/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calibration/common/diversity_checker.h"
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include "common/math/vec.h"
#define MAX_FIT_MAG 70.0f
#define MIN_FIT_MAG 20.0f
// Struct initialization.
void diversityCheckerInit(
struct DiversityChecker* diverse_data,
size_t min_num_diverse_vectors,
size_t max_num_max_distance,
float var_threshold,
float max_min_threshold,
float local_field,
float threshold_tuning_param,
float max_distance_tuning_param) {
ASSERT_NOT_NULL(diverse_data);
// Initialize parameters.
diverse_data->threshold_tuning_param_sq =
(threshold_tuning_param * threshold_tuning_param);
diverse_data->max_distance_tuning_param_sq =
(max_distance_tuning_param * max_distance_tuning_param);
// Updating the threshold and max_distance using assumed local field.
// Testing for zero and negative local_field.
if (local_field <= 0) {
local_field = 1;
}
diversityCheckerLocalFieldUpdate(diverse_data, local_field);
diverse_data->min_num_diverse_vectors = min_num_diverse_vectors;
// Checking for min_num_diverse_vectors = 0.
if (min_num_diverse_vectors < 1) {
diverse_data->min_num_diverse_vectors = 1;
}
diverse_data->max_num_max_distance = max_num_max_distance;
diverse_data->var_threshold = var_threshold;
diverse_data->max_min_threshold = max_min_threshold;
// Setting the rest to zero.
diversityCheckerReset(diverse_data);
}
// Reset
void diversityCheckerReset(struct DiversityChecker* diverse_data) {
ASSERT_NOT_NULL(diverse_data);
// Clear data memory.
memset(&diverse_data->diverse_data, 0,
sizeof(diverse_data->diverse_data));
// Resetting counters and data full bit.
diverse_data->num_points = 0;
diverse_data->num_max_dist_violations = 0;
diverse_data->data_full = false;
}
void diversityCheckerUpdate(
struct DiversityChecker* diverse_data, float x, float y, float z) {
ASSERT_NOT_NULL(diverse_data);
// Converting three single inputs to a vector.
const float vec[3] = {x, y, z};
// Result vector for vector difference.
float vec_diff[3];
// normSquared result (k)
float norm_squared_result;
// If memory is full, no need to run through the data.
if (!diverse_data->data_full) {
size_t i;
// Running over all existing data points
for (i = 0; i < diverse_data->num_points; ++i) {
// v = v1 - v2;
vecSub(vec_diff,
&diverse_data->diverse_data[i * THREE_AXIS_DATA_DIM],
vec,
THREE_AXIS_DATA_DIM);
// k = |v|^2
norm_squared_result = vecNormSquared(vec_diff, THREE_AXIS_DATA_DIM);
// if k < Threshold then leave the function.
if (norm_squared_result < diverse_data->threshold) {
return;
}
// if k > max_distance, count and leave the function.
if (norm_squared_result > diverse_data->max_distance) {
diverse_data->num_max_dist_violations++;
return;
}
}
// If none of the above caused to leave the function, data is diverse.
// Notice that the first data vector will be stored no matter what.
memcpy(&diverse_data->
diverse_data[diverse_data->num_points * THREE_AXIS_DATA_DIM],
vec,
sizeof(float) * THREE_AXIS_DATA_DIM);
// Count new data point.
diverse_data->num_points++;
// Setting data_full to 1, if memory is full.
if (diverse_data->num_points == NUM_DIVERSE_VECTORS) {
diverse_data->data_full = true;
}
}
}
bool diversityCheckerNormQuality(struct DiversityChecker* diverse_data,
float x_bias,
float y_bias,
float z_bias) {
ASSERT_NOT_NULL(diverse_data);
// If not enough diverse data points or max distance violations return false.
if (diverse_data->num_points <= diverse_data->min_num_diverse_vectors ||
diverse_data->num_max_dist_violations >=
diverse_data->max_num_max_distance) {
return false;
}
float vec_bias[3] = {x_bias, y_bias, z_bias};
float vec_bias_removed[3];
float norm_results;
float acc_norm = 0.0f;
float acc_norm_square = 0.0f;
float max;
float min;
size_t i;
for (i = 0; i < diverse_data->num_points; ++i) {
// v = v1 - v_bias;
vecSub(vec_bias_removed,
&diverse_data->diverse_data[i * THREE_AXIS_DATA_DIM],
vec_bias,
THREE_AXIS_DATA_DIM);
// norm = ||v||
norm_results = vecNorm(vec_bias_removed, THREE_AXIS_DATA_DIM);
// Accumulate for mean and VAR.
acc_norm += norm_results;
acc_norm_square += norm_results * norm_results ;
if (i == 0) {
min = norm_results;
max = norm_results;
}
// Finding min
if (norm_results < min) {
min = norm_results;
}
// Finding max.
if (norm_results > max) {
max = norm_results;
}
// can leave the function if max-min is violated
// no need to continue.
if ((max - min) > diverse_data->max_min_threshold) {
return false;
}
}
float inv = 1.0f / diverse_data->num_points;
float var = (acc_norm_square - (acc_norm * acc_norm) * inv) * inv;
return (var < diverse_data->var_threshold);
}
void diversityCheckerLocalFieldUpdate(struct DiversityChecker* diverse_data,
float local_field) {
if ((local_field < MAX_FIT_MAG) && (local_field > MIN_FIT_MAG)) {
// Updating threshold based on the local field information.
diverse_data->threshold = diverse_data->threshold_tuning_param_sq *
(local_field * local_field);
// Updating max distance based on the local field information.
diverse_data->max_distance = diverse_data->max_distance_tuning_param_sq *
(local_field * local_field);
}
}