/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <gtest/gtest.h>

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <sys/wait.h>
#include <unistd.h>

#include <chrono>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

#ifndef TEMP_FAILURE_RETRY

/* Used to retry syscalls that can return EINTR. */
#define TEMP_FAILURE_RETRY(exp)            \
  ({                                       \
    __typeof__(exp) _rc;                   \
    do {                                   \
      _rc = (exp);                         \
    } while (_rc == -1 && errno == EINTR); \
    _rc;                                   \
  })

#endif

namespace testing {
namespace internal {

// Reuse of testing::internal::ColoredPrintf in gtest.
enum GTestColor { COLOR_DEFAULT, COLOR_RED, COLOR_GREEN, COLOR_YELLOW };

void ColoredPrintf(GTestColor color, const char* fmt, ...);

}  // namespace internal
}  // namespace testing

using testing::internal::GTestColor;
using testing::internal::COLOR_DEFAULT;
using testing::internal::COLOR_RED;
using testing::internal::COLOR_GREEN;
using testing::internal::COLOR_YELLOW;
using testing::internal::ColoredPrintf;

constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS = 90000;
constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS = 2000;

// The time each test can run before killed for the reason of timeout.
// It takes effect only with --isolate option.
static int global_test_run_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;

// The time each test can run before be warned for too much running time.
// It takes effect only with --isolate option.
static int global_test_run_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS;

// Return deadline duration for a test, in ms.
static int GetDeadlineInfo(const std::string& /*test_name*/) {
  return global_test_run_deadline_ms;
}

// Return warnline duration for a test, in ms.
static int GetWarnlineInfo(const std::string& /*test_name*/) {
  return global_test_run_warnline_ms;
}

static void PrintHelpInfo() {
  printf(
      "VTS Unit Test Options:\n"
      "  -j [JOB_COUNT] or -j[JOB_COUNT]\n"
      "      Run up to JOB_COUNT tests in parallel.\n"
      "      Use isolation mode, Run each test in a separate process.\n"
      "      If JOB_COUNT is not given, it is set to the count of available "
      "processors.\n"
      "  --no-isolate\n"
      "      Don't use isolation mode, run all tests in a single process.\n"
      "  --deadline=[TIME_IN_MS]\n"
      "      Run each test in no longer than [TIME_IN_MS] time.\n"
      "      It takes effect only in isolation mode. Deafult deadline is 90000 "
      "ms.\n"
      "  --warnline=[TIME_IN_MS]\n"
      "      Test running longer than [TIME_IN_MS] will be warned.\n"
      "      It takes effect only in isolation mode. Default warnline is 2000 "
      "ms.\n"
      "  --gtest-filter=POSITIVE_PATTERNS[-NEGATIVE_PATTERNS]\n"
      "      Used as a synonym for --gtest_filter option in gtest.\n"
      "Default vts unit test option is -j.\n"
      "In isolation mode, you can send SIGQUIT to the parent process to show "
      "current\n"
      "running tests, or send SIGINT to the parent process to stop testing "
      "and\n"
      "clean up current running tests.\n"
      "\n");
}

enum TestResult { TEST_SUCCESS = 0, TEST_FAILED, TEST_TIMEOUT };

class Test {
 public:
  Test() {}  // For std::vector<Test>.
  explicit Test(const char* name) : name_(name) {}

  const std::string& GetName() const { return name_; }

  void SetResult(TestResult result) { result_ = result; }

  TestResult GetResult() const { return result_; }

  void SetTestTime(int64_t elapsed_time_ns) {
    elapsed_time_ns_ = elapsed_time_ns;
  }

  int64_t GetTestTime() const { return elapsed_time_ns_; }

  void AppendTestOutput(const std::string& s) { output_ += s; }

  const std::string& GetTestOutput() const { return output_; }

 private:
  const std::string name_;
  TestResult result_;
  int64_t elapsed_time_ns_;
  std::string output_;
};

class TestCase {
 public:
  TestCase() {}  // For std::vector<TestCase>.
  explicit TestCase(const char* name) : name_(name) {}

  const std::string& GetName() const { return name_; }

  void AppendTest(const char* test_name) {
    test_list_.push_back(Test(test_name));
  }

  size_t TestCount() const { return test_list_.size(); }

  std::string GetTestName(size_t test_id) const {
    VerifyTestId(test_id);
    return name_ + "." + test_list_[test_id].GetName();
  }

  Test& GetTest(size_t test_id) {
    VerifyTestId(test_id);
    return test_list_[test_id];
  }

  const Test& GetTest(size_t test_id) const {
    VerifyTestId(test_id);
    return test_list_[test_id];
  }

  void SetTestResult(size_t test_id, TestResult result) {
    VerifyTestId(test_id);
    test_list_[test_id].SetResult(result);
  }

  TestResult GetTestResult(size_t test_id) const {
    VerifyTestId(test_id);
    return test_list_[test_id].GetResult();
  }

  void SetTestTime(size_t test_id, int64_t elapsed_time_ns) {
    VerifyTestId(test_id);
    test_list_[test_id].SetTestTime(elapsed_time_ns);
  }

  int64_t GetTestTime(size_t test_id) const {
    VerifyTestId(test_id);
    return test_list_[test_id].GetTestTime();
  }

 private:
  void VerifyTestId(size_t test_id) const {
    if (test_id >= test_list_.size()) {
      fprintf(stderr, "test_id %zu out of range [0, %zu)\n", test_id,
              test_list_.size());
      exit(1);
    }
  }

 private:
  const std::string name_;
  std::vector<Test> test_list_;
};

class TestResultPrinter : public testing::EmptyTestEventListener {
 public:
  TestResultPrinter() : pinfo_(NULL) {}
  virtual void OnTestStart(const testing::TestInfo& test_info) {
    pinfo_ = &test_info;  // Record test_info for use in OnTestPartResult.
  }
  virtual void OnTestPartResult(const testing::TestPartResult& result);

 private:
  const testing::TestInfo* pinfo_;
};

// Called after an assertion failure.
void TestResultPrinter::OnTestPartResult(
    const testing::TestPartResult& result) {
  // If the test part succeeded, we don't need to do anything.
  if (result.type() == testing::TestPartResult::kSuccess) return;

  // Print failure message from the assertion (e.g. expected this and got that).
  printf("%s:(%d) Failure in test %s.%s\n%s\n", result.file_name(),
         result.line_number(), pinfo_->test_case_name(), pinfo_->name(),
         result.message());
  fflush(stdout);
}

static int64_t NanoTime() {
  std::chrono::nanoseconds duration(
      std::chrono::steady_clock::now().time_since_epoch());
  return static_cast<int64_t>(duration.count());
}

static bool EnumerateTests(int argc, char** argv,
                           std::vector<TestCase>& testcase_list) {
  std::string command;
  for (int i = 0; i < argc; ++i) {
    command += argv[i];
    command += " ";
  }
  command += "--gtest_list_tests";
  FILE* fp = popen(command.c_str(), "r");
  if (fp == NULL) {
    perror("popen");
    return false;
  }

  char buf[200];
  while (fgets(buf, sizeof(buf), fp) != NULL) {
    char* p = buf;

    while (*p != '\0' && isspace(*p)) {
      ++p;
    }
    if (*p == '\0') continue;
    char* start = p;
    while (*p != '\0' && !isspace(*p)) {
      ++p;
    }
    char* end = p;
    while (*p != '\0' && isspace(*p)) {
      ++p;
    }
    if (*p != '\0' && *p != '#') {
      // This is not we want, gtest must meet with some error when parsing the
      // arguments.
      fprintf(stderr, "argument error, check with --help\n");
      return false;
    }
    *end = '\0';
    if (*(end - 1) == '.') {
      *(end - 1) = '\0';
      testcase_list.push_back(TestCase(start));
    } else {
      testcase_list.back().AppendTest(start);
    }
  }
  int result = pclose(fp);
  return (result != -1 && WEXITSTATUS(result) == 0);
}

// Part of the following *Print functions are copied from
// external/gtest/src/gtest.cc:
// PrettyUnitTestResultPrinter. The reason for copy is that
// PrettyUnitTestResultPrinter
// is defined and used in gtest.cc, which is hard to reuse.
static void OnTestIterationStartPrint(
    const std::vector<TestCase>& testcase_list, size_t iteration,
    int iteration_count) {
  if (iteration_count != 1) {
    printf("\nRepeating all tests (iteration %zu) . . .\n\n", iteration);
  }
  ColoredPrintf(COLOR_GREEN, "[==========] ");

  size_t testcase_count = testcase_list.size();
  size_t test_count = 0;
  for (const auto& testcase : testcase_list) {
    test_count += testcase.TestCount();
  }

  printf("Running %zu %s from %zu %s.\n", test_count,
         (test_count == 1) ? "test" : "tests", testcase_count,
         (testcase_count == 1) ? "test case" : "test cases");
  fflush(stdout);
}

// vts cts test needs gtest output format.
static void OnTestEndPrint(const TestCase& testcase, size_t test_id) {
  ColoredPrintf(COLOR_GREEN, "[ RUN      ] ");
  printf("%s\n", testcase.GetTestName(test_id).c_str());

  const std::string& test_output = testcase.GetTest(test_id).GetTestOutput();
  printf("%s", test_output.c_str());

  TestResult result = testcase.GetTestResult(test_id);
  if (result == TEST_SUCCESS) {
    ColoredPrintf(COLOR_GREEN, "[       OK ] ");
  } else {
    ColoredPrintf(COLOR_RED, "[  FAILED  ] ");
  }
  printf("%s", testcase.GetTestName(test_id).c_str());
  if (testing::GTEST_FLAG(print_time)) {
    printf(" (%" PRId64 " ms)", testcase.GetTestTime(test_id) / 1000000);
  }
  printf("\n");
  fflush(stdout);
}

static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
                                    size_t /*iteration*/,
                                    int64_t elapsed_time_ns) {
  std::vector<std::string> fail_test_name_list;
  std::vector<std::pair<std::string, int64_t>> timeout_test_list;

  // For tests run exceed warnline but not timeout.
  std::vector<std::tuple<std::string, int64_t, int>> slow_test_list;
  size_t testcase_count = testcase_list.size();
  size_t test_count = 0;
  size_t success_test_count = 0;

  for (const auto& testcase : testcase_list) {
    test_count += testcase.TestCount();
    for (size_t i = 0; i < testcase.TestCount(); ++i) {
      TestResult result = testcase.GetTestResult(i);
      if (result == TEST_SUCCESS) {
        ++success_test_count;
      } else if (result == TEST_FAILED) {
        fail_test_name_list.push_back(testcase.GetTestName(i));
      } else if (result == TEST_TIMEOUT) {
        timeout_test_list.push_back(
            std::make_pair(testcase.GetTestName(i), testcase.GetTestTime(i)));
      }
      if (result != TEST_TIMEOUT &&
          testcase.GetTestTime(i) / 1000000 >=
              GetWarnlineInfo(testcase.GetTestName(i))) {
        slow_test_list.push_back(
            std::make_tuple(testcase.GetTestName(i), testcase.GetTestTime(i),
                            GetWarnlineInfo(testcase.GetTestName(i))));
      }
    }
  }

  ColoredPrintf(COLOR_GREEN, "[==========] ");
  printf("%zu %s from %zu %s ran.", test_count,
         (test_count == 1) ? "test" : "tests", testcase_count,
         (testcase_count == 1) ? "test case" : "test cases");
  if (testing::GTEST_FLAG(print_time)) {
    printf(" (%" PRId64 " ms total)", elapsed_time_ns / 1000000);
  }
  printf("\n");
  ColoredPrintf(COLOR_GREEN, "[   PASS   ] ");
  printf("%zu %s.\n", success_test_count,
         (success_test_count == 1) ? "test" : "tests");

  // Print tests failed.
  size_t fail_test_count = fail_test_name_list.size();
  if (fail_test_count > 0) {
    ColoredPrintf(COLOR_RED, "[   FAIL   ] ");
    printf("%zu %s, listed below:\n", fail_test_count,
           (fail_test_count == 1) ? "test" : "tests");
    for (const auto& name : fail_test_name_list) {
      ColoredPrintf(COLOR_RED, "[   FAIL   ] ");
      printf("%s\n", name.c_str());
    }
  }

  // Print tests run timeout.
  size_t timeout_test_count = timeout_test_list.size();
  if (timeout_test_count > 0) {
    ColoredPrintf(COLOR_RED, "[ TIMEOUT  ] ");
    printf("%zu %s, listed below:\n", timeout_test_count,
           (timeout_test_count == 1) ? "test" : "tests");
    for (const auto& timeout_pair : timeout_test_list) {
      ColoredPrintf(COLOR_RED, "[ TIMEOUT  ] ");
      printf("%s (stopped at %" PRId64 " ms)\n", timeout_pair.first.c_str(),
             timeout_pair.second / 1000000);
    }
  }

  // Print tests run exceed warnline.
  size_t slow_test_count = slow_test_list.size();
  if (slow_test_count > 0) {
    ColoredPrintf(COLOR_YELLOW, "[   SLOW   ] ");
    printf("%zu %s, listed below:\n", slow_test_count,
           (slow_test_count == 1) ? "test" : "tests");
    for (const auto& slow_tuple : slow_test_list) {
      ColoredPrintf(COLOR_YELLOW, "[   SLOW   ] ");
      printf("%s (%" PRId64 " ms, exceed warnline %d ms)\n",
             std::get<0>(slow_tuple).c_str(), std::get<1>(slow_tuple) / 1000000,
             std::get<2>(slow_tuple));
    }
  }

  if (fail_test_count > 0) {
    printf("\n%2zu FAILED %s\n", fail_test_count,
           (fail_test_count == 1) ? "TEST" : "TESTS");
  }
  if (timeout_test_count > 0) {
    printf("%2zu TIMEOUT %s\n", timeout_test_count,
           (timeout_test_count == 1) ? "TEST" : "TESTS");
  }
  if (slow_test_count > 0) {
    printf("%2zu SLOW %s\n", slow_test_count,
           (slow_test_count == 1) ? "TEST" : "TESTS");
  }
  fflush(stdout);
}

std::string XmlEscape(const std::string& xml) {
  std::string escaped;
  escaped.reserve(xml.size());

  for (auto c : xml) {
    switch (c) {
      case '<':
        escaped.append("&lt;");
        break;
      case '>':
        escaped.append("&gt;");
        break;
      case '&':
        escaped.append("&amp;");
        break;
      case '\'':
        escaped.append("&apos;");
        break;
      case '"':
        escaped.append("&quot;");
        break;
      default:
        escaped.append(1, c);
        break;
    }
  }

  return escaped;
}

// Output xml file when --gtest_output is used, write this function as we can't
// reuse
// gtest.cc:XmlUnitTestResultPrinter. The reason is XmlUnitTestResultPrinter is
// totally
// defined in gtest.cc and not expose to outside. What's more, as we don't run
// gtest in
// the parent process, we don't have gtest classes which are needed by
// XmlUnitTestResultPrinter.
void OnTestIterationEndXmlPrint(const std::string& xml_output_filename,
                                const std::vector<TestCase>& testcase_list,
                                time_t epoch_iteration_start_time,
                                int64_t elapsed_time_ns) {
  FILE* fp = fopen(xml_output_filename.c_str(), "w");
  if (fp == NULL) {
    fprintf(stderr, "failed to open '%s': %s\n", xml_output_filename.c_str(),
            strerror(errno));
    exit(1);
  }

  size_t total_test_count = 0;
  size_t total_failed_count = 0;
  std::vector<size_t> failed_count_list(testcase_list.size(), 0);
  std::vector<int64_t> elapsed_time_list(testcase_list.size(), 0);
  for (size_t i = 0; i < testcase_list.size(); ++i) {
    auto& testcase = testcase_list[i];
    total_test_count += testcase.TestCount();
    for (size_t j = 0; j < testcase.TestCount(); ++j) {
      if (testcase.GetTestResult(j) != TEST_SUCCESS) {
        ++failed_count_list[i];
      }
      elapsed_time_list[i] += testcase.GetTestTime(j);
    }
    total_failed_count += failed_count_list[i];
  }

  const tm* time_struct = localtime(&epoch_iteration_start_time);
  char timestamp[40];
  snprintf(timestamp, sizeof(timestamp), "%4d-%02d-%02dT%02d:%02d:%02d",
           time_struct->tm_year + 1900, time_struct->tm_mon + 1,
           time_struct->tm_mday, time_struct->tm_hour, time_struct->tm_min,
           time_struct->tm_sec);

  fputs("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", fp);
  fprintf(
      fp,
      "<testsuites tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
      total_test_count, total_failed_count);
  fprintf(fp, " timestamp=\"%s\" time=\"%.3lf\" name=\"AllTests\">\n",
          timestamp, elapsed_time_ns / 1e9);
  for (size_t i = 0; i < testcase_list.size(); ++i) {
    auto& testcase = testcase_list[i];
    fprintf(fp,
            "  <testsuite name=\"%s\" tests=\"%zu\" failures=\"%zu\" "
            "disabled=\"0\" errors=\"0\"",
            testcase.GetName().c_str(), testcase.TestCount(),
            failed_count_list[i]);
    fprintf(fp, " time=\"%.3lf\">\n", elapsed_time_list[i] / 1e9);

    for (size_t j = 0; j < testcase.TestCount(); ++j) {
      fprintf(fp,
              "    <testcase name=\"%s\" status=\"run\" time=\"%.3lf\" "
              "classname=\"%s\"",
              testcase.GetTest(j).GetName().c_str(),
              testcase.GetTestTime(j) / 1e9, testcase.GetName().c_str());
      if (testcase.GetTestResult(j) == TEST_SUCCESS) {
        fputs(" />\n", fp);
      } else {
        fputs(">\n", fp);
        const std::string& test_output = testcase.GetTest(j).GetTestOutput();
        const std::string escaped_test_output = XmlEscape(test_output);
        fprintf(fp, "      <failure message=\"%s\" type=\"\">\n",
                escaped_test_output.c_str());
        fputs("      </failure>\n", fp);
        fputs("    </testcase>\n", fp);
      }
    }

    fputs("  </testsuite>\n", fp);
  }
  fputs("</testsuites>\n", fp);
  fclose(fp);
}

static bool sigint_flag;
static bool sigquit_flag;

static void signal_handler(int sig) {
  if (sig == SIGINT) {
    sigint_flag = true;
  } else if (sig == SIGQUIT) {
    sigquit_flag = true;
  }
}

static bool RegisterSignalHandler() {
  sigint_flag = false;
  sigquit_flag = false;
  sig_t ret = signal(SIGINT, signal_handler);
  if (ret != SIG_ERR) {
    ret = signal(SIGQUIT, signal_handler);
  }
  if (ret == SIG_ERR) {
    perror("RegisterSignalHandler");
    return false;
  }
  return true;
}

static bool UnregisterSignalHandler() {
  sig_t ret = signal(SIGINT, SIG_DFL);
  if (ret != SIG_ERR) {
    ret = signal(SIGQUIT, SIG_DFL);
  }
  if (ret == SIG_ERR) {
    perror("UnregisterSignalHandler");
    return false;
  }
  return true;
}

struct ChildProcInfo {
  pid_t pid;
  int64_t start_time_ns;
  int64_t end_time_ns;
  int64_t
      deadline_end_time_ns;  // The time when the test is thought of as timeout.
  size_t testcase_id, test_id;
  bool finished;
  bool timed_out;
  int exit_status;
  int child_read_fd;  // File descriptor to read child test failure info.
};

// Forked Child process, run the single test.
static void ChildProcessFn(int argc, char** argv,
                           const std::string& test_name) {
  char** new_argv = new char*[argc + 2];
  memcpy(new_argv, argv, sizeof(char*) * argc);

  char* filter_arg = new char[test_name.size() + 20];
  strcpy(filter_arg, "--gtest_filter=");
  strcat(filter_arg, test_name.c_str());
  new_argv[argc] = filter_arg;
  new_argv[argc + 1] = NULL;

  int new_argc = argc + 1;
  testing::InitGoogleTest(&new_argc, new_argv);
  int result = RUN_ALL_TESTS();
  exit(result);
}

static ChildProcInfo RunChildProcess(const std::string& test_name,
                                     int testcase_id, int test_id, int argc,
                                     char** argv) {
  int pipefd[2];
  if (pipe(pipefd) == -1) {
    perror("pipe in RunTestInSeparateProc");
    exit(1);
  }
  if (fcntl(pipefd[0], F_SETFL, O_NONBLOCK) == -1) {
    perror("fcntl in RunTestInSeparateProc");
    exit(1);
  }
  pid_t pid = fork();
  if (pid == -1) {
    perror("fork in RunTestInSeparateProc");
    exit(1);
  } else if (pid == 0) {
    // In child process, run a single test.
    close(pipefd[0]);
    close(STDOUT_FILENO);
    close(STDERR_FILENO);
    dup2(pipefd[1], STDOUT_FILENO);
    dup2(pipefd[1], STDERR_FILENO);

    if (!UnregisterSignalHandler()) {
      exit(1);
    }
    ChildProcessFn(argc, argv, test_name);
    // Unreachable.
  }
  // In parent process, initialize child process info.
  close(pipefd[1]);
  ChildProcInfo child_proc;
  child_proc.child_read_fd = pipefd[0];
  child_proc.pid = pid;
  child_proc.start_time_ns = NanoTime();
  child_proc.deadline_end_time_ns =
      child_proc.start_time_ns + GetDeadlineInfo(test_name) * 1000000LL;
  child_proc.testcase_id = testcase_id;
  child_proc.test_id = test_id;
  child_proc.finished = false;
  return child_proc;
}

static void HandleSignals(std::vector<TestCase>& testcase_list,
                          std::vector<ChildProcInfo>& child_proc_list) {
  if (sigquit_flag) {
    sigquit_flag = false;
    // Print current running tests.
    printf("List of current running tests:\n");
    for (const auto& child_proc : child_proc_list) {
      if (child_proc.pid != 0) {
        std::string test_name =
            testcase_list[child_proc.testcase_id].GetTestName(
                child_proc.test_id);
        int64_t current_time_ns = NanoTime();
        int64_t run_time_ms =
            (current_time_ns - child_proc.start_time_ns) / 1000000;
        printf("  %s (%" PRId64 " ms)\n", test_name.c_str(), run_time_ms);
      }
    }
  } else if (sigint_flag) {
    sigint_flag = false;
    // Kill current running tests.
    for (const auto& child_proc : child_proc_list) {
      if (child_proc.pid != 0) {
        // Send SIGKILL to ensure the child process can be killed
        // unconditionally.
        kill(child_proc.pid, SIGKILL);
      }
    }
    // SIGINT kills the parent process as well.
    exit(1);
  }
}

static bool CheckChildProcExit(pid_t exit_pid, int exit_status,
                               std::vector<ChildProcInfo>& child_proc_list) {
  for (size_t i = 0; i < child_proc_list.size(); ++i) {
    if (child_proc_list[i].pid == exit_pid) {
      child_proc_list[i].finished = true;
      child_proc_list[i].timed_out = false;
      child_proc_list[i].exit_status = exit_status;
      child_proc_list[i].end_time_ns = NanoTime();
      return true;
    }
  }
  return false;
}

static size_t CheckChildProcTimeout(
    std::vector<ChildProcInfo>& child_proc_list) {
  int64_t current_time_ns = NanoTime();
  size_t timeout_child_count = 0;
  for (size_t i = 0; i < child_proc_list.size(); ++i) {
    if (child_proc_list[i].deadline_end_time_ns <= current_time_ns) {
      child_proc_list[i].finished = true;
      child_proc_list[i].timed_out = true;
      child_proc_list[i].end_time_ns = current_time_ns;
      ++timeout_child_count;
    }
  }
  return timeout_child_count;
}

static void ReadChildProcOutput(std::vector<TestCase>& testcase_list,
                                std::vector<ChildProcInfo>& child_proc_list) {
  for (const auto& child_proc : child_proc_list) {
    TestCase& testcase = testcase_list[child_proc.testcase_id];
    int test_id = child_proc.test_id;
    while (true) {
      char buf[1024];
      ssize_t bytes_read = TEMP_FAILURE_RETRY(
          read(child_proc.child_read_fd, buf, sizeof(buf) - 1));
      if (bytes_read > 0) {
        buf[bytes_read] = '\0';
        testcase.GetTest(test_id).AppendTestOutput(buf);
      } else if (bytes_read == 0) {
        break;  // Read end.
      } else {
        if (errno == EAGAIN) {
          break;
        }
        perror("failed to read child_read_fd");
        exit(1);
      }
    }
  }
}

static void WaitChildProcs(std::vector<TestCase>& testcase_list,
                           std::vector<ChildProcInfo>& child_proc_list) {
  size_t finished_child_count = 0;
  while (true) {
    int status;
    pid_t result;
    while ((result = TEMP_FAILURE_RETRY(waitpid(-1, &status, WNOHANG))) > 0) {
      if (CheckChildProcExit(result, status, child_proc_list)) {
        ++finished_child_count;
      }
    }

    if (result == -1) {
      if (errno == ECHILD) {
        // This happens when we have no running child processes.
        return;
      } else {
        perror("waitpid");
        exit(1);
      }
    } else if (result == 0) {
      finished_child_count += CheckChildProcTimeout(child_proc_list);
    }

    ReadChildProcOutput(testcase_list, child_proc_list);
    if (finished_child_count > 0) {
      return;
    }

    HandleSignals(testcase_list, child_proc_list);

    // sleep 1 ms to avoid busy looping.
    timespec sleep_time;
    sleep_time.tv_sec = 0;
    sleep_time.tv_nsec = 1000000;
    nanosleep(&sleep_time, NULL);
  }
}

static TestResult WaitForOneChild(pid_t pid) {
  int exit_status;
  pid_t result = TEMP_FAILURE_RETRY(waitpid(pid, &exit_status, 0));

  TestResult test_result = TEST_SUCCESS;
  if (result != pid || WEXITSTATUS(exit_status) != 0) {
    test_result = TEST_FAILED;
  }
  return test_result;
}

static void CollectChildTestResult(const ChildProcInfo& child_proc,
                                   TestCase& testcase) {
  int test_id = child_proc.test_id;
  testcase.SetTestTime(test_id,
                       child_proc.end_time_ns - child_proc.start_time_ns);
  if (child_proc.timed_out) {
    // The child process marked as timed_out has not exited, and we should kill
    // it manually.
    kill(child_proc.pid, SIGKILL);
    WaitForOneChild(child_proc.pid);
  }
  close(child_proc.child_read_fd);

  if (child_proc.timed_out) {
    testcase.SetTestResult(test_id, TEST_TIMEOUT);
    char buf[1024];
    snprintf(buf, sizeof(buf),
             "%s killed because of timeout at %" PRId64 " ms.\n",
             testcase.GetTestName(test_id).c_str(),
             testcase.GetTestTime(test_id) / 1000000);
    testcase.GetTest(test_id).AppendTestOutput(buf);

  } else if (WIFSIGNALED(child_proc.exit_status)) {
    // Record signal terminated test as failed.
    testcase.SetTestResult(test_id, TEST_FAILED);
    char buf[1024];
    snprintf(buf, sizeof(buf), "%s terminated by signal: %s.\n",
             testcase.GetTestName(test_id).c_str(),
             strsignal(WTERMSIG(child_proc.exit_status)));
    testcase.GetTest(test_id).AppendTestOutput(buf);

  } else {
    int exitcode = WEXITSTATUS(child_proc.exit_status);
    testcase.SetTestResult(test_id, exitcode == 0 ? TEST_SUCCESS : TEST_FAILED);
    if (exitcode != 0) {
      char buf[1024];
      snprintf(buf, sizeof(buf), "%s exited with exitcode %d.\n",
               testcase.GetTestName(test_id).c_str(), exitcode);
      testcase.GetTest(test_id).AppendTestOutput(buf);
    }
  }
}

// We choose to use multi-fork and multi-wait here instead of multi-thread,
// because it always
// makes deadlock to use fork in multi-thread.
// Returns true if all tests run successfully, otherwise return false.
static bool RunTestInSeparateProc(int argc, char** argv,
                                  std::vector<TestCase>& testcase_list,
                                  int iteration_count, size_t job_count,
                                  const std::string& xml_output_filename) {
  // Stop default result printer to avoid environment setup/teardown information
  // for each test.
  testing::UnitTest::GetInstance()->listeners().Release(
      testing::UnitTest::GetInstance()->listeners().default_result_printer());
  testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter);

  if (!RegisterSignalHandler()) {
    exit(1);
  }

  bool all_tests_passed = true;

  for (size_t iteration = 1;
       iteration_count < 0 || iteration <= static_cast<size_t>(iteration_count);
       ++iteration) {
    OnTestIterationStartPrint(testcase_list, iteration, iteration_count);
    int64_t iteration_start_time_ns = NanoTime();
    time_t epoch_iteration_start_time = time(NULL);

    // Run up to job_count tests in parallel, each test in a child process.
    std::vector<ChildProcInfo> child_proc_list;

    // Next test to run is [next_testcase_id:next_test_id].
    size_t next_testcase_id = 0;
    size_t next_test_id = 0;

    // Record how many tests are finished.
    std::vector<size_t> finished_test_count_list(testcase_list.size(), 0);
    size_t finished_testcase_count = 0;

    while (finished_testcase_count < testcase_list.size()) {
      // run up to job_count child processes.
      while (child_proc_list.size() < job_count &&
             next_testcase_id < testcase_list.size()) {
        std::string test_name =
            testcase_list[next_testcase_id].GetTestName(next_test_id);
        ChildProcInfo child_proc = RunChildProcess(test_name, next_testcase_id,
                                                   next_test_id, argc, argv);
        child_proc_list.push_back(child_proc);
        if (++next_test_id == testcase_list[next_testcase_id].TestCount()) {
          next_test_id = 0;
          ++next_testcase_id;
        }
      }

      // Wait for any child proc finish or timeout.
      WaitChildProcs(testcase_list, child_proc_list);

      // Collect result.
      auto it = child_proc_list.begin();
      while (it != child_proc_list.end()) {
        auto& child_proc = *it;
        if (child_proc.finished == true) {
          size_t testcase_id = child_proc.testcase_id;
          size_t test_id = child_proc.test_id;
          TestCase& testcase = testcase_list[testcase_id];

          CollectChildTestResult(child_proc, testcase);
          OnTestEndPrint(testcase, test_id);

          if (++finished_test_count_list[testcase_id] == testcase.TestCount()) {
            ++finished_testcase_count;
          }
          if (testcase.GetTestResult(test_id) != TEST_SUCCESS) {
            all_tests_passed = false;
          }

          it = child_proc_list.erase(it);
        } else {
          ++it;
        }
      }
    }

    int64_t elapsed_time_ns = NanoTime() - iteration_start_time_ns;
    OnTestIterationEndPrint(testcase_list, iteration, elapsed_time_ns);
    if (!xml_output_filename.empty()) {
      OnTestIterationEndXmlPrint(xml_output_filename, testcase_list,
                                 epoch_iteration_start_time, elapsed_time_ns);
    }
  }

  if (!UnregisterSignalHandler()) {
    exit(1);
  }

  return all_tests_passed;
}

static size_t GetDefaultJobCount() {
  return static_cast<size_t>(sysconf(_SC_NPROCESSORS_ONLN));
}

static void AddPathSeparatorInTestProgramPath(std::vector<char*>& args) {
  // To run DeathTest in threadsafe mode, gtest requires that the user must
  // invoke the
  // test program via a valid path that contains at least one path separator.
  // The reason is that gtest uses clone() + execve() to run DeathTest in
  // threadsafe mode,
  // and execve() doesn't read environment variable PATH, so execve() will not
  // success
  // until we specify the absolute path or relative path of the test program
  // directly.
  if (strchr(args[0], '/') == NULL) {
    char path[PATH_MAX];
    ssize_t path_len = readlink("/proc/self/exe", path, sizeof(path));
    if (path_len <= 0 || path_len >= static_cast<ssize_t>(sizeof(path))) {
      perror("readlink");
      exit(1);
    }
    path[path_len] = '\0';
    args[0] = strdup(path);
  }
}

static void AddGtestFilterSynonym(std::vector<char*>& args) {
  // Support --gtest-filter as a synonym for --gtest_filter.
  for (size_t i = 1; i < args.size(); ++i) {
    if (strncmp(args[i], "--gtest-filter", strlen("--gtest-filter")) == 0) {
      args[i][7] = '_';
    }
  }
}

struct IsolationTestOptions {
  bool isolate;
  size_t job_count;
  int test_deadline_ms;
  int test_warnline_ms;
  std::string gtest_color;
  bool gtest_print_time;
  int gtest_repeat;
  std::string gtest_output;
};

// Pick options not for gtest: There are two parts in args, one part is used in
// isolation test mode
// as described in PrintHelpInfo(), the other part is handled by
// testing::InitGoogleTest() in
// gtest. PickOptions() picks the first part into IsolationTestOptions
// structure, leaving the second
// part in args.
// Arguments:
//   args is used to pass in all command arguments, and pass out only the part
//   of options for gtest.
//   options is used to pass out test options in isolation mode.
// Return false if there is error in arguments.
static bool PickOptions(std::vector<char*>& args,
                        IsolationTestOptions& options) {
  for (size_t i = 1; i < args.size(); ++i) {
    if (strcmp(args[i], "--help") == 0 || strcmp(args[i], "-h") == 0) {
      PrintHelpInfo();
      options.isolate = false;
      return true;
    }
  }

  AddPathSeparatorInTestProgramPath(args);
  AddGtestFilterSynonym(args);

  // if --vts-selftest argument is used, only enable self tests, otherwise
  // remove self tests.
  bool enable_selftest = false;
  for (size_t i = 1; i < args.size(); ++i) {
    if (strcmp(args[i], "--vts-selftest") == 0) {
      // This argument is to enable "vts_selftest*" for self test, and is not
      // shown in help info.
      // Don't remove this option from arguments.
      enable_selftest = true;
    }
  }
  std::string gtest_filter_str;
  for (size_t i = args.size() - 1; i >= 1; --i) {
    if (strncmp(args[i], "--gtest_filter=", strlen("--gtest_filter=")) == 0) {
      gtest_filter_str = std::string(args[i]);
      args.erase(args.begin() + i);
      break;
    }
  }
  if (enable_selftest == true) {
    args.push_back(strdup("--gtest_filter=vts_selftest*"));
  } else {
    if (gtest_filter_str == "") {
      gtest_filter_str = "--gtest_filter=-vts_selftest*";
    } else {
      // Find if '-' for NEGATIVE_PATTERNS exists.
      if (gtest_filter_str.find(":-") != std::string::npos) {
        gtest_filter_str += ":vts_selftest*";
      } else {
        gtest_filter_str += ":-vts_selftest*";
      }
    }
    args.push_back(strdup(gtest_filter_str.c_str()));
  }

  options.isolate = true;
  // Parse arguments that make us can't run in isolation mode.
  for (size_t i = 1; i < args.size(); ++i) {
    if (strcmp(args[i], "--no-isolate") == 0) {
      options.isolate = false;
    } else if (strcmp(args[i], "--gtest_list_tests") == 0) {
      options.isolate = false;
    }
  }

  // Stop parsing if we will not run in isolation mode.
  if (options.isolate == false) {
    return true;
  }

  // Init default isolation test options.
  options.job_count = GetDefaultJobCount();
  options.test_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
  options.test_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS;
  options.gtest_color = testing::GTEST_FLAG(color);
  options.gtest_print_time = testing::GTEST_FLAG(print_time);
  options.gtest_repeat = testing::GTEST_FLAG(repeat);
  options.gtest_output = testing::GTEST_FLAG(output);

  // Parse arguments speficied for isolation mode.
  for (size_t i = 1; i < args.size(); ++i) {
    if (strncmp(args[i], "-j", strlen("-j")) == 0) {
      char* p = args[i] + strlen("-j");
      int count = 0;
      if (*p != '\0') {
        // Argument like -j5.
        count = atoi(p);
      } else if (args.size() > i + 1) {
        // Arguments like -j 5.
        count = atoi(args[i + 1]);
        ++i;
      }
      if (count <= 0) {
        fprintf(stderr, "invalid job count: %d\n", count);
        return false;
      }
      options.job_count = static_cast<size_t>(count);
    } else if (strncmp(args[i], "--deadline=", strlen("--deadline=")) == 0) {
      int time_ms = atoi(args[i] + strlen("--deadline="));
      if (time_ms <= 0) {
        fprintf(stderr, "invalid deadline: %d\n", time_ms);
        return false;
      }
      options.test_deadline_ms = time_ms;
    } else if (strncmp(args[i], "--warnline=", strlen("--warnline=")) == 0) {
      int time_ms = atoi(args[i] + strlen("--warnline="));
      if (time_ms <= 0) {
        fprintf(stderr, "invalid warnline: %d\n", time_ms);
        return false;
      }
      options.test_warnline_ms = time_ms;
    } else if (strncmp(args[i], "--gtest_color=", strlen("--gtest_color=")) ==
               0) {
      options.gtest_color = args[i] + strlen("--gtest_color=");
    } else if (strcmp(args[i], "--gtest_print_time=0") == 0) {
      options.gtest_print_time = false;
    } else if (strncmp(args[i], "--gtest_repeat=", strlen("--gtest_repeat=")) ==
               0) {
      // If the value of gtest_repeat is < 0, then it indicates the tests
      // should be repeated forever.
      options.gtest_repeat = atoi(args[i] + strlen("--gtest_repeat="));
      // Remove --gtest_repeat=xx from arguments, so child process only run one
      // iteration for a single test.
      args.erase(args.begin() + i);
      --i;
    } else if (strncmp(args[i], "--gtest_output=", strlen("--gtest_output=")) ==
               0) {
      std::string output = args[i] + strlen("--gtest_output=");
      // generate output xml file path according to the strategy in gtest.
      bool success = true;
      if (strncmp(output.c_str(), "xml:", strlen("xml:")) == 0) {
        output = output.substr(strlen("xml:"));
        if (output.size() == 0) {
          success = false;
        }
        // Make absolute path.
        if (success && output[0] != '/') {
          char* cwd = getcwd(NULL, 0);
          if (cwd != NULL) {
            output = std::string(cwd) + "/" + output;
            free(cwd);
          } else {
            success = false;
          }
        }
        // Add file name if output is a directory.
        if (success && output.back() == '/') {
          output += "test_details.xml";
        }
      }
      if (success) {
        options.gtest_output = output;
      } else {
        fprintf(stderr, "invalid gtest_output file: %s\n", args[i]);
        return false;
      }

      // Remove --gtest_output=xxx from arguments, so child process will not
      // write xml file.
      args.erase(args.begin() + i);
      --i;
    }
  }

  // Add --no-isolate in args to prevent child process from running in isolation
  // mode again.
  // As DeathTest will try to call execve(), this argument should always be
  // added.
  args.insert(args.begin() + 1, strdup("--no-isolate"));
  return true;
}

int main(int argc, char** argv) {
  std::vector<char*> arg_list;
  for (int i = 0; i < argc; ++i) {
    arg_list.push_back(argv[i]);
  }

  IsolationTestOptions options;
  if (PickOptions(arg_list, options) == false) {
    return 1;
  }

  if (options.isolate == true) {
    // Set global variables.
    global_test_run_deadline_ms = options.test_deadline_ms;
    global_test_run_warnline_ms = options.test_warnline_ms;
    testing::GTEST_FLAG(color) = options.gtest_color.c_str();
    testing::GTEST_FLAG(print_time) = options.gtest_print_time;
    std::vector<TestCase> testcase_list;

    argc = static_cast<int>(arg_list.size());
    arg_list.push_back(NULL);
    if (EnumerateTests(argc, arg_list.data(), testcase_list) == false) {
      return 1;
    }
    bool all_test_passed = RunTestInSeparateProc(
        argc, arg_list.data(), testcase_list, options.gtest_repeat,
        options.job_count, options.gtest_output);
    return all_test_passed ? 0 : 1;
  } else {
    argc = static_cast<int>(arg_list.size());
    arg_list.push_back(NULL);
    testing::InitGoogleTest(&argc, arg_list.data());
    return RUN_ALL_TESTS();
  }
}

//################################################################################
// VTS Gtest self test, run this by --vts-selftest option.

TEST(vts_selftest, test_success) { ASSERT_EQ(1, 1); }

TEST(vts_selftest, test_fail) { ASSERT_EQ(0, 1); }

TEST(vts_selftest, test_time_warn) { sleep(4); }

TEST(vts_selftest, test_timeout) {
  while (1) {
  }
}

TEST(vts_selftest, test_signal_SEGV_terminated) {
  char* p = reinterpret_cast<char*>(static_cast<intptr_t>(atoi("0")));
  *p = 3;
}

class vts_selftest_DeathTest : public ::testing::Test {
 protected:
  virtual void SetUp() {
    ::testing::FLAGS_gtest_death_test_style = "threadsafe";
  }
};

static void deathtest_helper_success() {
  ASSERT_EQ(1, 1);
  exit(0);
}

TEST_F(vts_selftest_DeathTest, success) {
  ASSERT_EXIT(deathtest_helper_success(), ::testing::ExitedWithCode(0), "");
}

static void deathtest_helper_fail() { ASSERT_EQ(1, 0); }

TEST_F(vts_selftest_DeathTest, fail) {
  ASSERT_EXIT(deathtest_helper_fail(), ::testing::ExitedWithCode(0), "");
}