/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* this implements a sensors hardware library for the Android emulator.
* the following code should be built as a shared library that will be
* placed into /system/lib/hw/sensors.goldfish.so
*
* it will be loaded by the code in hardware/libhardware/hardware.c
* which is itself called from com_android_server_SensorService.cpp
*/
/* we connect with the emulator through the "sensors" qemud service
*/
#define SENSORS_SERVICE_NAME "sensors"
#define LOG_TAG "QemuSensors"
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <cutils/log.h>
#include <cutils/sockets.h>
#include <hardware/sensors.h>
#if 0
#define D(...) ALOGD(__VA_ARGS__)
#else
#define D(...) ((void)0)
#endif
#define E(...) ALOGE(__VA_ARGS__)
#include "qemud.h"
/** SENSOR IDS AND NAMES
**/
#define MAX_NUM_SENSORS 8
#define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
#define ID_BASE SENSORS_HANDLE_BASE
#define ID_ACCELERATION (ID_BASE+0)
#define ID_MAGNETIC_FIELD (ID_BASE+1)
#define ID_ORIENTATION (ID_BASE+2)
#define ID_TEMPERATURE (ID_BASE+3)
#define ID_PROXIMITY (ID_BASE+4)
#define ID_LIGHT (ID_BASE+5)
#define ID_PRESSURE (ID_BASE+6)
#define ID_HUMIDITY (ID_BASE+7)
#define SENSORS_ACCELERATION (1 << ID_ACCELERATION)
#define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD)
#define SENSORS_ORIENTATION (1 << ID_ORIENTATION)
#define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE)
#define SENSORS_PROXIMITY (1 << ID_PROXIMITY)
#define SENSORS_LIGHT (1 << ID_LIGHT)
#define SENSORS_PRESSURE (1 << ID_PRESSURE)
#define SENSORS_HUMIDITY (1 << ID_HUMIDITY)
#define ID_CHECK(x) ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)
#define SENSORS_LIST \
SENSOR_(ACCELERATION,"acceleration") \
SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
SENSOR_(ORIENTATION,"orientation") \
SENSOR_(TEMPERATURE,"temperature") \
SENSOR_(PROXIMITY,"proximity") \
SENSOR_(LIGHT, "light") \
SENSOR_(PRESSURE, "pressure") \
SENSOR_(HUMIDITY, "humidity")
static const struct {
const char* name;
int id; } _sensorIds[MAX_NUM_SENSORS] =
{
#define SENSOR_(x,y) { y, ID_##x },
SENSORS_LIST
#undef SENSOR_
};
static const char*
_sensorIdToName( int id )
{
int nn;
for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
if (id == _sensorIds[nn].id)
return _sensorIds[nn].name;
return "<UNKNOWN>";
}
static int
_sensorIdFromName( const char* name )
{
int nn;
if (name == NULL)
return -1;
for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
if (!strcmp(name, _sensorIds[nn].name))
return _sensorIds[nn].id;
return -1;
}
/* return the current time in nanoseconds */
static int64_t now_ns(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
}
/** SENSORS POLL DEVICE
**
** This one is used to read sensor data from the hardware.
** We implement this by simply reading the data from the
** emulator through the QEMUD channel.
**/
typedef struct SensorDevice {
struct sensors_poll_device_1 device;
sensors_event_t sensors[MAX_NUM_SENSORS];
uint32_t pendingSensors;
int64_t timeStart;
int64_t timeOffset;
uint32_t active_sensors;
int fd;
pthread_mutex_t lock;
} SensorDevice;
/* Grab the file descriptor to the emulator's sensors service pipe.
* This function returns a file descriptor on success, or -errno on
* failure, and assumes the SensorDevice instance's lock is held.
*
* This is needed because set_delay(), poll() and activate() can be called
* from different threads, and poll() is blocking.
*
* Note that the emulator's sensors service creates a new client for each
* connection through qemud_channel_open(), where each client has its own
* delay and set of activated sensors. This precludes calling
* qemud_channel_open() on each request, because a typical emulated system
* will do something like:
*
* 1) On a first thread, de-activate() all sensors first, then call poll(),
* which results in the thread blocking.
*
* 2) On a second thread, slightly later, call set_delay() then activate()
* to enable the acceleration sensor.
*
* The system expects this to unblock the first thread which will receive
* new sensor events after the activate() call in 2).
*
* This cannot work if both threads don't use the same connection.
*
* TODO(digit): This protocol is brittle, implement another control channel
* for set_delay()/activate()/batch() when supporting HAL 1.3
*/
static int sensor_device_get_fd_locked(SensorDevice* dev) {
/* Create connection to service on first call */
if (dev->fd < 0) {
dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
if (dev->fd < 0) {
int ret = -errno;
E("%s: Could not open connection to service: %s", __FUNCTION__,
strerror(-ret));
return ret;
}
}
return dev->fd;
}
/* Send a command to the sensors virtual device. |dev| is a device instance and
* |cmd| is a zero-terminated command string. Return 0 on success, or -errno
* on failure. */
static int sensor_device_send_command_locked(SensorDevice* dev,
const char* cmd) {
int fd = sensor_device_get_fd_locked(dev);
if (fd < 0) {
return fd;
}
int ret = 0;
if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
ret = -errno;
E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
}
return ret;
}
/* Pick up one pending sensor event. On success, this returns the sensor
* id, and sets |*event| accordingly. On failure, i.e. if there are no
* pending events, return -EINVAL.
*
* Note: The device's lock must be acquired.
*/
static int sensor_device_pick_pending_event_locked(SensorDevice* d,
sensors_event_t* event)
{
uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
if (mask) {
uint32_t i = 31 - __builtin_clz(mask);
d->pendingSensors &= ~(1U << i);
// Copy the structure
*event = d->sensors[i];
if (d->sensors[i].type == SENSOR_TYPE_META_DATA) {
// sensor_device_poll_event_locked() will leave
// the meta-data in place until we have it.
// Set |type| to something other than META_DATA
// so sensor_device_poll_event_locked() can
// continue.
d->sensors[i].type = SENSOR_TYPE_META_DATA + 1;
} else {
event->sensor = i;
event->version = sizeof(*event);
}
D("%s: %d [%f, %f, %f]", __FUNCTION__,
i,
event->data[0],
event->data[1],
event->data[2]);
return i;
}
E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
// we may end-up in a busy loop, slow things down, just in case.
usleep(1000);
return -EINVAL;
}
/* Block until new sensor events are reported by the emulator, or if a
* 'wake' command is received through the service. On succes, return 0
* and updates the |pendingEvents| and |sensors| fields of |dev|.
* On failure, return -errno.
*
* Note: The device lock must be acquired when calling this function, and
* will still be held on return. However, the function releases the
* lock temporarily during the blocking wait.
*/
static int sensor_device_poll_event_locked(SensorDevice* dev)
{
D("%s: dev=%p", __FUNCTION__, dev);
int fd = sensor_device_get_fd_locked(dev);
if (fd < 0) {
E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
return fd;
}
// Accumulate pending events into |events| and |new_sensors| mask
// until a 'sync' or 'wake' command is received. This also simplifies the
// code a bit.
uint32_t new_sensors = 0U;
sensors_event_t* events = dev->sensors;
int64_t event_time = -1;
int ret = 0;
for (;;) {
/* Release the lock since we're going to block on recv() */
pthread_mutex_unlock(&dev->lock);
/* read the next event */
char buff[256];
int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
/* re-acquire the lock to modify the device state. */
pthread_mutex_lock(&dev->lock);
if (len < 0) {
ret = -errno;
E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
__FUNCTION__, fd, len, errno, strerror(errno));
break;
}
buff[len] = 0;
D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);
/* "wake" is sent from the emulator to exit this loop. */
/* TODO(digit): Is it still needed? */
if (!strcmp((const char*)buff, "wake")) {
ret = 0x7FFFFFFF;
break;
}
float params[3];
// If the existing entry for this sensor is META_DATA,
// do not overwrite it. We can resume saving sensor
// values after that meta data has been received.
/* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
== 3) {
new_sensors |= SENSORS_ACCELERATION;
if (events[ID_ACCELERATION].type == SENSOR_TYPE_META_DATA) continue;
events[ID_ACCELERATION].acceleration.x = params[0];
events[ID_ACCELERATION].acceleration.y = params[1];
events[ID_ACCELERATION].acceleration.z = params[2];
events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
continue;
}
/* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
* changes */
if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
== 3) {
new_sensors |= SENSORS_ORIENTATION;
if (events[ID_ORIENTATION].type == SENSOR_TYPE_META_DATA) continue;
events[ID_ORIENTATION].orientation.azimuth = params[0];
events[ID_ORIENTATION].orientation.pitch = params[1];
events[ID_ORIENTATION].orientation.roll = params[2];
events[ID_ORIENTATION].orientation.status =
SENSOR_STATUS_ACCURACY_HIGH;
events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
continue;
}
/* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
* field */
if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
== 3) {
new_sensors |= SENSORS_MAGNETIC_FIELD;
if (events[ID_MAGNETIC_FIELD].type == SENSOR_TYPE_META_DATA) continue;
events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
events[ID_MAGNETIC_FIELD].magnetic.status =
SENSOR_STATUS_ACCURACY_HIGH;
events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
continue;
}
/* "temperature:<celsius>" */
if (sscanf(buff, "temperature:%g", params+0) == 1) {
new_sensors |= SENSORS_TEMPERATURE;
if (events[ID_TEMPERATURE].type == SENSOR_TYPE_META_DATA) continue;
events[ID_TEMPERATURE].temperature = params[0];
events[ID_TEMPERATURE].type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
continue;
}
/* "proximity:<value>" */
if (sscanf(buff, "proximity:%g", params+0) == 1) {
new_sensors |= SENSORS_PROXIMITY;
if (events[ID_PROXIMITY].type == SENSOR_TYPE_META_DATA) continue;
events[ID_PROXIMITY].distance = params[0];
events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
continue;
}
/* "light:<lux>" */
if (sscanf(buff, "light:%g", params+0) == 1) {
new_sensors |= SENSORS_LIGHT;
if (events[ID_LIGHT].type == SENSOR_TYPE_META_DATA) continue;
events[ID_LIGHT].light = params[0];
events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
continue;
}
/* "pressure:<hpa>" */
if (sscanf(buff, "pressure:%g", params+0) == 1) {
new_sensors |= SENSORS_PRESSURE;
if (events[ID_PRESSURE].type == SENSOR_TYPE_META_DATA) continue;
events[ID_PRESSURE].pressure = params[0];
events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
continue;
}
/* "humidity:<percent>" */
if (sscanf(buff, "humidity:%g", params+0) == 1) {
new_sensors |= SENSORS_HUMIDITY;
if (events[ID_HUMIDITY].type == SENSOR_TYPE_META_DATA) continue;
events[ID_HUMIDITY].relative_humidity = params[0];
events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
continue;
}
/* "sync:<time>" is sent after a series of sensor events.
* where 'time' is expressed in micro-seconds and corresponds
* to the VM time when the real poll occured.
*/
if (sscanf(buff, "sync:%lld", &event_time) == 1) {
if (new_sensors) {
goto out;
}
D("huh ? sync without any sensor data ?");
continue;
}
D("huh ? unsupported command");
}
out:
if (new_sensors) {
/* update the time of each new sensor event. */
dev->pendingSensors |= new_sensors;
int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;
/* Use the time at the first "sync:" as the base for later
* time values.
* CTS tests require sensors to return an event timestamp (sync) that is
* strictly before the time of the event arrival. We don't actually have
* a time syncronization protocol here, and the only data point is the
* "sync:" timestamp - which is an emulator's timestamp of a clock that
* is synced with the guest clock, and it only the timestamp after all
* events were sent.
* To make it work, let's compare the calculated timestamp with current
* time and take the lower value - we don't believe in events from the
* future anyway.
*/
const int64_t now = now_ns();
if (dev->timeStart == 0) {
dev->timeStart = now;
dev->timeOffset = dev->timeStart - t;
}
t += dev->timeOffset;
if (t > now) {
t = now;
}
while (new_sensors) {
uint32_t i = 31 - __builtin_clz(new_sensors);
new_sensors &= ~(1U << i);
dev->sensors[i].timestamp = t;
}
}
return ret;
}
/** SENSORS POLL DEVICE FUNCTIONS **/
static int sensor_device_close(struct hw_device_t* dev0)
{
SensorDevice* dev = (void*)dev0;
// Assume that there are no other threads blocked on poll()
if (dev->fd >= 0) {
close(dev->fd);
dev->fd = -1;
}
pthread_mutex_destroy(&dev->lock);
free(dev);
return 0;
}
/* Return an array of sensor data. This function blocks until there is sensor
* related events to report. On success, it will write the events into the
* |data| array, which contains |count| items. The function returns the number
* of events written into the array, which shall never be greater than |count|.
* On error, return -errno code.
*
* Note that according to the sensor HAL [1], it shall never return 0!
*
* [1] http://source.android.com/devices/sensors/hal-interface.html
*/
static int sensor_device_poll(struct sensors_poll_device_t *dev0,
sensors_event_t* data, int count)
{
SensorDevice* dev = (void*)dev0;
D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
if (count <= 0) {
return -EINVAL;
}
int result = 0;
pthread_mutex_lock(&dev->lock);
if (!dev->pendingSensors) {
/* Block until there are pending events. Note that this releases
* the lock during the blocking call, then re-acquires it before
* returning. */
int ret = sensor_device_poll_event_locked(dev);
if (ret < 0) {
result = ret;
goto out;
}
if (!dev->pendingSensors) {
/* 'wake' event received before any sensor data. */
result = -EIO;
goto out;
}
}
/* Now read as many pending events as needed. */
int i;
for (i = 0; i < count; i++) {
if (!dev->pendingSensors) {
break;
}
int ret = sensor_device_pick_pending_event_locked(dev, data);
if (ret < 0) {
if (!result) {
result = ret;
}
break;
}
data++;
result++;
}
out:
pthread_mutex_unlock(&dev->lock);
D("%s: result=%d", __FUNCTION__, result);
return result;
}
static int sensor_device_activate(struct sensors_poll_device_t *dev0,
int handle,
int enabled)
{
SensorDevice* dev = (void*)dev0;
D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
_sensorIdToName(handle), handle, enabled);
/* Sanity check */
if (!ID_CHECK(handle)) {
E("%s: bad handle ID", __FUNCTION__);
return -EINVAL;
}
/* Exit early if sensor is already enabled/disabled. */
uint32_t mask = (1U << handle);
uint32_t sensors = enabled ? mask : 0;
pthread_mutex_lock(&dev->lock);
uint32_t active = dev->active_sensors;
uint32_t new_sensors = (active & ~mask) | (sensors & mask);
uint32_t changed = active ^ new_sensors;
int ret = 0;
if (changed) {
/* Send command to the emulator. */
char command[64];
snprintf(command,
sizeof command,
"set:%s:%d",
_sensorIdToName(handle),
enabled != 0);
ret = sensor_device_send_command_locked(dev, command);
if (ret < 0) {
E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
strerror(-ret));
} else {
dev->active_sensors = new_sensors;
}
}
pthread_mutex_unlock(&dev->lock);
return ret;
}
static int sensor_device_default_flush(
struct sensors_poll_device_1* dev0,
int handle) {
SensorDevice* dev = (void*)dev0;
D("%s: handle=%s (%d)", __FUNCTION__,
_sensorIdToName(handle), handle);
/* Sanity check */
if (!ID_CHECK(handle)) {
E("%s: bad handle ID", __FUNCTION__);
return -EINVAL;
}
pthread_mutex_lock(&dev->lock);
dev->sensors[handle].version = META_DATA_VERSION;
dev->sensors[handle].type = SENSOR_TYPE_META_DATA;
dev->sensors[handle].sensor = 0;
dev->sensors[handle].timestamp = 0;
dev->sensors[handle].meta_data.sensor = handle;
dev->sensors[handle].meta_data.what = META_DATA_FLUSH_COMPLETE;
dev->pendingSensors |= (1U << handle);
pthread_mutex_unlock(&dev->lock);
return 0;
}
static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
int handle __unused,
int64_t ns)
{
SensorDevice* dev = (void*)dev0;
int ms = (int)(ns / 1000000);
D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
char command[64];
snprintf(command, sizeof command, "set-delay:%d", ms);
pthread_mutex_lock(&dev->lock);
int ret = sensor_device_send_command_locked(dev, command);
pthread_mutex_unlock(&dev->lock);
if (ret < 0) {
E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
}
return ret;
}
static int sensor_device_default_batch(
struct sensors_poll_device_1* dev,
int sensor_handle,
int flags,
int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
return sensor_device_set_delay(dev, sensor_handle, sampling_period_ns);
}
/** MODULE REGISTRATION SUPPORT
**
** This is required so that hardware/libhardware/hardware.c
** will dlopen() this library appropriately.
**/
/*
* the following is the list of all supported sensors.
* this table is used to build sSensorList declared below
* according to which hardware sensors are reported as
* available from the emulator (see get_sensors_list below)
*
* note: numerical values for maxRange/resolution/power for
* all sensors but light, pressure and humidity were
* taken from the reference AK8976A implementation
*/
static const struct sensor_t sSensorListInit[] = {
{ .name = "Goldfish 3-axis Accelerometer",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_ACCELERATION,
.type = SENSOR_TYPE_ACCELEROMETER,
.maxRange = 2.8f,
.resolution = 1.0f/4032.0f,
.power = 3.0f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
.reserved = {}
},
{ .name = "Goldfish 3-axis Magnetic field sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_MAGNETIC_FIELD,
.type = SENSOR_TYPE_MAGNETIC_FIELD,
.maxRange = 2000.0f,
.resolution = 1.0f,
.power = 6.7f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
.reserved = {}
},
{ .name = "Goldfish Orientation sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_ORIENTATION,
.type = SENSOR_TYPE_ORIENTATION,
.maxRange = 360.0f,
.resolution = 1.0f,
.power = 9.7f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
.reserved = {}
},
{ .name = "Goldfish Temperature sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_TEMPERATURE,
.type = SENSOR_TYPE_AMBIENT_TEMPERATURE,
.maxRange = 80.0f,
.resolution = 1.0f,
.power = 0.0f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
.reserved = {}
},
{ .name = "Goldfish Proximity sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_PROXIMITY,
.type = SENSOR_TYPE_PROXIMITY,
.maxRange = 1.0f,
.resolution = 1.0f,
.power = 20.0f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
.reserved = {}
},
{ .name = "Goldfish Light sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_LIGHT,
.type = SENSOR_TYPE_LIGHT,
.maxRange = 40000.0f,
.resolution = 1.0f,
.power = 20.0f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_ON_CHANGE_MODE,
.reserved = {}
},
{ .name = "Goldfish Pressure sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_PRESSURE,
.type = SENSOR_TYPE_PRESSURE,
.maxRange = 800.0f,
.resolution = 1.0f,
.power = 20.0f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
.reserved = {}
},
{ .name = "Goldfish Humidity sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_HUMIDITY,
.type = SENSOR_TYPE_RELATIVE_HUMIDITY,
.maxRange = 100.0f,
.resolution = 1.0f,
.power = 20.0f,
.minDelay = 10000,
.maxDelay = 60 * 1000 * 1000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 0,
.stringType = 0,
.requiredPermission = 0,
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
.reserved = {}
}
};
static struct sensor_t sSensorList[MAX_NUM_SENSORS];
static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
struct sensor_t const** list)
{
int fd = qemud_channel_open(SENSORS_SERVICE_NAME);
char buffer[12];
int mask, nn, count;
int ret = 0;
if (fd < 0) {
E("%s: no qemud connection", __FUNCTION__);
goto out;
}
ret = qemud_channel_send(fd, "list-sensors", -1);
if (ret < 0) {
E("%s: could not query sensor list: %s", __FUNCTION__,
strerror(errno));
goto out;
}
ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
if (ret < 0) {
E("%s: could not receive sensor list: %s", __FUNCTION__,
strerror(errno));
goto out;
}
buffer[ret] = 0;
/* the result is a integer used as a mask for available sensors */
mask = atoi(buffer);
count = 0;
for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
if (((1 << nn) & mask) == 0)
continue;
sSensorList[count++] = sSensorListInit[nn];
}
D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
*list = sSensorList;
ret = count;
out:
if (fd >= 0) {
close(fd);
}
return ret;
}
static int
open_sensors(const struct hw_module_t* module,
const char* name,
struct hw_device_t* *device)
{
int status = -EINVAL;
D("%s: name=%s", __FUNCTION__, name);
if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
SensorDevice *dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
dev->device.common.module = (struct hw_module_t*) module;
dev->device.common.close = sensor_device_close;
dev->device.poll = sensor_device_poll;
dev->device.activate = sensor_device_activate;
dev->device.setDelay = sensor_device_set_delay;
// (dev->sensors[i].type == SENSOR_TYPE_META_DATA) is
// sticky. Don't start off with that setting.
for (int idx = 0; idx < MAX_NUM_SENSORS; idx++) {
dev->sensors[idx].type = SENSOR_TYPE_META_DATA + 1;
}
// Version 1.3-specific functions
dev->device.batch = sensor_device_default_batch;
dev->device.flush = sensor_device_default_flush;
dev->fd = -1;
pthread_mutex_init(&dev->lock, NULL);
*device = &dev->device.common;
status = 0;
}
return status;
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 3,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "Goldfish SENSORS Module",
.author = "The Android Open Source Project",
.methods = &sensors_module_methods,
},
.get_sensors_list = sensors__get_sensors_list
};