/* $NetBSD: cdefs.h,v 1.58 2004/12/11 05:59:00 christos Exp $ */
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Berkeley Software Design, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)cdefs.h 8.8 (Berkeley) 1/9/95
*/
#ifndef _SYS_CDEFS_H_
#define _SYS_CDEFS_H_
/*
* Testing against Clang-specific extensions.
*/
#ifndef __has_extension
#define __has_extension __has_feature
#endif
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#ifndef __has_include
#define __has_include(x) 0
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
#define __strong_alias(alias, sym) \
__asm__(".global " #alias "\n" \
#alias " = " #sym);
#if defined(__cplusplus)
#define __BEGIN_DECLS extern "C" {
#define __END_DECLS }
#else
#define __BEGIN_DECLS
#define __END_DECLS
#endif
#if defined(__cplusplus)
#define __BIONIC_CAST(_k,_t,_v) (_k<_t>(_v))
#else
#define __BIONIC_CAST(_k,_t,_v) ((_t) (_v))
#endif
/*
* The __CONCAT macro is used to concatenate parts of symbol names, e.g.
* with "#define OLD(foo) __CONCAT(old,foo)", OLD(foo) produces oldfoo.
* The __CONCAT macro is a bit tricky -- make sure you don't put spaces
* in between its arguments. __CONCAT can also concatenate double-quoted
* strings produced by the __STRING macro, but this only works with ANSI C.
*/
#define ___STRING(x) __STRING(x)
#define ___CONCAT(x,y) __CONCAT(x,y)
#if defined(__STDC__) || defined(__cplusplus)
#define __P(protos) protos /* full-blown ANSI C */
#define __CONCAT(x,y) x ## y
#define __STRING(x) #x
#if defined(__cplusplus)
#define __inline inline /* convert to C++ keyword */
#endif /* !__cplusplus */
#else /* !(__STDC__ || __cplusplus) */
#define __P(protos) () /* traditional C preprocessor */
#define __CONCAT(x,y) x/**/y
#define __STRING(x) "x"
#endif /* !(__STDC__ || __cplusplus) */
#define __always_inline __attribute__((__always_inline__))
#define __attribute_const__ __attribute__((__const__))
#define __attribute_pure__ __attribute__((__pure__))
#define __dead __attribute__((__noreturn__))
#define __noreturn __attribute__((__noreturn__))
#define __mallocfunc __attribute__((__malloc__))
#define __packed __attribute__((__packed__))
#define __unused __attribute__((__unused__))
#define __used __attribute__((__used__))
/*
* _Nonnull is similar to the nonnull attribute in that it will instruct
* compilers to warn the user if it can prove that a null argument is being
* passed. Unlike the nonnull attribute, this annotation indicated that a value
* *should not* be null, not that it *cannot* be null, or even that the behavior
* is undefined. The important distinction is that the optimizer will perform
* surprising optimizations like the following:
*
* void foo(void*) __attribute__(nonnull, 1);
*
* int bar(int* p) {
* foo(p);
*
* // The following null check will be elided because nonnull attribute
* // means that, since we call foo with p, p can be assumed to not be
* // null. Thus this will crash if we are called with a null pointer.
* if (p != NULL) {
* return *p;
* }
* return 0;
* }
*
* int main() {
* return bar(NULL);
* }
*
* http://clang.llvm.org/docs/AttributeReference.html#nonnull
*/
#if !(defined(__clang__) && __has_feature(nullability))
#define _Nonnull
#define _Nullable
#endif
#define __printflike(x, y) __attribute__((__format__(printf, x, y)))
#define __scanflike(x, y) __attribute__((__format__(scanf, x, y)))
/*
* GNU C version 2.96 added explicit branch prediction so that
* the CPU back-end can hint the processor and also so that
* code blocks can be reordered such that the predicted path
* sees a more linear flow, thus improving cache behavior, etc.
*
* The following two macros provide us with a way to use this
* compiler feature. Use __predict_true() if you expect the expression
* to evaluate to true, and __predict_false() if you expect the
* expression to evaluate to false.
*
* A few notes about usage:
*
* * Generally, __predict_false() error condition checks (unless
* you have some _strong_ reason to do otherwise, in which case
* document it), and/or __predict_true() `no-error' condition
* checks, assuming you want to optimize for the no-error case.
*
* * Other than that, if you don't know the likelihood of a test
* succeeding from empirical or other `hard' evidence, don't
* make predictions.
*
* * These are meant to be used in places that are run `a lot'.
* It is wasteful to make predictions in code that is run
* seldomly (e.g. at subsystem initialization time) as the
* basic block reordering that this affects can often generate
* larger code.
*/
#define __predict_true(exp) __builtin_expect((exp) != 0, 1)
#define __predict_false(exp) __builtin_expect((exp) != 0, 0)
#define __wur __attribute__((__warn_unused_result__))
#ifdef __clang__
# define __errorattr(msg) __attribute__((unavailable(msg)))
# define __warnattr(msg) __attribute__((deprecated(msg)))
# define __warnattr_real(msg) __attribute__((deprecated(msg)))
# define __enable_if(cond, msg) __attribute__((enable_if(cond, msg)))
#else
# define __errorattr(msg) __attribute__((__error__(msg)))
# define __warnattr(msg) __attribute__((__warning__(msg)))
# define __warnattr_real __warnattr
/* enable_if doesn't exist on other compilers; give an error if it's used. */
/* errordecls really don't work as well in clang as they do in GCC. */
# define __errordecl(name, msg) extern void name(void) __errorattr(msg)
#endif
#if defined(ANDROID_STRICT)
/*
* For things that are sketchy, but not necessarily an error. FIXME: Enable
* this.
*/
# define __warnattr_strict(msg) /* __warnattr(msg) */
#else
# define __warnattr_strict(msg)
#endif
/*
* Some BSD source needs these macros.
* Originally they embedded the rcs versions of each source file
* in the generated binary. We strip strings during build anyway,.
*/
#define __IDSTRING(_prefix,_s) /* nothing */
#define __COPYRIGHT(_s) /* nothing */
#define __FBSDID(_s) /* nothing */
#define __RCSID(_s) /* nothing */
#define __SCCSID(_s) /* nothing */
/*
* With bionic, you always get all C and POSIX API.
*
* If you want BSD and/or GNU extensions, _BSD_SOURCE and/or _GNU_SOURCE are
* expected to be defined by callers before *any* standard header file is
* included.
*
* In our header files we test against __USE_BSD and __USE_GNU.
*/
#if defined(_GNU_SOURCE)
# define __USE_BSD 1
# define __USE_GNU 1
#endif
#if defined(_BSD_SOURCE)
# define __USE_BSD 1
#endif
/* _FILE_OFFSET_BITS 64 support. */
#if !defined(__LP64__) && defined(_FILE_OFFSET_BITS)
#if _FILE_OFFSET_BITS == 64
#define __USE_FILE_OFFSET64 1
#endif
#endif
#define __BIONIC__ 1
#include <android/api-level.h>
/* glibc compatibility. */
#if defined(__LP64__)
#define __WORDSIZE 64
#else
#define __WORDSIZE 32
#endif
/*
* When _FORTIFY_SOURCE is defined, automatic bounds checking is
* added to commonly used libc functions. If a buffer overrun is
* detected, the program is safely aborted.
*
* See
* http://gcc.gnu.org/onlinedocs/gcc/Object-Size-Checking.html for details.
*/
#define __BIONIC_FORTIFY_UNKNOWN_SIZE ((size_t) -1)
#if defined(_FORTIFY_SOURCE) && _FORTIFY_SOURCE > 0 && defined(__OPTIMIZE__) && __OPTIMIZE__ > 0
# define __BIONIC_FORTIFY 1
# if _FORTIFY_SOURCE == 2
# define __bos_level 1
# else
# define __bos_level 0
# endif
# define __bosn(s, n) __builtin_object_size((s), (n))
# define __bos(s) __bosn((s), __bos_level)
# define __bos0(s) __bosn((s), 0)
# if defined(__clang__)
# define __pass_object_size_n(n) __attribute__((pass_object_size(n)))
/*
* FORTIFY'ed functions all have either enable_if or pass_object_size, which
* makes taking their address impossible. Saying (&read)(foo, bar, baz); will
* therefore call the unFORTIFYed version of read.
*/
# define __call_bypassing_fortify(fn) (&fn)
/*
* Because clang-FORTIFY uses overloads, we can't mark functions as `extern
* inline` without making them available externally.
*/
# define __BIONIC_FORTIFY_INLINE static __inline__ __always_inline
/* Error functions don't have bodies, so they can just be static. */
# define __BIONIC_ERROR_FUNCTION_VISIBILITY static
# else
/*
* Where they can, GCC and clang-style FORTIFY share implementations.
* So, make these nops in GCC.
*/
# define __pass_object_size_n(n)
# define __call_bypassing_fortify(fn) (fn)
/* __BIONIC_FORTIFY_NONSTATIC_INLINE is pointless in GCC's FORTIFY */
# define __BIONIC_FORTIFY_INLINE extern __inline__ __always_inline __attribute__((gnu_inline)) __attribute__((__artificial__))
# endif
# define __pass_object_size __pass_object_size_n(__bos_level)
# define __pass_object_size0 __pass_object_size_n(0)
#endif
/* Used to support clangisms with FORTIFY. This isn't in the FORTIFY section
* because these change how symbols are emitted. The linker must be kept happy.
*/
#ifdef __clang__
# define __overloadable __attribute__((overloadable))
// Don't use __RENAME directly because on gcc, this could result in a number of
// unnecessary renames.
# define __RENAME_CLANG(x) __RENAME(x)
#else
# define __overloadable
# define __RENAME_CLANG(x)
#endif
/* Used to tag non-static symbols that are private and never exposed by the shared library. */
#define __LIBC_HIDDEN__ __attribute__((visibility("hidden")))
/*
* Used to tag symbols that should be hidden for 64-bit,
* but visible to preserve binary compatibility for LP32.
*/
#ifdef __LP64__
#define __LIBC32_LEGACY_PUBLIC__ __attribute__((visibility("hidden")))
#else
#define __LIBC32_LEGACY_PUBLIC__ __attribute__((visibility("default")))
#endif
/* Used to rename functions so that the compiler emits a call to 'x' rather than the function this was applied to. */
#define __RENAME(x) __asm__(#x)
#include <android/versioning.h>
#if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5
#if defined(__LP64__)
#define __size_mul_overflow(a, b, result) __builtin_umull_overflow(a, b, result)
#else
#define __size_mul_overflow(a, b, result) __builtin_umul_overflow(a, b, result)
#endif
#else
extern __inline__ __always_inline __attribute__((gnu_inline))
int __size_mul_overflow(__SIZE_TYPE__ a, __SIZE_TYPE__ b, __SIZE_TYPE__ *result) {
*result = a * b;
static const __SIZE_TYPE__ mul_no_overflow = 1UL << (sizeof(__SIZE_TYPE__) * 4);
return (a >= mul_no_overflow || b >= mul_no_overflow) && a > 0 && (__SIZE_TYPE__)-1 / a < b;
}
#endif
#if defined(__clang__)
/*
* Used when we need to check for overflow when multiplying x and y. This
* should only be used where __size_mul_overflow can not work, because it makes
* assumptions that __size_mul_overflow doesn't (x and y are positive, ...),
* *and* doesn't make use of compiler intrinsics, so it's probably slower than
* __size_mul_overflow.
*/
#define __unsafe_check_mul_overflow(x, y) ((__SIZE_TYPE__)-1 / (x) < (y))
#endif
#endif /* !_SYS_CDEFS_H_ */