/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Copyright (C) 2010 Google Inc. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE.WEBKIT file.
*/
#include <math.h>
#include "biquad.h"
#ifndef max
#define max(a, b) ({ __typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
_a > _b ? _a : _b; })
#endif
#ifndef min
#define min(a, b) ({ __typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
_a < _b ? _a : _b; })
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
static void set_coefficient(struct biquad *bq, double b0, double b1, double b2,
double a0, double a1, double a2)
{
double a0_inv = 1 / a0;
bq->b0 = b0 * a0_inv;
bq->b1 = b1 * a0_inv;
bq->b2 = b2 * a0_inv;
bq->a1 = a1 * a0_inv;
bq->a2 = a2 * a0_inv;
}
static void biquad_lowpass(struct biquad *bq, double cutoff, double resonance)
{
/* Limit cutoff to 0 to 1. */
cutoff = max(0.0, min(cutoff, 1.0));
if (cutoff == 1) {
/* When cutoff is 1, the z-transform is 1. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
} else if (cutoff > 0) {
/* Compute biquad coefficients for lowpass filter */
resonance = max(0.0, resonance); /* can't go negative */
double g = pow(10.0, 0.05 * resonance);
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
double theta = M_PI * cutoff;
double sn = 0.5 * d * sin(theta);
double beta = 0.5 * (1 - sn) / (1 + sn);
double gamma = (0.5 + beta) * cos(theta);
double alpha = 0.25 * (0.5 + beta - gamma);
double b0 = 2 * alpha;
double b1 = 2 * 2 * alpha;
double b2 = 2 * alpha;
double a1 = 2 * -gamma;
double a2 = 2 * beta;
set_coefficient(bq, b0, b1, b2, 1, a1, a2);
} else {
/* When cutoff is zero, nothing gets through the filter, so set
* coefficients up correctly.
*/
set_coefficient(bq, 0, 0, 0, 1, 0, 0);
}
}
static void biquad_highpass(struct biquad *bq, double cutoff, double resonance)
{
/* Limit cutoff to 0 to 1. */
cutoff = max(0.0, min(cutoff, 1.0));
if (cutoff == 1) {
/* The z-transform is 0. */
set_coefficient(bq, 0, 0, 0, 1, 0, 0);
} else if (cutoff > 0) {
/* Compute biquad coefficients for highpass filter */
resonance = max(0.0, resonance); /* can't go negative */
double g = pow(10.0, 0.05 * resonance);
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
double theta = M_PI * cutoff;
double sn = 0.5 * d * sin(theta);
double beta = 0.5 * (1 - sn) / (1 + sn);
double gamma = (0.5 + beta) * cos(theta);
double alpha = 0.25 * (0.5 + beta + gamma);
double b0 = 2 * alpha;
double b1 = 2 * -2 * alpha;
double b2 = 2 * alpha;
double a1 = 2 * -gamma;
double a2 = 2 * beta;
set_coefficient(bq, b0, b1, b2, 1, a1, a2);
} else {
/* When cutoff is zero, we need to be careful because the above
* gives a quadratic divided by the same quadratic, with poles
* and zeros on the unit circle in the same place. When cutoff
* is zero, the z-transform is 1.
*/
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
}
}
static void biquad_bandpass(struct biquad *bq, double frequency, double Q)
{
/* No negative frequencies allowed. */
frequency = max(0.0, frequency);
/* Don't let Q go negative, which causes an unstable filter. */
Q = max(0.0, Q);
if (frequency > 0 && frequency < 1) {
double w0 = M_PI * frequency;
if (Q > 0) {
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = alpha;
double b1 = 0;
double b2 = -alpha;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
} else {
/* When Q = 0, the above formulas have problems. If we
* look at the z-transform, we can see that the limit
* as Q->0 is 1, so set the filter that way.
*/
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
}
} else {
/* When the cutoff is zero, the z-transform approaches 0, if Q
* > 0. When both Q and cutoff are zero, the z-transform is
* pretty much undefined. What should we do in this case?
* For now, just make the filter 0. When the cutoff is 1, the
* z-transform also approaches 0.
*/
set_coefficient(bq, 0, 0, 0, 1, 0, 0);
}
}
static void biquad_lowshelf(struct biquad *bq, double frequency, double db_gain)
{
/* Clip frequencies to between 0 and 1, inclusive. */
frequency = max(0.0, min(frequency, 1.0));
double A = pow(10.0, db_gain / 40);
if (frequency == 1) {
/* The z-transform is a constant gain. */
set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
} else if (frequency > 0) {
double w0 = M_PI * frequency;
double S = 1; /* filter slope (1 is max value) */
double alpha = 0.5 * sin(w0) *
sqrt((A + 1 / A) * (1 / S - 1) + 2);
double k = cos(w0);
double k2 = 2 * sqrt(A) * alpha;
double a_plus_one = A + 1;
double a_minus_one = A - 1;
double b0 = A * (a_plus_one - a_minus_one * k + k2);
double b1 = 2 * A * (a_minus_one - a_plus_one * k);
double b2 = A * (a_plus_one - a_minus_one * k - k2);
double a0 = a_plus_one + a_minus_one * k + k2;
double a1 = -2 * (a_minus_one + a_plus_one * k);
double a2 = a_plus_one + a_minus_one * k - k2;
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
} else {
/* When frequency is 0, the z-transform is 1. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
}
}
static void biquad_highshelf(struct biquad *bq, double frequency,
double db_gain)
{
/* Clip frequencies to between 0 and 1, inclusive. */
frequency = max(0.0, min(frequency, 1.0));
double A = pow(10.0, db_gain / 40);
if (frequency == 1) {
/* The z-transform is 1. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
} else if (frequency > 0) {
double w0 = M_PI * frequency;
double S = 1; /* filter slope (1 is max value) */
double alpha = 0.5 * sin(w0) *
sqrt((A + 1 / A) * (1 / S - 1) + 2);
double k = cos(w0);
double k2 = 2 * sqrt(A) * alpha;
double a_plus_one = A + 1;
double a_minus_one = A - 1;
double b0 = A * (a_plus_one + a_minus_one * k + k2);
double b1 = -2 * A * (a_minus_one + a_plus_one * k);
double b2 = A * (a_plus_one + a_minus_one * k - k2);
double a0 = a_plus_one - a_minus_one * k + k2;
double a1 = 2 * (a_minus_one - a_plus_one * k);
double a2 = a_plus_one - a_minus_one * k - k2;
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
} else {
/* When frequency = 0, the filter is just a gain, A^2. */
set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
}
}
static void biquad_peaking(struct biquad *bq, double frequency, double Q,
double db_gain)
{
/* Clip frequencies to between 0 and 1, inclusive. */
frequency = max(0.0, min(frequency, 1.0));
/* Don't let Q go negative, which causes an unstable filter. */
Q = max(0.0, Q);
double A = pow(10.0, db_gain / 40);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = M_PI * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1 + alpha * A;
double b1 = -2 * k;
double b2 = 1 - alpha * A;
double a0 = 1 + alpha / A;
double a1 = -2 * k;
double a2 = 1 - alpha / A;
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
} else {
/* When Q = 0, the above formulas have problems. If we
* look at the z-transform, we can see that the limit
* as Q->0 is A^2, so set the filter that way.
*/
set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
}
} else {
/* When frequency is 0 or 1, the z-transform is 1. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
}
}
static void biquad_notch(struct biquad *bq, double frequency, double Q)
{
/* Clip frequencies to between 0 and 1, inclusive. */
frequency = max(0.0, min(frequency, 1.0));
/* Don't let Q go negative, which causes an unstable filter. */
Q = max(0.0, Q);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = M_PI * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1;
double b1 = -2 * k;
double b2 = 1;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
} else {
/* When Q = 0, the above formulas have problems. If we
* look at the z-transform, we can see that the limit
* as Q->0 is 0, so set the filter that way.
*/
set_coefficient(bq, 0, 0, 0, 1, 0, 0);
}
} else {
/* When frequency is 0 or 1, the z-transform is 1. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
}
}
static void biquad_allpass(struct biquad *bq, double frequency, double Q)
{
/* Clip frequencies to between 0 and 1, inclusive. */
frequency = max(0.0, min(frequency, 1.0));
/* Don't let Q go negative, which causes an unstable filter. */
Q = max(0.0, Q);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = M_PI * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1 - alpha;
double b1 = -2 * k;
double b2 = 1 + alpha;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
} else {
/* When Q = 0, the above formulas have problems. If we
* look at the z-transform, we can see that the limit
* as Q->0 is -1, so set the filter that way.
*/
set_coefficient(bq, -1, 0, 0, 1, 0, 0);
}
} else {
/* When frequency is 0 or 1, the z-transform is 1. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
}
}
void biquad_set(struct biquad *bq, enum biquad_type type, double freq, double Q,
double gain)
{
/* Default is an identity filter. Also clear history values. */
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
bq->x1 = 0;
bq->x2 = 0;
bq->y1 = 0;
bq->y2 = 0;
switch (type) {
case BQ_LOWPASS:
biquad_lowpass(bq, freq, Q);
break;
case BQ_HIGHPASS:
biquad_highpass(bq, freq, Q);
break;
case BQ_BANDPASS:
biquad_bandpass(bq, freq, Q);
break;
case BQ_LOWSHELF:
biquad_lowshelf(bq, freq, gain);
break;
case BQ_HIGHSHELF:
biquad_highshelf(bq, freq, gain);
break;
case BQ_PEAKING:
biquad_peaking(bq, freq, Q, gain);
break;
case BQ_NOTCH:
biquad_notch(bq, freq, Q);
break;
case BQ_ALLPASS:
biquad_allpass(bq, freq, Q);
break;
case BQ_NONE:
break;
}
}