/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <string.h> #include <stdint.h> #include <keystore/keystore.h> #include <keymaster/softkeymaster.h> #include <hardware/hardware.h> #include <hardware/keymaster0.h> #include <openssl/evp.h> #include <openssl/bio.h> #include <openssl/rsa.h> #include <openssl/err.h> #include <openssl/x509.h> #include <UniquePtr.h> // For debugging // #define LOG_NDEBUG 0 #define LOG_TAG "OpenSSLKeyMaster" #include <cutils/log.h> struct BIGNUM_Delete { void operator()(BIGNUM* p) const { BN_free(p); } }; typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; struct EVP_PKEY_Delete { void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } }; typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; struct PKCS8_PRIV_KEY_INFO_Delete { void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); } }; typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; struct DSA_Delete { void operator()(DSA* p) const { DSA_free(p); } }; typedef UniquePtr<DSA, DSA_Delete> Unique_DSA; struct EC_KEY_Delete { void operator()(EC_KEY* p) const { EC_KEY_free(p); } }; typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; struct EC_GROUP_Delete { void operator()(EC_GROUP* p) const { EC_GROUP_free(p); } }; typedef UniquePtr<EC_GROUP, EC_GROUP_Delete> Unique_EC_GROUP; struct RSA_Delete { void operator()(RSA* p) const { RSA_free(p); } }; typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; struct Malloc_Free { void operator()(void* p) const { free(p); } }; typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t; /** * Many OpenSSL APIs take ownership of an argument on success but * don't free the argument on failure. This means we need to tell our * scoped pointers when we've transferred ownership, without * triggering a warning by not using the result of release(). */ template <typename T, typename Delete_T> inline void release_because_ownership_transferred(UniquePtr<T, Delete_T>& p) { T* val __attribute__((unused)) = p.release(); } /* * Checks this thread's OpenSSL error queue and logs if * necessary. */ static void logOpenSSLError(const char* location) { int error = ERR_get_error(); if (error != 0) { char message[256]; ERR_error_string_n(error, message, sizeof(message)); ALOGE("OpenSSL error in %s %d: %s", location, error, message); } ERR_clear_error(); ERR_remove_thread_state(NULL); } static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { /* * Find the length of each size. Public key is not needed anymore * but must be kept for alignment purposes. */ int publicLen = 0; int privateLen = i2d_PrivateKey(pkey, NULL); if (privateLen <= 0) { ALOGE("private key size was too big"); return -1; } /* int type + int size + private key data + int size + public key data */ *keyBlobLength = get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + privateLen + sizeof(privateLen) + publicLen; // derData will be returned to the caller, so allocate it with malloc. UniquePtr<unsigned char, Malloc_Free> derData( static_cast<unsigned char*>(malloc(*keyBlobLength))); if (derData.get() == NULL) { ALOGE("could not allocate memory for key blob"); return -1; } unsigned char* p = derData.get(); /* Write the magic value for software keys. */ p = add_softkey_header(p, *keyBlobLength); /* Write key type to allocated buffer */ for (int i = sizeof(type) - 1; i >= 0; i--) { *p++ = (type >> (8 * i)) & 0xFF; } /* Write public key to allocated buffer */ for (int i = sizeof(publicLen) - 1; i >= 0; i--) { *p++ = (publicLen >> (8 * i)) & 0xFF; } /* Write private key to allocated buffer */ for (int i = sizeof(privateLen) - 1; i >= 0; i--) { *p++ = (privateLen >> (8 * i)) & 0xFF; } if (i2d_PrivateKey(pkey, &p) != privateLen) { logOpenSSLError("wrap_key"); return -1; } *keyBlob = derData.release(); return 0; } static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { long publicLen = 0; long privateLen = 0; const uint8_t* p = keyBlob; const uint8_t* const end = keyBlob + keyBlobLength; if (keyBlob == NULL) { ALOGE("supplied key blob was NULL"); return NULL; } int type = 0; if (keyBlobLength < (get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + 1 + sizeof(privateLen) + 1)) { ALOGE("key blob appears to be truncated"); return NULL; } if (!is_softkey(p, keyBlobLength)) { ALOGE("cannot read key; it was not made by this keymaster"); return NULL; } p += get_softkey_header_size(); for (size_t i = 0; i < sizeof(type); i++) { type = (type << 8) | *p++; } for (size_t i = 0; i < sizeof(type); i++) { publicLen = (publicLen << 8) | *p++; } if (p + publicLen > end) { ALOGE("public key length encoding error: size=%ld, end=%td", publicLen, end - p); return NULL; } p += publicLen; if (end - p < 2) { ALOGE("private key truncated"); return NULL; } for (size_t i = 0; i < sizeof(type); i++) { privateLen = (privateLen << 8) | *p++; } if (p + privateLen > end) { ALOGE("private key length encoding error: size=%ld, end=%td", privateLen, end - p); return NULL; } Unique_EVP_PKEY pkey(d2i_PrivateKey(type, nullptr, &p, privateLen)); if (pkey.get() == NULL) { logOpenSSLError("unwrap_key"); return NULL; } return pkey.release(); } static int generate_dsa_keypair(EVP_PKEY* pkey, const keymaster_dsa_keygen_params_t* dsa_params) { if (dsa_params->key_size < 512) { ALOGI("Requested DSA key size is too small (<512)"); return -1; } Unique_DSA dsa(DSA_new()); if (dsa_params->generator_len == 0 || dsa_params->prime_p_len == 0 || dsa_params->prime_q_len == 0 || dsa_params->generator == NULL || dsa_params->prime_p == NULL || dsa_params->prime_q == NULL) { if (DSA_generate_parameters_ex(dsa.get(), dsa_params->key_size, NULL, 0, NULL, NULL, NULL) != 1) { logOpenSSLError("generate_dsa_keypair"); return -1; } } else { dsa->g = BN_bin2bn(dsa_params->generator, dsa_params->generator_len, NULL); if (dsa->g == NULL) { logOpenSSLError("generate_dsa_keypair"); return -1; } dsa->p = BN_bin2bn(dsa_params->prime_p, dsa_params->prime_p_len, NULL); if (dsa->p == NULL) { logOpenSSLError("generate_dsa_keypair"); return -1; } dsa->q = BN_bin2bn(dsa_params->prime_q, dsa_params->prime_q_len, NULL); if (dsa->q == NULL) { logOpenSSLError("generate_dsa_keypair"); return -1; } } if (DSA_generate_key(dsa.get()) != 1) { logOpenSSLError("generate_dsa_keypair"); return -1; } if (EVP_PKEY_assign_DSA(pkey, dsa.get()) == 0) { logOpenSSLError("generate_dsa_keypair"); return -1; } release_because_ownership_transferred(dsa); return 0; } static int generate_ec_keypair(EVP_PKEY* pkey, const keymaster_ec_keygen_params_t* ec_params) { Unique_EC_GROUP group; switch (ec_params->field_size) { case 224: group.reset(EC_GROUP_new_by_curve_name(NID_secp224r1)); break; case 256: group.reset(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); break; case 384: group.reset(EC_GROUP_new_by_curve_name(NID_secp384r1)); break; case 521: group.reset(EC_GROUP_new_by_curve_name(NID_secp521r1)); break; default: break; } if (group.get() == NULL) { logOpenSSLError("generate_ec_keypair"); return -1; } #if !defined(OPENSSL_IS_BORINGSSL) EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED); EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE); #endif /* initialize EC key */ Unique_EC_KEY eckey(EC_KEY_new()); if (eckey.get() == NULL) { logOpenSSLError("generate_ec_keypair"); return -1; } if (EC_KEY_set_group(eckey.get(), group.get()) != 1) { logOpenSSLError("generate_ec_keypair"); return -1; } if (EC_KEY_generate_key(eckey.get()) != 1 || EC_KEY_check_key(eckey.get()) < 0) { logOpenSSLError("generate_ec_keypair"); return -1; } if (EVP_PKEY_assign_EC_KEY(pkey, eckey.get()) == 0) { logOpenSSLError("generate_ec_keypair"); return -1; } release_because_ownership_transferred(eckey); return 0; } static int generate_rsa_keypair(EVP_PKEY* pkey, const keymaster_rsa_keygen_params_t* rsa_params) { Unique_BIGNUM bn(BN_new()); if (bn.get() == NULL) { logOpenSSLError("generate_rsa_keypair"); return -1; } if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { logOpenSSLError("generate_rsa_keypair"); return -1; } /* initialize RSA */ Unique_RSA rsa(RSA_new()); if (rsa.get() == NULL) { logOpenSSLError("generate_rsa_keypair"); return -1; } if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) || RSA_check_key(rsa.get()) < 0) { logOpenSSLError("generate_rsa_keypair"); return -1; } if (EVP_PKEY_assign_RSA(pkey, rsa.get()) == 0) { logOpenSSLError("generate_rsa_keypair"); return -1; } release_because_ownership_transferred(rsa); return 0; } __attribute__((visibility("default"))) int openssl_generate_keypair( const keymaster0_device_t*, const keymaster_keypair_t key_type, const void* key_params, uint8_t** keyBlob, size_t* keyBlobLength) { Unique_EVP_PKEY pkey(EVP_PKEY_new()); if (pkey.get() == NULL) { logOpenSSLError("openssl_generate_keypair"); return -1; } if (key_params == NULL) { ALOGW("key_params == null"); return -1; } else if (key_type == TYPE_DSA) { const keymaster_dsa_keygen_params_t* dsa_params = (const keymaster_dsa_keygen_params_t*)key_params; generate_dsa_keypair(pkey.get(), dsa_params); } else if (key_type == TYPE_EC) { const keymaster_ec_keygen_params_t* ec_params = (const keymaster_ec_keygen_params_t*)key_params; generate_ec_keypair(pkey.get(), ec_params); } else if (key_type == TYPE_RSA) { const keymaster_rsa_keygen_params_t* rsa_params = (const keymaster_rsa_keygen_params_t*)key_params; generate_rsa_keypair(pkey.get(), rsa_params); } else { ALOGW("Unsupported key type %d", key_type); return -1; } if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), keyBlob, keyBlobLength)) { return -1; } return 0; } __attribute__((visibility("default"))) int openssl_import_keypair(const keymaster0_device_t*, const uint8_t* key, const size_t key_length, uint8_t** key_blob, size_t* key_blob_length) { if (key == NULL) { ALOGW("input key == NULL"); return -1; } else if (key_blob == NULL || key_blob_length == NULL) { ALOGW("output key blob or length == NULL"); return -1; } Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); if (pkcs8.get() == NULL) { logOpenSSLError("openssl_import_keypair"); return -1; } /* assign to EVP */ Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); if (pkey.get() == NULL) { logOpenSSLError("openssl_import_keypair"); return -1; } if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { return -1; } return 0; } __attribute__((visibility("default"))) int openssl_get_keypair_public(const keymaster0_device_t*, const uint8_t* key_blob, const size_t key_blob_length, uint8_t** x509_data, size_t* x509_data_length) { if (x509_data == NULL || x509_data_length == NULL) { ALOGW("output public key buffer == NULL"); return -1; } Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); if (pkey.get() == NULL) { return -1; } int len = i2d_PUBKEY(pkey.get(), NULL); if (len <= 0) { logOpenSSLError("openssl_get_keypair_public"); return -1; } UniquePtr<uint8_t, Malloc_Free> key(static_cast<uint8_t*>(malloc(len))); if (key.get() == NULL) { ALOGE("Could not allocate memory for public key data"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); if (i2d_PUBKEY(pkey.get(), &tmp) != len) { logOpenSSLError("openssl_get_keypair_public"); return -1; } ALOGV("Length of x509 data is %d", len); *x509_data_length = len; *x509_data = key.release(); return 0; } static int sign_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, const uint8_t* data, const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); if (dsa.get() == NULL) { logOpenSSLError("openssl_sign_dsa"); return -1; } unsigned int dsaSize = DSA_size(dsa.get()); UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dsaSize))); if (signedDataPtr.get() == NULL) { logOpenSSLError("openssl_sign_dsa"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); if (DSA_sign(0, data, dataLength, tmp, &dsaSize, dsa.get()) <= 0) { logOpenSSLError("openssl_sign_dsa"); return -1; } *signedDataLength = dsaSize; *signedData = signedDataPtr.release(); return 0; } static int sign_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, const uint8_t* data, const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); if (eckey.get() == NULL) { logOpenSSLError("openssl_sign_ec"); return -1; } unsigned int ecdsaSize = ECDSA_size(eckey.get()); UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(ecdsaSize))); if (signedDataPtr.get() == NULL) { logOpenSSLError("openssl_sign_ec"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); if (ECDSA_sign(0, data, dataLength, tmp, &ecdsaSize, eckey.get()) <= 0) { logOpenSSLError("openssl_sign_ec"); return -1; } *signedDataLength = ecdsaSize; *signedData = signedDataPtr.release(); return 0; } static int sign_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* data, const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } else if (sign_params->padding_type != PADDING_NONE) { ALOGW("Cannot handle padding type %d", sign_params->padding_type); return -1; } Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); if (rsa.get() == NULL) { logOpenSSLError("openssl_sign_rsa"); return -1; } UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); if (signedDataPtr.get() == NULL) { logOpenSSLError("openssl_sign_rsa"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { logOpenSSLError("openssl_sign_rsa"); return -1; } *signedDataLength = dataLength; *signedData = signedDataPtr.release(); return 0; } __attribute__((visibility("default"))) int openssl_sign_data( const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, const size_t keyBlobLength, const uint8_t* data, const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { if (data == NULL) { ALOGW("input data to sign == NULL"); return -1; } else if (signedData == NULL || signedDataLength == NULL) { ALOGW("output signature buffer == NULL"); return -1; } Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); if (pkey.get() == NULL) { return -1; } int type = EVP_PKEY_type(pkey->type); if (type == EVP_PKEY_DSA) { const keymaster_dsa_sign_params_t* sign_params = reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); return sign_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), data, dataLength, signedData, signedDataLength); } else if (type == EVP_PKEY_EC) { const keymaster_ec_sign_params_t* sign_params = reinterpret_cast<const keymaster_ec_sign_params_t*>(params); return sign_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), data, dataLength, signedData, signedDataLength); } else if (type == EVP_PKEY_RSA) { const keymaster_rsa_sign_params_t* sign_params = reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); return sign_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), data, dataLength, signedData, signedDataLength); } else { ALOGW("Unsupported key type"); return -1; } } static int verify_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, const uint8_t* signedData, const size_t signedDataLength, const uint8_t* signature, const size_t signatureLength) { if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); if (dsa.get() == NULL) { logOpenSSLError("openssl_verify_dsa"); return -1; } if (DSA_verify(0, signedData, signedDataLength, signature, signatureLength, dsa.get()) <= 0) { logOpenSSLError("openssl_verify_dsa"); return -1; } return 0; } static int verify_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, const uint8_t* signedData, const size_t signedDataLength, const uint8_t* signature, const size_t signatureLength) { if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); if (eckey.get() == NULL) { logOpenSSLError("openssl_verify_ec"); return -1; } if (ECDSA_verify(0, signedData, signedDataLength, signature, signatureLength, eckey.get()) <= 0) { logOpenSSLError("openssl_verify_ec"); return -1; } return 0; } static int verify_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* signedData, const size_t signedDataLength, const uint8_t* signature, const size_t signatureLength) { if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } else if (sign_params->padding_type != PADDING_NONE) { ALOGW("Cannot handle padding type %d", sign_params->padding_type); return -1; } else if (signatureLength != signedDataLength) { ALOGW("signed data length must be signature length"); return -1; } Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); if (rsa.get() == NULL) { logOpenSSLError("openssl_verify_data"); return -1; } UniquePtr<uint8_t[]> dataPtr(new uint8_t[signedDataLength]); if (dataPtr.get() == NULL) { logOpenSSLError("openssl_verify_data"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { logOpenSSLError("openssl_verify_data"); return -1; } int result = 0; for (size_t i = 0; i < signedDataLength; i++) { result |= tmp[i] ^ signedData[i]; } return result == 0 ? 0 : -1; } __attribute__((visibility("default"))) int openssl_verify_data( const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, const size_t keyBlobLength, const uint8_t* signedData, const size_t signedDataLength, const uint8_t* signature, const size_t signatureLength) { if (signedData == NULL || signature == NULL) { ALOGW("data or signature buffers == NULL"); return -1; } Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); if (pkey.get() == NULL) { return -1; } int type = EVP_PKEY_type(pkey->type); if (type == EVP_PKEY_DSA) { const keymaster_dsa_sign_params_t* sign_params = reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); return verify_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), signedData, signedDataLength, signature, signatureLength); } else if (type == EVP_PKEY_RSA) { const keymaster_rsa_sign_params_t* sign_params = reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); return verify_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), signedData, signedDataLength, signature, signatureLength); } else if (type == EVP_PKEY_EC) { const keymaster_ec_sign_params_t* sign_params = reinterpret_cast<const keymaster_ec_sign_params_t*>(params); return verify_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), signedData, signedDataLength, signature, signatureLength); } else { ALOGW("Unsupported key type %d", type); return -1; } } /* Close an opened OpenSSL instance */ static int openssl_close(hw_device_t* dev) { delete dev; return 0; } /* * Generic device handling */ __attribute__((visibility("default"))) int openssl_open(const hw_module_t* module, const char* name, hw_device_t** device) { if (strcmp(name, KEYSTORE_KEYMASTER) != 0) return -EINVAL; Unique_keymaster_device_t dev(new keymaster0_device_t); if (dev.get() == NULL) return -ENOMEM; dev->common.tag = HARDWARE_DEVICE_TAG; dev->common.version = 1; dev->common.module = (struct hw_module_t*)module; dev->common.close = openssl_close; dev->flags = KEYMASTER_SOFTWARE_ONLY | KEYMASTER_BLOBS_ARE_STANDALONE | KEYMASTER_SUPPORTS_DSA | KEYMASTER_SUPPORTS_EC; dev->generate_keypair = openssl_generate_keypair; dev->import_keypair = openssl_import_keypair; dev->get_keypair_public = openssl_get_keypair_public; dev->delete_keypair = NULL; dev->delete_all = NULL; dev->sign_data = openssl_sign_data; dev->verify_data = openssl_verify_data; ERR_load_crypto_strings(); ERR_load_BIO_strings(); *device = reinterpret_cast<hw_device_t*>(dev.release()); return 0; } static struct hw_module_methods_t keystore_module_methods = { .open = openssl_open, }; struct keystore_module softkeymaster_module __attribute__((visibility("default"))) = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = KEYMASTER_MODULE_API_VERSION_0_2, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = KEYSTORE_HARDWARE_MODULE_ID, .name = "Keymaster OpenSSL HAL", .author = "The Android Open Source Project", .methods = &keystore_module_methods, .dso = 0, .reserved = {}, }, };