type. A NULL pointer is returned
* if the image does not exist.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
next_image_info = (type == NON_SECURE) ? &bl33_ep_info : &bl32_ep_info;
/* None of the images on this platform can have 0x0 as the entrypoint */
if (next_image_info->pc)
return next_image_info;
else
return NULL;
}
/*******************************************************************************
* Perform any BL3-1 specific platform actions. Here is an opportunity to copy
* parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
* are lost (potentially). This needs to be done before the MMU is initialized
* so that the memory layout can be used while creating page tables. Also, BL2
* has flushed this information to memory, so we are guaranteed to pick up good
* data
******************************************************************************/
void bl31_early_platform_setup(bl31_params_t *from_bl2,
void *plat_params_from_bl2)
{
/* Initialize the console to provide early debug support */
console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
/*
* Initialise the CCI-400 driver for BL31 so that it is accessible after
* a warm boot. BL1 should have already enabled CCI coherency for this
* cluster during cold boot.
*/
cci_init(CCI400_BASE,
CCI400_SL_IFACE3_CLUSTER_IX,
CCI400_SL_IFACE4_CLUSTER_IX);
/*
* Copy BL3-2 and BL3-3 entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
bl32_ep_info = *from_bl2->bl32_ep_info;
bl33_ep_info = *from_bl2->bl33_ep_info;
}
static void init_rtc(void)
{
uint32_t data;
data = mmio_read_32(AO_SC_PERIPH_CLKEN4);
data |= AO_SC_PERIPH_RSTDIS4_RESET_RTC0_N;
mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
}
static void init_edma(void)
{
int i;
mmio_write_32(EDMAC_SEC_CTRL, 0x3);
for (i = 0; i <= 15; i++) {
VERBOSE("EDMAC_AXI_CONF(%d): data:0x%x\n", i, mmio_read_32(EDMAC_AXI_CONF(i)));
mmio_write_32(EDMAC_AXI_CONF(i), (1 << 6) | (1 << 18));
VERBOSE("EDMAC_AXI_CONF(%d): data:0x%x\n", i, mmio_read_32(EDMAC_AXI_CONF(i)));
}
}
/*******************************************************************************
* Initialize the GIC.
******************************************************************************/
void bl31_platform_setup(void)
{
/* Initialize the gic cpu and distributor interfaces */
plat_gic_init();
arm_gic_setup();
init_rtc();
init_edma();
hisi_ipc_init();
hisi_pwrc_setup();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here. At the
* moment this is only intializes the mmu in a quick and dirty way.
******************************************************************************/
void bl31_plat_arch_setup()
{
configure_mmu_el3(BL31_RO_BASE,
BL31_COHERENT_RAM_LIMIT - BL31_RO_BASE,
BL31_RO_BASE,
BL31_RO_LIMIT,
BL31_COHERENT_RAM_BASE,
BL31_COHERENT_RAM_LIMIT);
}