/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include <timer.h>
#include <heap.h>
#include <plat/rtc.h>
#include <plat/syscfg.h>
#include <hostIntf.h>
#include <nanohubPacket.h>
#include <seos.h>
#include <nanohub_math.h>
#include <sensors.h>
#include <limits.h>
#define TILT_APP_VERSION 1
#define EVT_SENSOR_ANY_MOTION sensorGetMyEventType(SENS_TYPE_ANY_MOTION)
#define EVT_SENSOR_NO_MOTION sensorGetMyEventType(SENS_TYPE_NO_MOTION)
#define EVT_SENSOR_ACCEL sensorGetMyEventType(SENS_TYPE_ACCEL)
#define ACCEL_MIN_RATE SENSOR_HZ(50)
#define ACCEL_MAX_LATENCY 250000000ull // 250 ms
#define BATCH_TIME 2000000000ull // 2.0 seconds
#define ANGLE_THRESH (0.819 * 9.81 * 9.81) // ~cos(35) * (1G in m/s^2)^2
struct TiltAlgoState {
uint64_t this_batch_init_ts;
uint32_t this_batch_num_samples;
float this_batch_sample_sum[3];
float this_batch_g[3];
float last_ref_g_vector[3];
bool last_ref_g_vector_valid;
bool anamoly_this_batch;
bool tilt_detected;
};
static struct TiltDetectionTask {
struct TiltAlgoState algoState;
uint32_t taskId;
uint32_t handle;
uint32_t anyMotionHandle;
uint32_t noMotionHandle;
uint32_t accelHandle;
enum {
STATE_DISABLED,
STATE_AWAITING_ANY_MOTION,
STATE_AWAITING_TILT,
} taskState;
} mTask;
// *****************************************************************************
static void algoInit()
{
// nothing here
}
static bool algoUpdate(struct TripleAxisDataEvent *ev)
{
float dotProduct = 0.0f;
uint64_t dt;
bool latch_g_vector = false;
bool tilt_detected = false;
struct TiltAlgoState *state = &mTask.algoState;
uint64_t sample_ts = ev->referenceTime;
uint32_t numSamples = ev->samples[0].firstSample.numSamples;
uint32_t i;
struct TripleAxisDataPoint *sample;
float invN;
for (i = 0; i < numSamples; i++) {
sample = &ev->samples[i];
if (i > 0)
sample_ts += sample->deltaTime;
if (state->this_batch_init_ts == 0) {
state->this_batch_init_ts = sample_ts;
}
state->this_batch_sample_sum[0] += sample->x;
state->this_batch_sample_sum[1] += sample->y;
state->this_batch_sample_sum[2] += sample->z;
state->this_batch_num_samples++;
dt = (sample_ts - state->this_batch_init_ts);
if (dt > BATCH_TIME) {
invN = 1.0f / state->this_batch_num_samples;
state->this_batch_g[0] = state->this_batch_sample_sum[0] * invN;
state->this_batch_g[1] = state->this_batch_sample_sum[1] * invN;
state->this_batch_g[2] = state->this_batch_sample_sum[2] * invN;
if (state->last_ref_g_vector_valid) {
dotProduct = state->this_batch_g[0] * state->last_ref_g_vector[0] +
state->this_batch_g[1] * state->last_ref_g_vector[1] +
state->this_batch_g[2] * state->last_ref_g_vector[2];
if (dotProduct < ANGLE_THRESH) {
tilt_detected = true;
latch_g_vector = true;
}
} else { // reference g vector not valid, first time computing
latch_g_vector = true;
state->last_ref_g_vector_valid = true;
}
// latch the first batch or when dotProduct < ANGLE_THRESH
if (latch_g_vector) {
state->last_ref_g_vector[0] = state->this_batch_g[0];
state->last_ref_g_vector[1] = state->this_batch_g[1];
state->last_ref_g_vector[2] = state->this_batch_g[2];
}
// Seed the next batch
state->this_batch_init_ts = 0;
state->this_batch_num_samples = 0;
state->this_batch_sample_sum[0] = 0;
state->this_batch_sample_sum[1] = 0;
state->this_batch_sample_sum[2] = 0;
}
}
return tilt_detected;
}
static void configAnyMotion(bool on) {
if (on) {
sensorRequest(mTask.taskId, mTask.anyMotionHandle, SENSOR_RATE_ONCHANGE, 0);
osEventSubscribe(mTask.taskId, EVT_SENSOR_ANY_MOTION);
} else {
sensorRelease(mTask.taskId, mTask.anyMotionHandle);
osEventUnsubscribe(mTask.taskId, EVT_SENSOR_ANY_MOTION);
}
}
static void configNoMotion(bool on) {
if (on) {
sensorRequest(mTask.taskId, mTask.noMotionHandle, SENSOR_RATE_ONCHANGE, 0);
osEventSubscribe(mTask.taskId, EVT_SENSOR_NO_MOTION);
} else {
sensorRelease(mTask.taskId, mTask.noMotionHandle);
osEventUnsubscribe(mTask.taskId, EVT_SENSOR_NO_MOTION);
}
}
static void configAccel(bool on) {
if (on) {
sensorRequest(mTask.taskId, mTask.accelHandle, ACCEL_MIN_RATE,
ACCEL_MAX_LATENCY);
osEventSubscribe(mTask.taskId, EVT_SENSOR_ACCEL);
} else {
sensorRelease(mTask.taskId, mTask.accelHandle);
osEventUnsubscribe(mTask.taskId, EVT_SENSOR_ACCEL);
}
}
// *****************************************************************************
static const struct SensorInfo mSi =
{
.sensorName = "Tilt Detection",
.sensorType = SENS_TYPE_TILT,
.numAxis = NUM_AXIS_EMBEDDED,
.interrupt = NANOHUB_INT_WAKEUP,
.minSamples = 20
};
static bool tiltDetectionPower(bool on, void *cookie)
{
if (on) {
configAnyMotion(true);
mTask.taskState = STATE_AWAITING_ANY_MOTION;
} else {
configAnyMotion(false);
configNoMotion(false);
configAccel(false);
mTask.taskState = STATE_DISABLED;
}
sensorSignalInternalEvt(mTask.handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG,
on, 0);
return true;
}
static bool tiltDetectionSetRate(uint32_t rate, uint64_t latency, void *cookie)
{
sensorSignalInternalEvt(mTask.handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate,
latency);
return true;
}
static bool tiltDetectionFirmwareUpload(void *cookie)
{
sensorSignalInternalEvt(mTask.handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG,
1, 0);
return true;
}
static bool tiltDetectionFlush(void *cookie)
{
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TILT),
SENSOR_DATA_EVENT_FLUSH, NULL);
}
static void tiltDetectionHandleEvent(uint32_t evtType, const void* evtData)
{
if (evtData == SENSOR_DATA_EVENT_FLUSH)
return;
switch (evtType) {
case EVT_APP_START:
osEventUnsubscribe(mTask.taskId, EVT_APP_START);
sensorFind(SENS_TYPE_ANY_MOTION, 0, &mTask.anyMotionHandle);
sensorFind(SENS_TYPE_NO_MOTION, 0, &mTask.noMotionHandle);
sensorFind(SENS_TYPE_ACCEL, 0, &mTask.accelHandle);
break;
case EVT_SENSOR_ANY_MOTION:
if (mTask.taskState == STATE_AWAITING_ANY_MOTION) {
configAnyMotion(false);
configNoMotion(true);
configAccel(true);
mTask.taskState = STATE_AWAITING_TILT;
}
break;
case EVT_SENSOR_NO_MOTION:
if (mTask.taskState == STATE_AWAITING_TILT) {
configNoMotion(false);
configAccel(false);
configAnyMotion(true);
mTask.taskState = STATE_AWAITING_ANY_MOTION;
}
break;
case EVT_SENSOR_ACCEL:
if (mTask.taskState == STATE_AWAITING_TILT) {
if (algoUpdate((struct TripleAxisDataEvent *)evtData)) {
union EmbeddedDataPoint sample;
sample.idata = 1;
osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TILT), sample.vptr, NULL);
}
}
break;
}
}
static const struct SensorOps mSops =
{
.sensorPower = tiltDetectionPower,
.sensorFirmwareUpload = tiltDetectionFirmwareUpload,
.sensorSetRate = tiltDetectionSetRate,
.sensorFlush = tiltDetectionFlush,
};
static bool tiltDetectionStart(uint32_t taskId)
{
mTask.taskId = taskId;
mTask.handle = sensorRegister(&mSi, &mSops, NULL, true);
algoInit();
osEventSubscribe(taskId, EVT_APP_START);
return true;
}
static void tiltDetectionEnd()
{
}
INTERNAL_APP_INIT(
APP_ID_MAKE(NANOHUB_VENDOR_GOOGLE, 8),
TILT_APP_VERSION,
tiltDetectionStart,
tiltDetectionEnd,
tiltDetectionHandleEvent);