/* Copyright 2014 The Android Open Source Project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define LOG_TAG "keystore-engine" #include <UniquePtr.h> #include <pthread.h> #include <sys/socket.h> #include <stdarg.h> #include <string.h> #include <unistd.h> #include <cutils/log.h> #include <openssl/bn.h> #include <openssl/ec.h> #include <openssl/ec_key.h> #include <openssl/ecdsa.h> #include <openssl/engine.h> #include <openssl/evp.h> #include <openssl/rsa.h> #include <openssl/x509.h> #ifndef BACKEND_WIFI_HIDL #include "keystore_backend_binder.h" #else #include "keystore_backend_hidl.h" #endif namespace { extern const RSA_METHOD keystore_rsa_method; extern const ECDSA_METHOD keystore_ecdsa_method; /* key_id_dup is called when one of the RSA or EC_KEY objects is duplicated. */ int key_id_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, void** from_d, int /* index */, long /* argl */, void* /* argp */) { char *key_id = reinterpret_cast<char *>(*from_d); if (key_id != NULL) { *from_d = strdup(key_id); } return 1; } /* key_id_free is called when one of the RSA, DSA or EC_KEY object is freed. */ void key_id_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* ad */, int /* index */, long /* argl */, void* /* argp */) { char *key_id = reinterpret_cast<char *>(ptr); free(key_id); } /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by * forwarding the requested operations to Keystore. */ class KeystoreEngine { public: KeystoreEngine() : rsa_index_(RSA_get_ex_new_index(0 /* argl */, NULL /* argp */, NULL /* new_func */, key_id_dup, key_id_free)), ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, NULL /* argp */, NULL /* new_func */, key_id_dup, key_id_free)), engine_(ENGINE_new()) { ENGINE_set_RSA_method( engine_, &keystore_rsa_method, sizeof(keystore_rsa_method)); ENGINE_set_ECDSA_method( engine_, &keystore_ecdsa_method, sizeof(keystore_ecdsa_method)); } int rsa_ex_index() const { return rsa_index_; } int ec_key_ex_index() const { return ec_key_index_; } const ENGINE* engine() const { return engine_; } private: const int rsa_index_; const int ec_key_index_; ENGINE* const engine_; }; pthread_once_t g_keystore_engine_once = PTHREAD_ONCE_INIT; KeystoreEngine *g_keystore_engine; KeystoreBackend *g_keystore_backend; /* init_keystore_engine is called to initialize |g_keystore_engine|. This * should only be called by |pthread_once|. */ void init_keystore_engine() { g_keystore_engine = new KeystoreEngine; #ifndef BACKEND_WIFI_HIDL g_keystore_backend = new KeystoreBackendBinder; #else g_keystore_backend = new KeystoreBackendHidl; #endif } /* ensure_keystore_engine ensures that |g_keystore_engine| is pointing to a * valid |KeystoreEngine| object and creates one if not. */ void ensure_keystore_engine() { pthread_once(&g_keystore_engine_once, init_keystore_engine); } /* Many OpenSSL APIs take ownership of an argument on success but don't free * the argument on failure. This means we need to tell our scoped pointers when * we've transferred ownership, without triggering a warning by not using the * result of release(). */ #define OWNERSHIP_TRANSFERRED(obj) \ typeof ((obj).release()) _dummy __attribute__((unused)) = (obj).release() const char* rsa_get_key_id(const RSA* rsa) { return reinterpret_cast<char*>( RSA_get_ex_data(rsa, g_keystore_engine->rsa_ex_index())); } /* rsa_private_transform takes a big-endian integer from |in|, calculates the * d'th power of it, modulo the RSA modulus, and writes the result as a * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It * returns one on success and zero otherwise. */ int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) { ALOGV("rsa_private_transform(%p, %p, %p, %u)", rsa, out, in, (unsigned) len); ensure_keystore_engine(); const char *key_id = rsa_get_key_id(rsa); if (key_id == NULL) { ALOGE("key had no key_id!"); return 0; } uint8_t* reply = NULL; size_t reply_len; int32_t ret = g_keystore_backend->sign(key_id, in, len, &reply, &reply_len); if (ret < 0) { ALOGW("There was an error during rsa_decrypt: could not connect"); return 0; } else if (ret != 0) { ALOGW("Error during sign from keystore: %d", ret); return 0; } else if (reply_len == 0 || reply == NULL) { ALOGW("No valid signature returned"); return 0; } if (reply_len > len) { /* The result of the RSA operation can never be larger than the size of * the modulus so we assume that the result has extra zeros on the * left. This provides attackers with an oracle, but there's nothing * that we can do about it here. */ ALOGW("Reply len %zu greater than expected %zu", reply_len, len); memcpy(out, &reply[reply_len - len], len); } else if (reply_len < len) { /* If the Keystore implementation returns a short value we assume that * it's because it removed leading zeros from the left side. This is * bad because it provides attackers with an oracle but we cannot do * anything about a broken Keystore implementation here. */ ALOGW("Reply len %zu lesser than expected %zu", reply_len, len); memset(out, 0, len); memcpy(out + len - reply_len, &reply[0], reply_len); } else { memcpy(out, &reply[0], len); } ALOGV("rsa=%p keystore_rsa_priv_dec successful", rsa); return 1; } const struct rsa_meth_st keystore_rsa_method = { { 0 /* references */, 1 /* is_static */, }, NULL /* app_data */, NULL /* init */, NULL /* finish */, NULL /* size */, NULL /* sign */, NULL /* verify */, NULL /* encrypt */, NULL /* sign_raw */, NULL /* decrypt */, NULL /* verify_raw */, rsa_private_transform, NULL /* mod_exp */, NULL /* bn_mod_exp */, RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_OPAQUE, NULL /* keygen */, NULL /* multi_prime_keygen */, NULL /* supports_digest */, }; const char* ecdsa_get_key_id(const EC_KEY* ec_key) { return reinterpret_cast<char*>( EC_KEY_get_ex_data(ec_key, g_keystore_engine->ec_key_ex_index())); } /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on * success and zero otherwise. */ static int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, unsigned int* sig_len, EC_KEY* ec_key) { ALOGV("ecdsa_sign(%p, %u, %p)", digest, (unsigned) digest_len, ec_key); ensure_keystore_engine(); const char *key_id = ecdsa_get_key_id(ec_key); if (key_id == NULL) { ALOGE("key had no key_id!"); return 0; } size_t ecdsa_size = ECDSA_size(ec_key); uint8_t* reply = NULL; size_t reply_len; int32_t ret = g_keystore_backend->sign( key_id, digest, digest_len, &reply, &reply_len); if (ret < 0) { ALOGW("There was an error during ecdsa_sign: could not connect"); return 0; } else if (reply_len == 0 || reply == NULL) { ALOGW("No valid signature returned"); return 0; } else if (reply_len > ecdsa_size) { ALOGW("Signature is too large"); return 0; } // Reviewer: should't sig_len be checked here? Or is it just assumed that it is at least ecdsa_size? memcpy(sig, &reply[0], reply_len); *sig_len = reply_len; ALOGV("ecdsa_sign(%p, %u, %p) => success", digest, (unsigned)digest_len, ec_key); return 1; } const ECDSA_METHOD keystore_ecdsa_method = { { 0 /* references */, 1 /* is_static */ } /* common */, NULL /* app_data */, NULL /* init */, NULL /* finish */, NULL /* group_order_size */, ecdsa_sign, NULL /* verify */, ECDSA_FLAG_OPAQUE, }; struct EVP_PKEY_Delete { void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } }; typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; struct RSA_Delete { void operator()(RSA* p) const { RSA_free(p); } }; typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; struct EC_KEY_Delete { void operator()(EC_KEY* ec) const { EC_KEY_free(ec); } }; typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public * part is taken from |public_rsa| and the private operations are forwarded to * KeyStore and operate on the key named |key_id|. */ static EVP_PKEY *wrap_rsa(const char *key_id, const RSA *public_rsa) { Unique_RSA rsa(RSA_new_method(g_keystore_engine->engine())); if (rsa.get() == NULL) { return NULL; } char *key_id_copy = strdup(key_id); if (key_id_copy == NULL) { return NULL; } if (!RSA_set_ex_data(rsa.get(), g_keystore_engine->rsa_ex_index(), key_id_copy)) { free(key_id_copy); return NULL; } rsa->n = BN_dup(public_rsa->n); rsa->e = BN_dup(public_rsa->e); if (rsa->n == NULL || rsa->e == NULL) { return NULL; } Unique_EVP_PKEY result(EVP_PKEY_new()); if (result.get() == NULL || !EVP_PKEY_assign_RSA(result.get(), rsa.get())) { return NULL; } OWNERSHIP_TRANSFERRED(rsa); return result.release(); } /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public * part is taken from |public_rsa| and the private operations are forwarded to * KeyStore and operate on the key named |key_id|. */ static EVP_PKEY *wrap_ecdsa(const char *key_id, const EC_KEY *public_ecdsa) { Unique_EC_KEY ec(EC_KEY_new_method(g_keystore_engine->engine())); if (ec.get() == NULL) { return NULL; } if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) || !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) { return NULL; } char *key_id_copy = strdup(key_id); if (key_id_copy == NULL) { return NULL; } if (!EC_KEY_set_ex_data(ec.get(), g_keystore_engine->ec_key_ex_index(), key_id_copy)) { free(key_id_copy); return NULL; } Unique_EVP_PKEY result(EVP_PKEY_new()); if (result.get() == NULL || !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) { return NULL; } OWNERSHIP_TRANSFERRED(ec); return result.release(); } } /* anonymous namespace */ extern "C" { EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) __attribute__((visibility("default"))); /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or * ECDSA key where the public part of the key reflects the value of the key * named |key_id| in Keystore and the private operations are forwarded onto * KeyStore. */ EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) { ALOGV("EVP_PKEY_from_keystore(\"%s\")", key_id); ensure_keystore_engine(); uint8_t *pubkey = NULL; size_t pubkey_len; int32_t ret = g_keystore_backend->get_pubkey(key_id, &pubkey, &pubkey_len); if (ret < 0) { ALOGW("could not contact keystore"); return NULL; } else if (ret != 0 || pubkey == NULL) { ALOGW("keystore reports error: %d", ret); return NULL; } const uint8_t *inp = pubkey; Unique_EVP_PKEY pkey(d2i_PUBKEY(NULL, &inp, pubkey_len)); if (pkey.get() == NULL) { ALOGW("Cannot convert pubkey"); return NULL; } EVP_PKEY *result; switch (EVP_PKEY_type(pkey->type)) { case EVP_PKEY_RSA: { Unique_RSA public_rsa(EVP_PKEY_get1_RSA(pkey.get())); result = wrap_rsa(key_id, public_rsa.get()); break; } case EVP_PKEY_EC: { Unique_EC_KEY public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get())); result = wrap_ecdsa(key_id, public_ecdsa.get()); break; } default: ALOGE("Unsupported key type %d", EVP_PKEY_type(pkey->type)); result = NULL; } return result; } } // extern "C"