HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Oreo
|
8.0.0_r4
下载
查看原文件
收藏
根目录
art
runtime
mirror
object-inl.h
/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_INL_H_ #include "object.h" #include "art_field.h" #include "art_method.h" #include "atomic.h" #include "array-inl.h" #include "class-inl.h" #include "class_flags.h" #include "class_linker.h" #include "class_loader-inl.h" #include "dex_cache-inl.h" #include "lock_word-inl.h" #include "monitor.h" #include "object_array-inl.h" #include "object_reference-inl.h" #include "object-readbarrier-inl.h" #include "obj_ptr-inl.h" #include "read_barrier-inl.h" #include "reference.h" #include "runtime.h" #include "string-inl.h" #include "throwable.h" namespace art { namespace mirror { inline uint32_t Object::ClassSize(PointerSize pointer_size) { uint32_t vtable_entries = kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); } template
inline Class* Object::GetClass() { return GetFieldObject
( OFFSET_OF_OBJECT_MEMBER(Object, klass_)); } template
inline void Object::SetClass(ObjPtr
new_klass) { // new_klass may be null prior to class linker initialization. // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. // We use non transactional version since we can't undo this write. We also disable checking as // we may run in transaction mode here. SetFieldObjectWithoutWriteBarrier
(kVerifyFlags & ~kVerifyThis)>( OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass); } template
inline void Object::SetLockWord(LockWord new_val, bool as_volatile) { // Force use of non-transactional mode and do not check. if (as_volatile) { SetField32Volatile
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } else { SetField32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } } inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakSequentiallyConsistent32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakAcquire(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakAcquire32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline uint32_t Object::GetLockOwnerThreadId() { return Monitor::GetLockOwnerThreadId(this); } inline mirror::Object* Object::MonitorEnter(Thread* self) { return Monitor::MonitorEnter(self, this, /*trylock*/false); } inline mirror::Object* Object::MonitorTryEnter(Thread* self) { return Monitor::MonitorEnter(self, this, /*trylock*/true); } inline bool Object::MonitorExit(Thread* self) { return Monitor::MonitorExit(self, this); } inline void Object::Notify(Thread* self) { Monitor::Notify(self, this); } inline void Object::NotifyAll(Thread* self) { Monitor::NotifyAll(self, this); } inline void Object::Wait(Thread* self) { Monitor::Wait(self, this, 0, 0, true, kWaiting); } inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) { Monitor::Wait(self, this, ms, ns, true, kTimedWaiting); } inline uint32_t Object::GetMarkBit() { #ifdef USE_READ_BARRIER return GetLockWord(false).MarkBitState(); #else LOG(FATAL) << "Unreachable"; UNREACHABLE(); #endif } inline void Object::SetReadBarrierState(uint32_t rb_state) { if (!kUseBakerReadBarrier) { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state; LockWord lw = GetLockWord(false); lw.SetReadBarrierState(rb_state); SetLockWord(lw, false); } inline void Object::AssertReadBarrierState() const { CHECK(kUseBakerReadBarrier); Object* obj = const_cast
(this); DCHECK(obj->GetReadBarrierState() == ReadBarrier::WhiteState()) << "Bad Baker pointer: obj=" << reinterpret_cast
(obj) << " rb_state" << reinterpret_cast
(obj->GetReadBarrierState()); } template
inline bool Object::VerifierInstanceOf(ObjPtr
klass) { DCHECK(klass != nullptr); DCHECK(GetClass
() != nullptr); return klass->IsInterface() || InstanceOf(klass); } template
inline bool Object::InstanceOf(ObjPtr
klass) { DCHECK(klass != nullptr); DCHECK(GetClass
() != nullptr); return klass->IsAssignableFrom(GetClass
()); } template
inline bool Object::IsClass() { Class* java_lang_Class = GetClass
()-> template GetClass
(); return GetClass
(kVerifyFlags & ~kVerifyThis), kReadBarrierOption>() == java_lang_Class; } template
inline Class* Object::AsClass() { DCHECK((IsClass
())); return down_cast
(this); } template
inline bool Object::IsObjectArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); return IsArrayInstance
() && !GetClass
()-> template GetComponentType
()->IsPrimitive(); } template
inline ObjectArray
* Object::AsObjectArray() { DCHECK((IsObjectArray
())); return down_cast
*>(this); } template
inline bool Object::IsArrayInstance() { return GetClass
()-> template IsArrayClass
(); } template
inline bool Object::IsReferenceInstance() { return GetClass
()->IsTypeOfReferenceClass(); } template
inline Reference* Object::AsReference() { DCHECK((IsReferenceInstance
())); return down_cast
(this); } template
inline Array* Object::AsArray() { DCHECK((IsArrayInstance
())); return down_cast
(this); } template
inline BooleanArray* Object::AsBooleanArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->GetComponentType()->IsPrimitiveBoolean()); return down_cast
(this); } template
inline ByteArray* Object::AsByteArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveByte()); return down_cast
(this); } template
inline ByteArray* Object::AsByteSizedArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveByte() || GetClass
()->template GetComponentType
()->IsPrimitiveBoolean()); return down_cast
(this); } template
inline CharArray* Object::AsCharArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveChar()); return down_cast
(this); } template
inline ShortArray* Object::AsShortArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveShort()); return down_cast
(this); } template
inline ShortArray* Object::AsShortSizedArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveShort() || GetClass
()->template GetComponentType
()->IsPrimitiveChar()); return down_cast
(this); } template
inline bool Object::IsIntArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); ObjPtr
klass = GetClass
(); ObjPtr
component_type = klass->GetComponentType
(); return component_type != nullptr && component_type->template IsPrimitiveInt
(); } template
inline IntArray* Object::AsIntArray() { DCHECK((IsIntArray
())); return down_cast
(this); } template
inline bool Object::IsLongArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); ObjPtr
klass = GetClass
(); ObjPtr
component_type = klass->GetComponentType
(); return component_type != nullptr && component_type->template IsPrimitiveLong
(); } template
inline LongArray* Object::AsLongArray() { DCHECK((IsLongArray
())); return down_cast
(this); } template
inline bool Object::IsFloatArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass
()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveFloat
(); } template
inline FloatArray* Object::AsFloatArray() { DCHECK(IsFloatArray
()); constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveFloat()); return down_cast
(this); } template
inline bool Object::IsDoubleArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass
()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveDouble
(); } template
inline DoubleArray* Object::AsDoubleArray() { DCHECK(IsDoubleArray
()); constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveDouble()); return down_cast
(this); } template
inline bool Object::IsString() { return GetClass
()->IsStringClass(); } template
inline String* Object::AsString() { DCHECK((IsString
())); return down_cast
(this); } template
inline Throwable* Object::AsThrowable() { DCHECK(GetClass
()->IsThrowableClass()); return down_cast
(this); } template
inline bool Object::IsWeakReferenceInstance() { return GetClass
()->IsWeakReferenceClass(); } template
inline bool Object::IsSoftReferenceInstance() { return GetClass
()->IsSoftReferenceClass(); } template
inline bool Object::IsFinalizerReferenceInstance() { return GetClass
()->IsFinalizerReferenceClass(); } template
inline FinalizerReference* Object::AsFinalizerReference() { DCHECK(IsFinalizerReferenceInstance
()); return down_cast
(this); } template
inline bool Object::IsPhantomReferenceInstance() { return GetClass
()->IsPhantomReferenceClass(); } template
inline size_t Object::SizeOf() { // Read barrier is never required for SizeOf since objects sizes are constant. Reading from-space // values is OK because of that. static constexpr ReadBarrierOption kReadBarrierOption = kWithoutReadBarrier; size_t result; constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); if (IsArrayInstance
()) { result = AsArray
()-> template SizeOf
(); } else if (IsClass
()) { result = AsClass
()-> template SizeOf
(); } else if (GetClass
()->IsStringClass()) { result = AsString
()-> template SizeOf
(); } else { result = GetClass
()-> template GetObjectSize
(); } DCHECK_GE(result, sizeof(Object)) << " class=" << Class::PrettyClass(GetClass
()); return result; } template
inline uint8_t Object::GetFieldBoolean(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline int8_t Object::GetFieldByte(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline uint8_t Object::GetFieldBooleanVolatile(MemberOffset field_offset) { return GetFieldBoolean
(field_offset); } template
inline int8_t Object::GetFieldByteVolatile(MemberOffset field_offset) { return GetFieldByte
(field_offset); } template
inline void Object::SetFieldBoolean(MemberOffset field_offset, uint8_t new_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldBoolean(this, field_offset, GetFieldBoolean
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldByte(MemberOffset field_offset, int8_t new_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldByte(this, field_offset, GetFieldByte
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldBooleanVolatile(MemberOffset field_offset, uint8_t new_value) { return SetFieldBoolean
( field_offset, new_value); } template
inline void Object::SetFieldByteVolatile(MemberOffset field_offset, int8_t new_value) { return SetFieldByte
( field_offset, new_value); } template
inline uint16_t Object::GetFieldChar(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline int16_t Object::GetFieldShort(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline uint16_t Object::GetFieldCharVolatile(MemberOffset field_offset) { return GetFieldChar
(field_offset); } template
inline int16_t Object::GetFieldShortVolatile(MemberOffset field_offset) { return GetFieldShort
(field_offset); } template
inline void Object::SetFieldChar(MemberOffset field_offset, uint16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldChar
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldShort(MemberOffset field_offset, int16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldShort
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldCharVolatile(MemberOffset field_offset, uint16_t new_value) { return SetFieldChar
( field_offset, new_value); } template
inline void Object::SetFieldShortVolatile(MemberOffset field_offset, int16_t new_value) { return SetFieldShort
( field_offset, new_value); } template
inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, GetField32
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) { SetField32
(field_offset, new_value); } // TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication? template
inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template
inline bool Object::CasFieldWeakAcquire32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakAcquire(old_value, new_value); } template
inline bool Object::CasFieldWeakRelease32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakRelease(old_value, new_value); } template
inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template
inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, GetField64
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) { return SetField64
(field_offset, new_value); } template
inline kSize Object::GetFieldAcquire(MemberOffset field_offset) { const uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); const kSize* addr = reinterpret_cast
(raw_addr); return reinterpret_cast
*>(addr)->LoadAcquire(); } template
inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); Atomic
* atomic_addr = reinterpret_cast
*>(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template
inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); Atomic
* atomic_addr = reinterpret_cast
*>(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template
inline T* Object::GetFieldObject(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); HeapReference
* objref_addr = reinterpret_cast
*>(raw_addr); T* result = ReadBarrier::Barrier
(this, field_offset, objref_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent load instead. QuasiAtomic::ThreadFenceAcquire(); // Ensure visibility of operations preceding store. } if (kVerifyFlags & kVerifyReads) { VerifyObject(result); } return result; } template
inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) { return GetFieldObject
(field_offset); } template
inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset, ObjPtr
new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { ObjPtr
obj; if (kIsVolatile) { obj = GetFieldObjectVolatile
(field_offset); } else { obj = GetFieldObject
(field_offset); } Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj.Ptr(), true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); HeapReference
* objref_addr = reinterpret_cast
*>(raw_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent store instead. QuasiAtomic::ThreadFenceRelease(); // Ensure that prior accesses are visible before store. objref_addr->Assign(new_value.Ptr()); QuasiAtomic::ThreadFenceSequentiallyConsistent(); // Ensure this store occurs before any volatile loads. } else { objref_addr->Assign(new_value.Ptr()); } } template
inline void Object::SetFieldObject(MemberOffset field_offset, ObjPtr
new_value) { SetFieldObjectWithoutWriteBarrier
(field_offset, new_value); if (new_value != nullptr) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); // TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this. CheckFieldAssignment(field_offset, new_value); } } template
inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, ObjPtr
new_value) { SetFieldObject
(field_offset, new_value); } template
inline HeapReference