/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm64.h"
#include "mirror/array-inl.h"
using namespace vixl::aarch64; // NOLINT(build/namespaces)
namespace art {
namespace arm64 {
using helpers::VRegisterFrom;
using helpers::HeapOperand;
using helpers::InputRegisterAt;
using helpers::Int64ConstantFrom;
using helpers::XRegisterFrom;
using helpers::WRegisterFrom;
#define __ GetVIXLAssembler()->
void LocationsBuilderARM64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void InstructionCodeGeneratorARM64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Dup(dst.V16B(), InputRegisterAt(instruction, 0));
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Dup(dst.V8H(), InputRegisterAt(instruction, 0));
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Dup(dst.V4S(), InputRegisterAt(instruction, 0));
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Dup(dst.V2D(), XRegisterFrom(locations->InAt(0)));
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Dup(dst.V4S(), VRegisterFrom(locations->InAt(0)).V4S(), 0);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Dup(dst.V2D(), VRegisterFrom(locations->InAt(0)).V2D(), 0);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecSetScalars(HVecSetScalars* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void InstructionCodeGeneratorARM64::VisitVecSetScalars(HVecSetScalars* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void LocationsBuilderARM64::VisitVecSumReduce(HVecSumReduce* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void InstructionCodeGeneratorARM64::VisitVecSumReduce(HVecSumReduce* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
// Helper to set up locations for vector unary operations.
static void CreateVecUnOpLocations(ArenaAllocator* arena, HVecUnaryOperation* instruction) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(),
instruction->IsVecNot() ? Location::kOutputOverlap
: Location::kNoOutputOverlap);
break;
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecCnv(HVecCnv* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecCnv(HVecCnv* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
Primitive::Type from = instruction->GetInputType();
Primitive::Type to = instruction->GetResultType();
if (from == Primitive::kPrimInt && to == Primitive::kPrimFloat) {
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Scvtf(dst.V4S(), src.V4S());
} else {
LOG(FATAL) << "Unsupported SIMD type";
}
}
void LocationsBuilderARM64::VisitVecNeg(HVecNeg* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecNeg(HVecNeg* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Neg(dst.V16B(), src.V16B());
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Neg(dst.V8H(), src.V8H());
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Neg(dst.V4S(), src.V4S());
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Neg(dst.V2D(), src.V2D());
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fneg(dst.V4S(), src.V4S());
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fneg(dst.V2D(), src.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAbs(HVecAbs* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecAbs(HVecAbs* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Abs(dst.V16B(), src.V16B());
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Abs(dst.V8H(), src.V8H());
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Abs(dst.V4S(), src.V4S());
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Abs(dst.V2D(), src.V2D());
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fabs(dst.V4S(), src.V4S());
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fabs(dst.V2D(), src.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
}
}
void LocationsBuilderARM64::VisitVecNot(HVecNot* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecNot(HVecNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean: // special case boolean-not
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Movi(dst.V16B(), 1);
__ Eor(dst.V16B(), dst.V16B(), src.V16B());
break;
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
__ Not(dst.V16B(), src.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector binary operations.
static void CreateVecBinOpLocations(ArenaAllocator* arena, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAdd(HVecAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecAdd(HVecAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Add(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Add(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Add(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Add(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fadd(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fadd(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
if (instruction->IsUnsigned()) {
instruction->IsRounded()
? __ Urhadd(dst.V16B(), lhs.V16B(), rhs.V16B())
: __ Uhadd(dst.V16B(), lhs.V16B(), rhs.V16B());
} else {
instruction->IsRounded()
? __ Srhadd(dst.V16B(), lhs.V16B(), rhs.V16B())
: __ Shadd(dst.V16B(), lhs.V16B(), rhs.V16B());
}
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
if (instruction->IsUnsigned()) {
instruction->IsRounded()
? __ Urhadd(dst.V8H(), lhs.V8H(), rhs.V8H())
: __ Uhadd(dst.V8H(), lhs.V8H(), rhs.V8H());
} else {
instruction->IsRounded()
? __ Srhadd(dst.V8H(), lhs.V8H(), rhs.V8H())
: __ Shadd(dst.V8H(), lhs.V8H(), rhs.V8H());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecSub(HVecSub* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecSub(HVecSub* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Sub(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Sub(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Sub(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Sub(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fsub(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fsub(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMul(HVecMul* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecMul(HVecMul* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Mul(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Mul(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Mul(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fmul(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fmul(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecDiv(HVecDiv* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecDiv(HVecDiv* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fdiv(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fdiv(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMin(HVecMin* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecMin(HVecMin* instruction) {
LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId();
}
void LocationsBuilderARM64::VisitVecMax(HVecMax* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecMax(HVecMax* instruction) {
LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId();
}
void LocationsBuilderARM64::VisitVecAnd(HVecAnd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecAnd(HVecAnd* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
__ And(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAndNot(HVecAndNot* instruction) {
LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId();
}
void InstructionCodeGeneratorARM64::VisitVecAndNot(HVecAndNot* instruction) {
LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId();
}
void LocationsBuilderARM64::VisitVecOr(HVecOr* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecOr(HVecOr* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
__ Orr(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecXor(HVecXor* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecXor(HVecXor* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
__ Eor(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector shift operations.
static void CreateVecShiftLocations(ArenaAllocator* arena, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecShl(HVecShl* instruction) {
CreateVecShiftLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecShl(HVecShl* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Shl(dst.V16B(), lhs.V16B(), value);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Shl(dst.V8H(), lhs.V8H(), value);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Shl(dst.V4S(), lhs.V4S(), value);
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Shl(dst.V2D(), lhs.V2D(), value);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecShr(HVecShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecShr(HVecShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Sshr(dst.V16B(), lhs.V16B(), value);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Sshr(dst.V8H(), lhs.V8H(), value);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Sshr(dst.V4S(), lhs.V4S(), value);
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Sshr(dst.V2D(), lhs.V2D(), value);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecUShr(HVecUShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecUShr(HVecUShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Ushr(dst.V16B(), lhs.V16B(), value);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Ushr(dst.V8H(), lhs.V8H(), value);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Ushr(dst.V4S(), lhs.V4S(), value);
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Ushr(dst.V2D(), lhs.V2D(), value);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
switch (instr->GetPackedType()) {
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
locations->SetInAt(
HVecMultiplyAccumulate::kInputAccumulatorIndex, Location::RequiresFpuRegister());
locations->SetInAt(
HVecMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresFpuRegister());
locations->SetInAt(
HVecMultiplyAccumulate::kInputMulRightIndex, Location::RequiresFpuRegister());
DCHECK_EQ(HVecMultiplyAccumulate::kInputAccumulatorIndex, 0);
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is possible for a
// 64-bit scalar multiply-accumulate instruction in AArch64 state to generate an incorrect result.
// However vector MultiplyAccumulate instruction is not affected.
void InstructionCodeGeneratorARM64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instr) {
LocationSummary* locations = instr->GetLocations();
VRegister acc = VRegisterFrom(locations->InAt(HVecMultiplyAccumulate::kInputAccumulatorIndex));
VRegister left = VRegisterFrom(locations->InAt(HVecMultiplyAccumulate::kInputMulLeftIndex));
VRegister right = VRegisterFrom(locations->InAt(HVecMultiplyAccumulate::kInputMulRightIndex));
switch (instr->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instr->GetVectorLength());
if (instr->GetOpKind() == HInstruction::kAdd) {
__ Mla(acc.V16B(), left.V16B(), right.V16B());
} else {
__ Mls(acc.V16B(), left.V16B(), right.V16B());
}
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instr->GetVectorLength());
if (instr->GetOpKind() == HInstruction::kAdd) {
__ Mla(acc.V8H(), left.V8H(), right.V8H());
} else {
__ Mls(acc.V8H(), left.V8H(), right.V8H());
}
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instr->GetVectorLength());
if (instr->GetOpKind() == HInstruction::kAdd) {
__ Mla(acc.V4S(), left.V4S(), right.V4S());
} else {
__ Mls(acc.V4S(), left.V4S(), right.V4S());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
}
}
// Helper to set up locations for vector memory operations.
static void CreateVecMemLocations(ArenaAllocator* arena,
HVecMemoryOperation* instruction,
bool is_load) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (is_load) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresFpuRegister());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up registers and address for vector memory operations.
MemOperand InstructionCodeGeneratorARM64::CreateVecMemRegisters(
HVecMemoryOperation* instruction,
Location* reg_loc,
bool is_load,
UseScratchRegisterScope* temps_scope) {
LocationSummary* locations = instruction->GetLocations();
Register base = InputRegisterAt(instruction, 0);
Location index = locations->InAt(1);
*reg_loc = is_load ? locations->Out() : locations->InAt(2);
Primitive::Type packed_type = instruction->GetPackedType();
uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(packed_type)).Uint32Value();
size_t shift = Primitive::ComponentSizeShift(packed_type);
// HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
if (index.IsConstant()) {
offset += Int64ConstantFrom(index) << shift;
return HeapOperand(base, offset);
} else {
Register temp = temps_scope->AcquireSameSizeAs(base);
__ Add(temp, base, Operand(WRegisterFrom(index), LSL, shift));
return HeapOperand(temp, offset);
}
}
void LocationsBuilderARM64::VisitVecLoad(HVecLoad* instruction) {
CreateVecMemLocations(GetGraph()->GetArena(), instruction, /*is_load*/ true);
}
void InstructionCodeGeneratorARM64::VisitVecLoad(HVecLoad* instruction) {
Location reg_loc = Location::NoLocation();
UseScratchRegisterScope temps(GetVIXLAssembler());
MemOperand mem = CreateVecMemRegisters(instruction, ®_loc, /*is_load*/ true, &temps);
VRegister reg = VRegisterFrom(reg_loc);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ Ldr(reg, mem);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecStore(HVecStore* instruction) {
CreateVecMemLocations(GetGraph()->GetArena(), instruction, /*is_load*/ false);
}
void InstructionCodeGeneratorARM64::VisitVecStore(HVecStore* instruction) {
Location reg_loc = Location::NoLocation();
UseScratchRegisterScope temps(GetVIXLAssembler());
MemOperand mem = CreateVecMemRegisters(instruction, ®_loc, /*is_load*/ false, &temps);
VRegister reg = VRegisterFrom(reg_loc);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ Str(reg, mem);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
#undef __
} // namespace arm64
} // namespace art