# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import its.caps
import its.device
import its.image
import its.objects
import its.target
import matplotlib
from matplotlib import pylab
import numpy
IMG_STATS_GRID = 9 # find used to find the center 11.11%
NAME = os.path.basename(__file__).split('.')[0]
THRESHOLD_MAX_OUTLIER_DIFF = 0.1
THRESHOLD_MIN_LEVEL = 0.1
THRESHOLD_MAX_LEVEL = 0.9
THRESHOLD_MAX_LEVEL_DIFF = 0.045
THRESHOLD_MAX_LEVEL_DIFF_WIDE_RANGE = 0.06
THRESHOLD_ROUND_DOWN_GAIN = 0.1
THRESHOLD_ROUND_DOWN_EXP = 0.05
def get_raw_active_array_size(props):
"""Return the active array w, h from props."""
aaw = (props['android.sensor.info.activeArraySize']['right'] -
props['android.sensor.info.activeArraySize']['left'])
aah = (props['android.sensor.info.activeArraySize']['bottom'] -
props['android.sensor.info.activeArraySize']['top'])
return aaw, aah
def main():
"""Test that a constant exposure is seen as ISO and exposure time vary.
Take a series of shots that have ISO and exposure time chosen to balance
each other; result should be the same brightness, but over the sequence
the images should get noisier.
"""
mults = []
r_means = []
g_means = []
b_means = []
raw_r_means = []
raw_gr_means = []
raw_gb_means = []
raw_b_means = []
threshold_max_level_diff = THRESHOLD_MAX_LEVEL_DIFF
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
its.caps.skip_unless(its.caps.compute_target_exposure(props) and
its.caps.per_frame_control(props))
process_raw = (its.caps.compute_target_exposure(props) and
its.caps.per_frame_control(props) and
its.caps.raw16(props) and
its.caps.manual_sensor(props))
debug = its.caps.debug_mode()
largest_yuv = its.objects.get_largest_yuv_format(props)
if debug:
fmt = largest_yuv
else:
match_ar = (largest_yuv['width'], largest_yuv['height'])
fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar)
e, s = its.target.get_target_exposure_combos(cam)['minSensitivity']
s_e_product = s*e
expt_range = props['android.sensor.info.exposureTimeRange']
sens_range = props['android.sensor.info.sensitivityRange']
m = 1.0
while s*m < sens_range[1] and e/m > expt_range[0]:
mults.append(m)
s_test = round(s*m)
e_test = s_e_product / s_test
print 'Testing s:', s_test, 'e:', e_test
req = its.objects.manual_capture_request(
s_test, e_test, 0.0, True, props)
cap = cam.do_capture(req, fmt)
s_res = cap['metadata']['android.sensor.sensitivity']
e_res = cap['metadata']['android.sensor.exposureTime']
assert 0 <= s_test - s_res < s_test * THRESHOLD_ROUND_DOWN_GAIN
assert 0 <= e_test - e_res < e_test * THRESHOLD_ROUND_DOWN_EXP
s_e_product_res = s_res * e_res
request_result_ratio = s_e_product / s_e_product_res
print 'Capture result s:', s_test, 'e:', e_test
img = its.image.convert_capture_to_rgb_image(cap)
its.image.write_image(img, '%s_mult=%3.2f.jpg' % (NAME, m))
tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
rgb_means = its.image.compute_image_means(tile)
# Adjust for the difference between request and result
r_means.append(rgb_means[0] * request_result_ratio)
g_means.append(rgb_means[1] * request_result_ratio)
b_means.append(rgb_means[2] * request_result_ratio)
# do same in RAW space if possible
if process_raw and debug:
aaw, aah = get_raw_active_array_size(props)
raw_cap = cam.do_capture(req,
{'format': 'rawStats',
'gridWidth': aaw/IMG_STATS_GRID,
'gridHeight': aah/IMG_STATS_GRID})
r, gr, gb, b = its.image.convert_capture_to_planes(raw_cap,
props)
raw_r_means.append(r[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
* request_result_ratio)
raw_gr_means.append(gr[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
* request_result_ratio)
raw_gb_means.append(gb[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
* request_result_ratio)
raw_b_means.append(b[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
* request_result_ratio)
# Test 3 steps per 2x gain
m *= pow(2, 1.0 / 3)
# Allow more threshold for devices with wider exposure range
if m >= 64.0:
threshold_max_level_diff = THRESHOLD_MAX_LEVEL_DIFF_WIDE_RANGE
# Draw plots
pylab.figure('rgb data')
pylab.plot(mults, r_means, 'ro-')
pylab.plot(mults, g_means, 'go-')
pylab.plot(mults, b_means, 'bo-')
pylab.title(NAME + 'RGB Data')
pylab.xlabel('Gain Multiplier')
pylab.ylabel('Normalized RGB Plane Avg')
pylab.ylim([0, 1])
matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME))
if process_raw and debug:
pylab.figure('raw data')
pylab.plot(mults, raw_r_means, 'ro-', label='R')
pylab.plot(mults, raw_gr_means, 'go-', label='GR')
pylab.plot(mults, raw_gb_means, 'ko-', label='GB')
pylab.plot(mults, raw_b_means, 'bo-', label='B')
pylab.title(NAME + 'RAW Data')
pylab.xlabel('Gain Multiplier')
pylab.ylabel('Normalized RAW Plane Avg')
pylab.ylim([0, 1])
pylab.legend(numpoints=1)
matplotlib.pyplot.savefig('%s_plot_raw_means.png' % (NAME))
# Check for linearity. Verify sample pixel mean values are close to each
# other. Also ensure that the images aren't clamped to 0 or 1
# (which would make them look like flat lines).
for chan in xrange(3):
values = [r_means, g_means, b_means][chan]
m, b = numpy.polyfit(mults, values, 1).tolist()
max_val = max(values)
min_val = min(values)
max_diff = max_val - min_val
print 'Channel %d line fit (y = mx+b): m = %f, b = %f' % (chan, m, b)
print 'Channel max %f min %f diff %f' % (max_val, min_val, max_diff)
assert max_diff < threshold_max_level_diff
assert b > THRESHOLD_MIN_LEVEL and b < THRESHOLD_MAX_LEVEL
for v in values:
assert v > THRESHOLD_MIN_LEVEL and v < THRESHOLD_MAX_LEVEL
assert abs(v - b) < THRESHOLD_MAX_OUTLIER_DIFF
if process_raw and debug:
for chan in xrange(4):
values = [raw_r_means, raw_gr_means, raw_gb_means,
raw_b_means][chan]
m, b = numpy.polyfit(mults, values, 1).tolist()
max_val = max(values)
min_val = min(values)
max_diff = max_val - min_val
print 'Channel %d line fit (y = mx+b): m = %f, b = %f' % (chan,
m, b)
print 'Channel max %f min %f diff %f' % (max_val, min_val, max_diff)
assert max_diff < threshold_max_level_diff
assert b > THRESHOLD_MIN_LEVEL and b < THRESHOLD_MAX_LEVEL
for v in values:
assert v > THRESHOLD_MIN_LEVEL and v < THRESHOLD_MAX_LEVEL
assert abs(v - b) < THRESHOLD_MAX_OUTLIER_DIFF
if __name__ == '__main__':
main()