/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calibration/accelerometer/accel_cal.h"
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "calibration/magnetometer/mag_cal.h"
#include "calibration/util/cal_log.h"
#define KSCALE \
0.101936799f // Scaling from m/s^2 to g (0.101 = 1/(9.81 m/s^2)).
#define KSCALE2 9.81f // Scaling from g to m/s^2.
#define PHI 0.707f // = 1/sqrt(2) gives a 45 degree angle for sorting data.
#define PHIb -0.707f
#define PHIZ 0.866f // smaller Z sphere cap, opening angle is 30 degrees.
#define PHIZb -0.866f
#define G_NORM_MAX \
1.38f // Norm during stillness should be 1 g, checking from max min values.
#define G_NORM_MIN 0.68f
#define MAX_OFF 0.1f // Will not accept offsets that are larger than 100 mg.
#define MIN_TEMP 20.0f // No Data is collected below 20 degree C.
#define MAX_TEMP 45.0f // No Data is collected above 45 degree C.
#define TEMP_CUT 30 // Separation point for temperature buckets 30 degree C.
#define EIGEN_RATIO 0.35 // EIGEN_RATIO (must be greater than 0.35).
#define EIGEN_MAG 0.97 // Eigen value magnitude (must be greater than 0.97).
#ifdef ACCEL_CAL_DBG_ENABLED
#define TEMP_HIST_LOW \
16 // Putting all Temp counts in first bucket for temp < 16 degree C.
#define TEMP_HIST_HIGH \
62 // Putting all Temp counts in last bucket for temp > 62 degree C.
#define HIST_COUNT 9
#endif
#ifdef IMU_TEMP_DBG_ENABLED
#define IMU_TEMP_DELTA_TIME_NANOS \
5000000000 // Printing every 5 seconds IMU temp.
#endif
/////////// Start Debug //////////////////////
#ifdef ACCEL_CAL_DBG_ENABLED
// Total bucket Counter.
static void accelStatsCounter(struct AccelStillDet *asd,
struct AccelStatsMem *adf) {
// Sorting the data in the different buckets
// x bucket ntx.
if (PHI < asd->mean_x) {
adf->ntx += 1;
}
// Negative x bucket ntxb.
if (PHIb > asd->mean_x) {
adf->ntxb += 1;
}
// Y bucket nty.
if (PHI < asd->mean_y) {
adf->nty += 1;
}
// Negative y bucket ntyb.
if (PHIb > asd->mean_y) {
adf->ntyb += 1;
}
// Z bucket ntz.
if (PHIZ < asd->mean_z) {
adf->ntz += 1;
}
// Negative z bucket ntzb.
if (PHIZb > asd->mean_z) {
adf->ntzb += 1;
}
// The leftover bucket ntle.
if (PHI > asd->mean_x && PHIb < asd->mean_x && PHI > asd->mean_y &&
PHIb < asd->mean_y && PHIZ > asd->mean_z && PHIZb < asd->mean_z) {
adf->ntle += 1;
}
}
// Temp histogram generation.
static void accelTempHisto(struct AccelStatsMem *adf, float temp) {
int index = 0;
// Take temp at every stillness detection.
adf->start_time_nanos = 0;
if (temp <= TEMP_HIST_LOW) {
adf->t_hist[0] += 1;
return;
}
if (temp >= TEMP_HIST_HIGH) {
adf->t_hist[TEMP_HISTOGRAM - 1] += 1;
return;
}
index = (int)(((temp - TEMP_HIST_LOW) / 2) + 1);
adf->t_hist[index] += 1;
}
#endif
///////// End Debug ////////////////////
// Stillness detector reset.
static void asdReset(struct AccelStillDet *asd) {
asd->nsamples = 0;
asd->start_time = 0;
asd->acc_x = asd->acc_y = asd->acc_z = 0.0f;
asd->acc_xx = asd->acc_yy = asd->acc_zz = 0.0f;
}
// Stillness detector init.
static void accelStillInit(struct AccelStillDet *asd, uint32_t t0, uint32_t n_s,
float th) {
memset(asd, 0, sizeof(struct AccelStillDet));
asd->var_th = th;
asd->min_batch_window = t0;
asd->max_batch_window = t0 + 100000000;
asd->min_batch_size = n_s;
asd->n_still = 0;
}
// Good data reset.
static void agdReset(struct AccelGoodData *agd) {
agd->nx = agd->nxb = 0;
agd->ny = agd->nyb = 0;
agd->nz = agd->nzb = 0;
agd->nle = 0;
agd->acc_t = agd->acc_tt = 0;
agd->e_x = agd->e_y = agd->e_z = 0;
}
// Good data init.
static void accelGoodDataInit(struct AccelGoodData *agd, uint32_t fx,
uint32_t fxb, uint32_t fy, uint32_t fyb,
uint32_t fz, uint32_t fzb, uint32_t fle) {
memset(agd, 0, sizeof(struct AccelGoodData));
agd->nfx = fx;
agd->nfxb = fxb;
agd->nfy = fy;
agd->nfyb = fyb;
agd->nfz = fz;
agd->nfzb = fzb;
agd->nfle = fle;
agd->var_t = 0;
agd->mean_t = 0;
}
// Accel cal algo init (ready for temp buckets).
static void accelCalAlgoInit(struct AccelCalAlgo *acc, uint32_t fx,
uint32_t fxb, uint32_t fy, uint32_t fyb,
uint32_t fz, uint32_t fzb, uint32_t fle) {
accelGoodDataInit(&acc->agd, fx, fxb, fy, fyb, fz, fzb, fle);
initKasa(&acc->akf);
}
// Accel cal init.
void accelCalInit(struct AccelCal *acc, uint32_t t0, uint32_t n_s, float th,
uint32_t fx, uint32_t fxb, uint32_t fy, uint32_t fyb,
uint32_t fz, uint32_t fzb, uint32_t fle) {
// Init core accel data.
accelCalAlgoInit(&acc->ac1[0], fx, fxb, fy, fyb, fz, fzb, fle);
accelCalAlgoInit(&acc->ac1[1], fx, fxb, fy, fyb, fz, fzb, fle);
// Stillness Reset.
accelStillInit(&acc->asd, t0, n_s, th);
// Debug data init.
#ifdef ACCEL_CAL_DBG_ENABLED
memset(&acc->adf, 0, sizeof(struct AccelStatsMem));
#endif
acc->x_bias = acc->y_bias = acc->z_bias = 0;
acc->x_bias_new = acc->y_bias_new = acc->z_bias_new = 0;
#ifdef IMU_TEMP_DBG_ENABLED
acc->temp_time_nanos = 0;
#endif
}
// Stillness time check.
static int stillnessBatchComplete(struct AccelStillDet *asd,
uint64_t sample_time_nanos) {
int complete = 0;
// Checking if enough data is accumulated to calc Mean and Var.
if ((sample_time_nanos - asd->start_time > asd->min_batch_window) &&
(asd->nsamples > asd->min_batch_size)) {
if (sample_time_nanos - asd->start_time < asd->max_batch_window) {
complete = 1;
} else {
// Checking for too long batch window, if yes reset and start over.
asdReset(asd);
return complete;
}
} else if (sample_time_nanos - asd->start_time > asd->min_batch_window &&
(asd->nsamples < asd->min_batch_size)) {
// Not enough samples collected in max_batch_window during sample window.
asdReset(asd);
}
return complete;
}
// Releasing Memory.
void accelCalDestroy(struct AccelCal *acc) { (void)acc; }
// Stillness Detection.
static int accelStillnessDetection(struct AccelStillDet *asd,
uint64_t sample_time_nanos, float x, float y,
float z) {
float inv = 0.0f;
int complete = 0.0f;
float g_norm = 0.0f;
// Accumulate for mean and VAR.
asd->acc_x += x;
asd->acc_xx += x * x;
asd->acc_y += y;
asd->acc_yy += y * y;
asd->acc_z += z;
asd->acc_zz += z * z;
// Setting a new start time and wait until T0 is reached.
if (++asd->nsamples == 1) {
asd->start_time = sample_time_nanos;
}
if (stillnessBatchComplete(asd, sample_time_nanos)) {
// Getting 1/#samples and checking asd->nsamples != 0.
if (0 < asd->nsamples) {
inv = 1.0f / asd->nsamples;
} else {
// Something went wrong resetting and start over.
asdReset(asd);
return complete;
}
// Calculating the VAR = sum(x^2)/n - sum(x)^2/n^2.
asd->var_x = (asd->acc_xx - (asd->acc_x * asd->acc_x) * inv) * inv;
asd->var_y = (asd->acc_yy - (asd->acc_y * asd->acc_y) * inv) * inv;
asd->var_z = (asd->acc_zz - (asd->acc_z * asd->acc_z) * inv) * inv;
// Checking if sensor is still.
if (asd->var_x < asd->var_th && asd->var_y < asd->var_th &&
asd->var_z < asd->var_th) {
// Calcluating the MEAN = sum(x) / n.
asd->mean_x = asd->acc_x * inv;
asd->mean_y = asd->acc_y * inv;
asd->mean_z = asd->acc_z * inv;
// Calculating g_norm^2.
g_norm = asd->mean_x * asd->mean_x + asd->mean_y * asd->mean_y +
asd->mean_z * asd->mean_z;
// Magnitude check, still passsing when we have worse case offset.
if (g_norm < G_NORM_MAX && g_norm > G_NORM_MIN) {
complete = 1;
asd->n_still += 1;
}
}
asdReset(asd);
}
return complete;
}
// Accumulate data for KASA fit.
static void accelCalUpdate(struct KasaFit *akf, struct AccelStillDet *asd) {
// Run accumulators.
float w = asd->mean_x * asd->mean_x + asd->mean_y * asd->mean_y +
asd->mean_z * asd->mean_z;
akf->acc_x += asd->mean_x;
akf->acc_y += asd->mean_y;
akf->acc_z += asd->mean_z;
akf->acc_w += w;
akf->acc_xx += asd->mean_x * asd->mean_x;
akf->acc_xy += asd->mean_x * asd->mean_y;
akf->acc_xz += asd->mean_x * asd->mean_z;
akf->acc_xw += asd->mean_x * w;
akf->acc_yy += asd->mean_y * asd->mean_y;
akf->acc_yz += asd->mean_y * asd->mean_z;
akf->acc_yw += asd->mean_y * w;
akf->acc_zz += asd->mean_z * asd->mean_z;
akf->acc_zw += asd->mean_z * w;
akf->nsamples += 1;
}
// Good data detection, sorting and accumulate the data for Kasa.
static int accelGoodData(struct AccelStillDet *asd, struct AccelCalAlgo *ac1,
float temp) {
int complete = 0;
float inv = 0.0f;
// Sorting the data in the different buckets and accum
// x bucket nx.
if (PHI < asd->mean_x && ac1->agd.nx < ac1->agd.nfx) {
ac1->agd.nx += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// Negative x bucket nxb.
if (PHIb > asd->mean_x && ac1->agd.nxb < ac1->agd.nfxb) {
ac1->agd.nxb += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// Y bucket ny.
if (PHI < asd->mean_y && ac1->agd.ny < ac1->agd.nfy) {
ac1->agd.ny += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// Negative y bucket nyb.
if (PHIb > asd->mean_y && ac1->agd.nyb < ac1->agd.nfyb) {
ac1->agd.nyb += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// Z bucket nz.
if (PHIZ < asd->mean_z && ac1->agd.nz < ac1->agd.nfz) {
ac1->agd.nz += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// Negative z bucket nzb.
if (PHIZb > asd->mean_z && ac1->agd.nzb < ac1->agd.nfzb) {
ac1->agd.nzb += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// The leftover bucket nle.
if (PHI > asd->mean_x && PHIb < asd->mean_x && PHI > asd->mean_y &&
PHIb < asd->mean_y && PHIZ > asd->mean_z && PHIZb < asd->mean_z &&
ac1->agd.nle < ac1->agd.nfle) {
ac1->agd.nle += 1;
ac1->agd.acc_t += temp;
ac1->agd.acc_tt += temp * temp;
accelCalUpdate(&ac1->akf, asd);
}
// Checking if all buckets are full.
if (ac1->agd.nx == ac1->agd.nfx && ac1->agd.nxb == ac1->agd.nfxb &&
ac1->agd.ny == ac1->agd.nfy && ac1->agd.nyb == ac1->agd.nfyb &&
ac1->agd.nz == ac1->agd.nfz && ac1->agd.nzb == ac1->agd.nfzb) {
// Check if akf->nsamples is zero.
if (ac1->akf.nsamples == 0) {
agdReset(&ac1->agd);
magKasaReset(&ac1->akf);
complete = 0;
return complete;
} else {
// Normalize the data to the sample numbers.
inv = 1.0f / ac1->akf.nsamples;
}
ac1->akf.acc_x *= inv;
ac1->akf.acc_y *= inv;
ac1->akf.acc_z *= inv;
ac1->akf.acc_w *= inv;
ac1->akf.acc_xx *= inv;
ac1->akf.acc_xy *= inv;
ac1->akf.acc_xz *= inv;
ac1->akf.acc_xw *= inv;
ac1->akf.acc_yy *= inv;
ac1->akf.acc_yz *= inv;
ac1->akf.acc_yw *= inv;
ac1->akf.acc_zz *= inv;
ac1->akf.acc_zw *= inv;
// Calculate the temp VAR and MEA.N
ac1->agd.var_t =
(ac1->agd.acc_tt - (ac1->agd.acc_t * ac1->agd.acc_t) * inv) * inv;
ac1->agd.mean_t = ac1->agd.acc_t * inv;
complete = 1;
}
// If any of the buckets has a bigger number as specified, reset and start
// over.
if (ac1->agd.nx > ac1->agd.nfx || ac1->agd.nxb > ac1->agd.nfxb ||
ac1->agd.ny > ac1->agd.nfy || ac1->agd.nyb > ac1->agd.nfyb ||
ac1->agd.nz > ac1->agd.nfz || ac1->agd.nzb > ac1->agd.nfzb) {
agdReset(&ac1->agd);
magKasaReset(&ac1->akf);
complete = 0;
return complete;
}
return complete;
}
// Eigen value magnitude and ratio test.
static int accEigenTest(struct KasaFit *akf, struct AccelGoodData *agd) {
// covariance matrix.
struct Mat33 S;
S.elem[0][0] = akf->acc_xx - akf->acc_x * akf->acc_x;
S.elem[0][1] = S.elem[1][0] = akf->acc_xy - akf->acc_x * akf->acc_y;
S.elem[0][2] = S.elem[2][0] = akf->acc_xz - akf->acc_x * akf->acc_z;
S.elem[1][1] = akf->acc_yy - akf->acc_y * akf->acc_y;
S.elem[1][2] = S.elem[2][1] = akf->acc_yz - akf->acc_y * akf->acc_z;
S.elem[2][2] = akf->acc_zz - akf->acc_z * akf->acc_z;
struct Vec3 eigenvals;
struct Mat33 eigenvecs;
mat33GetEigenbasis(&S, &eigenvals, &eigenvecs);
float evmax = (eigenvals.x > eigenvals.y) ? eigenvals.x : eigenvals.y;
evmax = (eigenvals.z > evmax) ? eigenvals.z : evmax;
float evmin = (eigenvals.x < eigenvals.y) ? eigenvals.x : eigenvals.y;
evmin = (eigenvals.z < evmin) ? eigenvals.z : evmin;
float evmag = sqrtf(eigenvals.x + eigenvals.y + eigenvals.z);
// Passing when evmin/evmax> EIGEN_RATIO.
int eigen_pass = (evmin > evmax * EIGEN_RATIO) && (evmag > EIGEN_MAG);
agd->e_x = eigenvals.x;
agd->e_y = eigenvals.y;
agd->e_z = eigenvals.z;
return eigen_pass;
}
// Updating the new bias and save to pointers. Return true if the bias changed.
bool accelCalUpdateBias(struct AccelCal *acc, float *x, float *y, float *z) {
*x = acc->x_bias_new;
*y = acc->y_bias_new;
*z = acc->z_bias_new;
// Check to see if the bias changed since last call to accelCalUpdateBias.
// Compiler does not allow us to use "==" and "!=" when comparing floats, so
// just use "<" and ">".
if ((acc->x_bias < acc->x_bias_new) || (acc->x_bias > acc->x_bias_new) ||
(acc->y_bias < acc->y_bias_new) || (acc->y_bias > acc->y_bias_new) ||
(acc->z_bias < acc->z_bias_new) || (acc->z_bias > acc->z_bias_new)) {
acc->x_bias = acc->x_bias_new;
acc->y_bias = acc->y_bias_new;
acc->z_bias = acc->z_bias_new;
return true;
}
return false;
}
// Set the (initial) bias.
void accelCalBiasSet(struct AccelCal *acc, float x, float y, float z) {
acc->x_bias = acc->x_bias_new = x;
acc->y_bias = acc->y_bias_new = y;
acc->z_bias = acc->z_bias_new = z;
}
// Removing the bias.
void accelCalBiasRemove(struct AccelCal *acc, float *x, float *y, float *z) {
*x = *x - acc->x_bias;
*y = *y - acc->y_bias;
*z = *z - acc->z_bias;
}
// Accel Cal Runner.
void accelCalRun(struct AccelCal *acc, uint64_t sample_time_nanos, float x,
float y, float z, float temp) {
// Scaling to 1g, better for the algorithm.
x *= KSCALE;
y *= KSCALE;
z *= KSCALE;
// DBG: IMU temp messages every 5s.
#ifdef IMU_TEMP_DBG_ENABLED
if ((sample_time_nanos - acc->temp_time_nanos) > IMU_TEMP_DELTA_TIME_NANOS) {
CAL_DEBUG_LOG("IMU Temp Data: ",
", %s%d.%02d, %llu, %s%d.%05d, %s%d.%05d, %s%d.%05d \n",
CAL_ENCODE_FLOAT(temp, 2),
(unsigned long long int)sample_time_nanos,
CAL_ENCODE_FLOAT(acc->x_bias_new,5),
CAL_ENCODE_FLOAT(acc->y_bias_new,5),
CAL_ENCODE_FLOAT(acc->z_bias_new,5));
acc->temp_time_nanos = sample_time_nanos;
}
#endif
int temp_gate = 0;
// Temp GATE.
if (temp < MAX_TEMP && temp > MIN_TEMP) {
// Checking if accel is still.
if (accelStillnessDetection(&acc->asd, sample_time_nanos, x, y, z)) {
#ifdef ACCEL_CAL_DBG_ENABLED
// Creating temp hist data.
accelTempHisto(&acc->adf, temp);
#endif
// Two temp buckets.
if (temp < TEMP_CUT) {
temp_gate = 0;
} else {
temp_gate = 1;
}
#ifdef ACCEL_CAL_DBG_ENABLED
accelStatsCounter(&acc->asd, &acc->adf);
#endif
// If still -> pass the averaged accel data (mean) to the
// sorting, counting and accum function.
if (accelGoodData(&acc->asd, &acc->ac1[temp_gate], temp)) {
// Running the Kasa fit.
struct Vec3 bias;
float radius;
// Grabbing the fit from the MAG cal.
magKasaFit(&acc->ac1[temp_gate].akf, &bias, &radius);
// If offset is too large don't take.
if (fabsf(bias.x) < MAX_OFF && fabsf(bias.y) < MAX_OFF &&
fabsf(bias.z) < MAX_OFF) {
// Eigen Ratio Test.
if (accEigenTest(&acc->ac1[temp_gate].akf,
&acc->ac1[temp_gate].agd)) {
// Storing the new offsets.
acc->x_bias_new = bias.x * KSCALE2;
acc->y_bias_new = bias.y * KSCALE2;
acc->z_bias_new = bias.z * KSCALE2;
}
#ifdef ACCEL_CAL_DBG_ENABLED
//// Debug ///////
acc->adf.noff += 1;
// Resetting the counter for the offset history.
if (acc->adf.n_o > HIST_COUNT) {
acc->adf.n_o = 0;
}
// Storing the Debug data.
acc->adf.x_o[acc->adf.n_o] = bias.x;
acc->adf.y_o[acc->adf.n_o] = bias.y;
acc->adf.z_o[acc->adf.n_o] = bias.z;
acc->adf.e_x[acc->adf.n_o] = acc->ac1[temp_gate].agd.e_x;
acc->adf.e_y[acc->adf.n_o] = acc->ac1[temp_gate].agd.e_y;
acc->adf.e_z[acc->adf.n_o] = acc->ac1[temp_gate].agd.e_z;
acc->adf.var_t[acc->adf.n_o] = acc->ac1[temp_gate].agd.var_t;
acc->adf.mean_t[acc->adf.n_o] = acc->ac1[temp_gate].agd.mean_t;
acc->adf.cal_time[acc->adf.n_o] = sample_time_nanos;
acc->adf.rad[acc->adf.n_o] = radius;
acc->adf.n_o += 1;
#endif
} else {
#ifdef ACCEL_CAL_DBG_ENABLED
acc->adf.noff_max += 1;
#endif
}
///////////////
// Resetting the structs for a new accel cal run.
agdReset(&acc->ac1[temp_gate].agd);
magKasaReset(&acc->ac1[temp_gate].akf);
}
}
}
}
#ifdef ACCEL_CAL_DBG_ENABLED
// Debug Print Output
void accelCalDebPrint(struct AccelCal *acc, float temp) {
static int32_t kk = 0;
if (++kk == 1000) {
// X offset history last 10 values.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,11,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(x_off history)\n",
CAL_ENCODE_FLOAT(acc->adf.x_o[0], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[1], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[2], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[3], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[4], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[5], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[6], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[7], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[8], 6),
CAL_ENCODE_FLOAT(acc->adf.x_o[9], 6));
// Y offset history last 10 values.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,12,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(y_off history)\n",
CAL_ENCODE_FLOAT(acc->adf.y_o[0], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[1], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[2], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[3], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[4], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[5], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[6], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[7], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[8], 6),
CAL_ENCODE_FLOAT(acc->adf.y_o[9], 6));
// Z offset history last 10 values.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,13,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(z_off history)\n",
CAL_ENCODE_FLOAT(acc->adf.z_o[0], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[1], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[2], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[3], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[4], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[5], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[6], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[7], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[8], 6),
CAL_ENCODE_FLOAT(acc->adf.z_o[9], 6));
// Temp history variation VAR of offset.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,14,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(VAR temp history)\n",
CAL_ENCODE_FLOAT(acc->adf.var_t[0], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[1], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[2], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[3], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[4], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[5], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[6], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[7], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[8], 6),
CAL_ENCODE_FLOAT(acc->adf.var_t[9], 6));
// Temp mean history of offset.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,15,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(MEAN Temp history)\n",
CAL_ENCODE_FLOAT(acc->adf.mean_t[0], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[1], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[2], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[3], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[4], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[5], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[6], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[7], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[8], 6),
CAL_ENCODE_FLOAT(acc->adf.mean_t[9], 6));
// KASA radius history.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,16,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(radius)\n",
CAL_ENCODE_FLOAT(acc->adf.rad[0], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[1], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[2], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[3], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[4], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[5], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[6], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[7], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[8], 6),
CAL_ENCODE_FLOAT(acc->adf.rad[9], 6));
kk = 0;
}
if (kk == 750) {
// Eigen Vector X.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, "
"7,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(eigen x)\n",
CAL_ENCODE_FLOAT(acc->adf.e_x[0], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[1], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[2], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[3], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[4], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[5], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[6], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[7], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[8], 6),
CAL_ENCODE_FLOAT(acc->adf.e_x[9], 6));
// Y.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, "
"8,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(eigen y)\n",
CAL_ENCODE_FLOAT(acc->adf.e_y[0], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[1], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[2], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[3], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[4], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[5], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[6], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[7], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[8], 6),
CAL_ENCODE_FLOAT(acc->adf.e_y[9], 6));
// Z.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, "
"9,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%"
"06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(eigen z)\n",
CAL_ENCODE_FLOAT(acc->adf.e_z[0], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[1], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[2], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[3], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[4], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[5], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[6], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[7], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[8], 6),
CAL_ENCODE_FLOAT(acc->adf.e_z[9], 6));
// Accel Time in ns.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL,10,%llu,%llu,%llu,%llu,%llu,%llu,%llu,%llu,%llu,%llu,}("
"timestamp ns)\n",
acc->adf.cal_time[0], acc->adf.cal_time[1], acc->adf.cal_time[2],
acc->adf.cal_time[3], acc->adf.cal_time[4], acc->adf.cal_time[5],
acc->adf.cal_time[6], acc->adf.cal_time[7], acc->adf.cal_time[8],
acc->adf.cal_time[9]);
}
if (kk == 500) {
// Total bucket count.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, 0,%2d, %2d, %2d, %2d, %2d, %2d, %2d,}(Total Bucket #)\n",
(unsigned)acc->adf.ntx, (unsigned)acc->adf.ntxb, (unsigned)acc->adf.nty,
(unsigned)acc->adf.ntyb, (unsigned)acc->adf.ntz,
(unsigned)acc->adf.ntzb, (unsigned)acc->adf.ntle);
// Live bucket count lower.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, 1,%2d, %2d, %2d, %2d, %2d, %2d, %2d, %3d,}(Bucket # "
"lower)\n",
(unsigned)acc->ac1[0].agd.nx, (unsigned)acc->ac1[0].agd.nxb,
(unsigned)acc->ac1[0].agd.ny, (unsigned)acc->ac1[0].agd.nyb,
(unsigned)acc->ac1[0].agd.nz, (unsigned)acc->ac1[0].agd.nzb,
(unsigned)acc->ac1[0].agd.nle, (unsigned)acc->ac1[0].akf.nsamples);
// Live bucket count hogher.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, 2,%2d, %2d, %2d, %2d, %2d, %2d, %2d, %3d,}(Bucket # "
"higher)\n",
(unsigned)acc->ac1[1].agd.nx, (unsigned)acc->ac1[1].agd.nxb,
(unsigned)acc->ac1[1].agd.ny, (unsigned)acc->ac1[1].agd.nyb,
(unsigned)acc->ac1[1].agd.nz, (unsigned)acc->ac1[1].agd.nzb,
(unsigned)acc->ac1[1].agd.nle, (unsigned)acc->ac1[1].akf.nsamples);
// Offset used.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, 3,%s%d.%06d, %s%d.%06d, %s%d.%06d, %2d,}(updated offset "
"x,y,z, total # of offsets)\n",
CAL_ENCODE_FLOAT(acc->x_bias, 6), CAL_ENCODE_FLOAT(acc->y_bias, 6),
CAL_ENCODE_FLOAT(acc->z_bias, 6), (unsigned)acc->adf.noff);
// Offset New.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, 4,%s%d.%06d, %s%d.%06d, %s%d.%06d, %s%d.%06d,}(New offset "
"x,y,z, live temp)\n",
CAL_ENCODE_FLOAT(acc->x_bias_new, 6),
CAL_ENCODE_FLOAT(acc->y_bias_new, 6),
CAL_ENCODE_FLOAT(acc->z_bias_new, 6), CAL_ENCODE_FLOAT(temp, 6));
// Temp Histogram.
CAL_DEBUG_LOG(
"[BMI160]",
"{MK_ACCEL, 5,%7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, "
"%7d, %7d,}(temp histo)\n",
(unsigned)acc->adf.t_hist[0], (unsigned)acc->adf.t_hist[1],
(unsigned)acc->adf.t_hist[2], (unsigned)acc->adf.t_hist[3],
(unsigned)acc->adf.t_hist[4], (unsigned)acc->adf.t_hist[5],
(unsigned)acc->adf.t_hist[6], (unsigned)acc->adf.t_hist[7],
(unsigned)acc->adf.t_hist[8], (unsigned)acc->adf.t_hist[9],
(unsigned)acc->adf.t_hist[10], (unsigned)acc->adf.t_hist[11],
(unsigned)acc->adf.t_hist[12]);
CAL_DEBUG_LOG(
"[BMI160]",
"M{K_ACCEL, 6,%7d, %7d, %7d,%7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, "
"%7d,}(temp histo)\n",
(unsigned)acc->adf.t_hist[13], (unsigned)acc->adf.t_hist[14],
(unsigned)acc->adf.t_hist[15], (unsigned)acc->adf.t_hist[16],
(unsigned)acc->adf.t_hist[17], (unsigned)acc->adf.t_hist[18],
(unsigned)acc->adf.t_hist[19], (unsigned)acc->adf.t_hist[20],
(unsigned)acc->adf.t_hist[21], (unsigned)acc->adf.t_hist[22],
(unsigned)acc->adf.t_hist[23], (unsigned)acc->adf.t_hist[24]);
}
}
#endif