/* * Copyright (C) 2013-2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <fcntl.h> #include <inttypes.h> #include <poll.h> #include <sys/endian.h> #include <sys/socket.h> #include <sys/types.h> #include <unistd.h> #include <unordered_set> #include <android-base/file.h> #include <cutils/sockets.h> #include <log/event_tag_map.h> #include <log/log_transport.h> #include <private/android_logger.h> #include "benchmark.h" // enhanced version of LOG_FAILURE_RETRY to add support for EAGAIN and // non-syscall libs. Since we are benchmarking, or using this in the emergency // signal to stuff a terminating code, we do NOT want to introduce // a syscall or usleep on EAGAIN retry. #define LOG_FAILURE_RETRY(exp) \ ({ \ typeof(exp) _rc; \ do { \ _rc = (exp); \ } while (((_rc == -1) && ((errno == EINTR) || (errno == EAGAIN))) || \ (_rc == -EINTR) || (_rc == -EAGAIN)); \ _rc; \ }) /* * Measure the fastest rate we can reliabley stuff print messages into * the log at high pressure. Expect this to be less than double the process * wakeup time (2ms?) */ static void BM_log_maximum_retry(int iters) { StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { LOG_FAILURE_RETRY( __android_log_print(ANDROID_LOG_INFO, "BM_log_maximum_retry", "%d", i)); } StopBenchmarkTiming(); } BENCHMARK(BM_log_maximum_retry); /* * Measure the fastest rate we can stuff print messages into the log * at high pressure. Expect this to be less than double the process wakeup * time (2ms?) */ static void BM_log_maximum(int iters) { StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { __android_log_print(ANDROID_LOG_INFO, "BM_log_maximum", "%d", i); } StopBenchmarkTiming(); } BENCHMARK(BM_log_maximum); static void set_log_null() { android_set_log_transport(LOGGER_NULL); } static void set_log_default() { android_set_log_transport(LOGGER_DEFAULT); } static void BM_log_maximum_null(int iters) { set_log_null(); BM_log_maximum(iters); set_log_default(); } BENCHMARK(BM_log_maximum_null); /* * Measure the time it takes to collect the time using * discrete acquisition (StartBenchmarkTiming() -> StopBenchmarkTiming()) * under light load. Expect this to be a syscall period (2us) or * data read time if zero-syscall. * * vdso support in the kernel and the library can allow * clock_gettime to be zero-syscall. */ static void BM_clock_overhead(int iters) { for (int i = 0; i < iters; ++i) { StartBenchmarkTiming(); StopBenchmarkTiming(); } } BENCHMARK(BM_clock_overhead); /* * Measure the time it takes to submit the android logging data to pstore */ static void BM_pmsg_short(int iters) { int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY)); if (pstore_fd < 0) { return; } /* * struct { * // what we provide to pstore * android_pmsg_log_header_t pmsg_header; * // what we provide to socket * android_log_header_t header; * // caller provides * union { * struct { * char prio; * char payload[]; * } string; * struct { * uint32_t tag * char payload[]; * } binary; * }; * }; */ struct timespec ts; clock_gettime(android_log_clockid(), &ts); android_pmsg_log_header_t pmsg_header; pmsg_header.magic = LOGGER_MAGIC; pmsg_header.len = sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); pmsg_header.uid = getuid(); pmsg_header.pid = getpid(); android_log_header_t header; header.tid = gettid(); header.realtime.tv_sec = ts.tv_sec; header.realtime.tv_nsec = ts.tv_nsec; static const unsigned nr = 1; static const unsigned header_length = 2; struct iovec newVec[nr + header_length]; newVec[0].iov_base = (unsigned char*)&pmsg_header; newVec[0].iov_len = sizeof(pmsg_header); newVec[1].iov_base = (unsigned char*)&header; newVec[1].iov_len = sizeof(header); android_log_event_int_t buffer; header.id = LOG_ID_EVENTS; buffer.header.tag = 0; buffer.payload.type = EVENT_TYPE_INT; uint32_t snapshot = 0; buffer.payload.data = htole32(snapshot); newVec[2].iov_base = &buffer; newVec[2].iov_len = sizeof(buffer); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { ++snapshot; buffer.payload.data = htole32(snapshot); writev(pstore_fd, newVec, nr); } StopBenchmarkTiming(); close(pstore_fd); } BENCHMARK(BM_pmsg_short); /* * Measure the time it takes to submit the android logging data to pstore * best case aligned single block. */ static void BM_pmsg_short_aligned(int iters) { int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY)); if (pstore_fd < 0) { return; } /* * struct { * // what we provide to pstore * android_pmsg_log_header_t pmsg_header; * // what we provide to socket * android_log_header_t header; * // caller provides * union { * struct { * char prio; * char payload[]; * } string; * struct { * uint32_t tag * char payload[]; * } binary; * }; * }; */ struct timespec ts; clock_gettime(android_log_clockid(), &ts); struct packet { android_pmsg_log_header_t pmsg_header; android_log_header_t header; android_log_event_int_t payload; }; alignas(8) char buf[sizeof(struct packet) + 8]; memset(buf, 0, sizeof(buf)); struct packet* buffer = (struct packet*)(((uintptr_t)buf + 7) & ~7); if (((uintptr_t)&buffer->pmsg_header) & 7) { fprintf(stderr, "&buffer=0x%p iters=%d\n", &buffer->pmsg_header, iters); } buffer->pmsg_header.magic = LOGGER_MAGIC; buffer->pmsg_header.len = sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); buffer->pmsg_header.uid = getuid(); buffer->pmsg_header.pid = getpid(); buffer->header.tid = gettid(); buffer->header.realtime.tv_sec = ts.tv_sec; buffer->header.realtime.tv_nsec = ts.tv_nsec; buffer->header.id = LOG_ID_EVENTS; buffer->payload.header.tag = 0; buffer->payload.payload.type = EVENT_TYPE_INT; uint32_t snapshot = 0; buffer->payload.payload.data = htole32(snapshot); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { ++snapshot; buffer->payload.payload.data = htole32(snapshot); write(pstore_fd, &buffer->pmsg_header, sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t) + sizeof(android_log_event_int_t)); } StopBenchmarkTiming(); close(pstore_fd); } BENCHMARK(BM_pmsg_short_aligned); /* * Measure the time it takes to submit the android logging data to pstore * best case aligned single block. */ static void BM_pmsg_short_unaligned1(int iters) { int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY)); if (pstore_fd < 0) { return; } /* * struct { * // what we provide to pstore * android_pmsg_log_header_t pmsg_header; * // what we provide to socket * android_log_header_t header; * // caller provides * union { * struct { * char prio; * char payload[]; * } string; * struct { * uint32_t tag * char payload[]; * } binary; * }; * }; */ struct timespec ts; clock_gettime(android_log_clockid(), &ts); struct packet { android_pmsg_log_header_t pmsg_header; android_log_header_t header; android_log_event_int_t payload; }; alignas(8) char buf[sizeof(struct packet) + 8]; memset(buf, 0, sizeof(buf)); struct packet* buffer = (struct packet*)((((uintptr_t)buf + 7) & ~7) + 1); if ((((uintptr_t)&buffer->pmsg_header) & 7) != 1) { fprintf(stderr, "&buffer=0x%p iters=%d\n", &buffer->pmsg_header, iters); } buffer->pmsg_header.magic = LOGGER_MAGIC; buffer->pmsg_header.len = sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); buffer->pmsg_header.uid = getuid(); buffer->pmsg_header.pid = getpid(); buffer->header.tid = gettid(); buffer->header.realtime.tv_sec = ts.tv_sec; buffer->header.realtime.tv_nsec = ts.tv_nsec; buffer->header.id = LOG_ID_EVENTS; buffer->payload.header.tag = 0; buffer->payload.payload.type = EVENT_TYPE_INT; uint32_t snapshot = 0; buffer->payload.payload.data = htole32(snapshot); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { ++snapshot; buffer->payload.payload.data = htole32(snapshot); write(pstore_fd, &buffer->pmsg_header, sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t) + sizeof(android_log_event_int_t)); } StopBenchmarkTiming(); close(pstore_fd); } BENCHMARK(BM_pmsg_short_unaligned1); /* * Measure the time it takes to submit the android logging data to pstore * best case aligned single block. */ static void BM_pmsg_long_aligned(int iters) { int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY)); if (pstore_fd < 0) { return; } /* * struct { * // what we provide to pstore * android_pmsg_log_header_t pmsg_header; * // what we provide to socket * android_log_header_t header; * // caller provides * union { * struct { * char prio; * char payload[]; * } string; * struct { * uint32_t tag * char payload[]; * } binary; * }; * }; */ struct timespec ts; clock_gettime(android_log_clockid(), &ts); struct packet { android_pmsg_log_header_t pmsg_header; android_log_header_t header; android_log_event_int_t payload; }; alignas(8) char buf[sizeof(struct packet) + 8 + LOGGER_ENTRY_MAX_PAYLOAD]; memset(buf, 0, sizeof(buf)); struct packet* buffer = (struct packet*)(((uintptr_t)buf + 7) & ~7); if (((uintptr_t)&buffer->pmsg_header) & 7) { fprintf(stderr, "&buffer=0x%p iters=%d\n", &buffer->pmsg_header, iters); } buffer->pmsg_header.magic = LOGGER_MAGIC; buffer->pmsg_header.len = sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); buffer->pmsg_header.uid = getuid(); buffer->pmsg_header.pid = getpid(); buffer->header.tid = gettid(); buffer->header.realtime.tv_sec = ts.tv_sec; buffer->header.realtime.tv_nsec = ts.tv_nsec; buffer->header.id = LOG_ID_EVENTS; buffer->payload.header.tag = 0; buffer->payload.payload.type = EVENT_TYPE_INT; uint32_t snapshot = 0; buffer->payload.payload.data = htole32(snapshot); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { ++snapshot; buffer->payload.payload.data = htole32(snapshot); write(pstore_fd, &buffer->pmsg_header, LOGGER_ENTRY_MAX_PAYLOAD); } StopBenchmarkTiming(); close(pstore_fd); } BENCHMARK(BM_pmsg_long_aligned); /* * Measure the time it takes to submit the android logging data to pstore * best case aligned single block. */ static void BM_pmsg_long_unaligned1(int iters) { int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY)); if (pstore_fd < 0) { return; } /* * struct { * // what we provide to pstore * android_pmsg_log_header_t pmsg_header; * // what we provide to socket * android_log_header_t header; * // caller provides * union { * struct { * char prio; * char payload[]; * } string; * struct { * uint32_t tag * char payload[]; * } binary; * }; * }; */ struct timespec ts; clock_gettime(android_log_clockid(), &ts); struct packet { android_pmsg_log_header_t pmsg_header; android_log_header_t header; android_log_event_int_t payload; }; alignas(8) char buf[sizeof(struct packet) + 8 + LOGGER_ENTRY_MAX_PAYLOAD]; memset(buf, 0, sizeof(buf)); struct packet* buffer = (struct packet*)((((uintptr_t)buf + 7) & ~7) + 1); if ((((uintptr_t)&buffer->pmsg_header) & 7) != 1) { fprintf(stderr, "&buffer=0x%p iters=%d\n", &buffer->pmsg_header, iters); } buffer->pmsg_header.magic = LOGGER_MAGIC; buffer->pmsg_header.len = sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); buffer->pmsg_header.uid = getuid(); buffer->pmsg_header.pid = getpid(); buffer->header.tid = gettid(); buffer->header.realtime.tv_sec = ts.tv_sec; buffer->header.realtime.tv_nsec = ts.tv_nsec; buffer->header.id = LOG_ID_EVENTS; buffer->payload.header.tag = 0; buffer->payload.payload.type = EVENT_TYPE_INT; uint32_t snapshot = 0; buffer->payload.payload.data = htole32(snapshot); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { ++snapshot; buffer->payload.payload.data = htole32(snapshot); write(pstore_fd, &buffer->pmsg_header, LOGGER_ENTRY_MAX_PAYLOAD); } StopBenchmarkTiming(); close(pstore_fd); } BENCHMARK(BM_pmsg_long_unaligned1); /* * Measure the time it takes to form sprintf plus time using * discrete acquisition (StartBenchmarkTiming() -> StopBenchmarkTiming()) * under light load. Expect this to be a syscall period (2us) or sprintf * time if zero-syscall time. */ /* helper function */ static void test_print(const char* fmt, ...) { va_list ap; char buf[1024]; va_start(ap, fmt); vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); } #define logd_yield() sched_yield() // allow logd to catch up #define logd_sleep() usleep(50) // really allow logd to catch up /* performance test */ static void BM_sprintf_overhead(int iters) { for (int i = 0; i < iters; ++i) { StartBenchmarkTiming(); test_print("BM_sprintf_overhead:%d", i); StopBenchmarkTiming(); logd_yield(); } } BENCHMARK(BM_sprintf_overhead); /* * Measure the time it takes to submit the android printing logging call * using discrete acquisition discrete acquisition (StartBenchmarkTiming() -> * StopBenchmarkTiming()) under light load. Expect this to be a dozen or so * syscall periods (40us) plus time to run *printf */ static void BM_log_print_overhead(int iters) { for (int i = 0; i < iters; ++i) { StartBenchmarkTiming(); __android_log_print(ANDROID_LOG_INFO, "BM_log_overhead", "%d", i); StopBenchmarkTiming(); logd_yield(); } } BENCHMARK(BM_log_print_overhead); /* * Measure the time it takes to submit the android event logging call * using discrete acquisition (StartBenchmarkTiming() -> StopBenchmarkTiming()) * under light load. Expect this to be a dozen or so syscall periods (40us) */ static void BM_log_event_overhead(int iters) { for (unsigned long long i = 0; i < (unsigned)iters; ++i) { StartBenchmarkTiming(); __android_log_btwrite(0, EVENT_TYPE_LONG, &i, sizeof(i)); StopBenchmarkTiming(); logd_yield(); } } BENCHMARK(BM_log_event_overhead); static void BM_log_event_overhead_null(int iters) { set_log_null(); BM_log_event_overhead(iters); set_log_default(); } BENCHMARK(BM_log_event_overhead_null); /* * Measure the time it takes to submit the android event logging call * using discrete acquisition (StartBenchmarkTiming() -> StopBenchmarkTiming()) * under very-light load (<1% CPU utilization). */ static void BM_log_light_overhead(int iters) { for (unsigned long long i = 0; i < (unsigned)iters; ++i) { StartBenchmarkTiming(); __android_log_btwrite(0, EVENT_TYPE_LONG, &i, sizeof(i)); StopBenchmarkTiming(); usleep(10000); } } BENCHMARK(BM_log_light_overhead); static void BM_log_light_overhead_null(int iters) { set_log_null(); BM_log_light_overhead(iters); set_log_default(); } BENCHMARK(BM_log_light_overhead_null); static void caught_latency(int /*signum*/) { unsigned long long v = 0xDEADBEEFA55A5AA5ULL; LOG_FAILURE_RETRY(__android_log_btwrite(0, EVENT_TYPE_LONG, &v, sizeof(v))); } static unsigned long long caught_convert(char* cp) { unsigned long long l = cp[0] & 0xFF; l |= (unsigned long long)(cp[1] & 0xFF) << 8; l |= (unsigned long long)(cp[2] & 0xFF) << 16; l |= (unsigned long long)(cp[3] & 0xFF) << 24; l |= (unsigned long long)(cp[4] & 0xFF) << 32; l |= (unsigned long long)(cp[5] & 0xFF) << 40; l |= (unsigned long long)(cp[6] & 0xFF) << 48; l |= (unsigned long long)(cp[7] & 0xFF) << 56; return l; } static const int alarm_time = 3; /* * Measure the time it takes for the logd posting call to acquire the * timestamp to place into the internal record. Expect this to be less than * 4 syscalls (3us). */ static void BM_log_latency(int iters) { pid_t pid = getpid(); struct logger_list* logger_list = android_logger_list_open(LOG_ID_EVENTS, ANDROID_LOG_RDONLY, 0, pid); if (!logger_list) { fprintf(stderr, "Unable to open events log: %s\n", strerror(errno)); exit(EXIT_FAILURE); } signal(SIGALRM, caught_latency); alarm(alarm_time); for (int j = 0, i = 0; i < iters && j < 10 * iters; ++i, ++j) { log_time ts; LOG_FAILURE_RETRY((ts = log_time(CLOCK_REALTIME), android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts)))); for (;;) { log_msg log_msg; int ret = android_logger_list_read(logger_list, &log_msg); alarm(alarm_time); if (ret <= 0) { iters = i; break; } if ((log_msg.entry.len != (4 + 1 + 8)) || (log_msg.id() != LOG_ID_EVENTS)) { continue; } char* eventData = log_msg.msg(); if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) { continue; } log_time tx(eventData + 4 + 1); if (ts != tx) { if (0xDEADBEEFA55A5AA5ULL == caught_convert(eventData + 4 + 1)) { iters = i; break; } continue; } uint64_t start = ts.nsec(); uint64_t end = log_msg.nsec(); if (end >= start) { StartBenchmarkTiming(start); StopBenchmarkTiming(end); } else { --i; } break; } } signal(SIGALRM, SIG_DFL); alarm(0); android_logger_list_free(logger_list); } BENCHMARK(BM_log_latency); static void caught_delay(int /*signum*/) { unsigned long long v = 0xDEADBEEFA55A5AA6ULL; LOG_FAILURE_RETRY(__android_log_btwrite(0, EVENT_TYPE_LONG, &v, sizeof(v))); } /* * Measure the time it takes for the logd posting call to make it into * the logs. Expect this to be less than double the process wakeup time (2ms). */ static void BM_log_delay(int iters) { pid_t pid = getpid(); struct logger_list* logger_list = android_logger_list_open(LOG_ID_EVENTS, ANDROID_LOG_RDONLY, 0, pid); if (!logger_list) { fprintf(stderr, "Unable to open events log: %s\n", strerror(errno)); exit(EXIT_FAILURE); } signal(SIGALRM, caught_delay); alarm(alarm_time); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { log_time ts(CLOCK_REALTIME); LOG_FAILURE_RETRY(android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts))); for (;;) { log_msg log_msg; int ret = android_logger_list_read(logger_list, &log_msg); alarm(alarm_time); if (ret <= 0) { iters = i; break; } if ((log_msg.entry.len != (4 + 1 + 8)) || (log_msg.id() != LOG_ID_EVENTS)) { continue; } char* eventData = log_msg.msg(); if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) { continue; } log_time tx(eventData + 4 + 1); if (ts != tx) { if (0xDEADBEEFA55A5AA6ULL == caught_convert(eventData + 4 + 1)) { iters = i; break; } continue; } break; } } signal(SIGALRM, SIG_DFL); alarm(0); StopBenchmarkTiming(); android_logger_list_free(logger_list); } BENCHMARK(BM_log_delay); /* * Measure the time it takes for __android_log_is_loggable. */ static void BM_is_loggable(int iters) { static const char logd[] = "logd"; StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { __android_log_is_loggable_len(ANDROID_LOG_WARN, logd, strlen(logd), ANDROID_LOG_VERBOSE); } StopBenchmarkTiming(); } BENCHMARK(BM_is_loggable); /* * Measure the time it takes for android_log_clockid. */ static void BM_clockid(int iters) { StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { android_log_clockid(); } StopBenchmarkTiming(); } BENCHMARK(BM_clockid); /* * Measure the time it takes for __android_log_security. */ static void BM_security(int iters) { StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { __android_log_security(); } StopBenchmarkTiming(); } BENCHMARK(BM_security); // Keep maps around for multiple iterations static std::unordered_set<uint32_t> set; static EventTagMap* map; static bool prechargeEventMap() { if (map) return true; fprintf(stderr, "Precharge: start\n"); map = android_openEventTagMap(NULL); for (uint32_t tag = 1; tag < USHRT_MAX; ++tag) { size_t len; if (android_lookupEventTag_len(map, &len, tag) == NULL) continue; set.insert(tag); } fprintf(stderr, "Precharge: stop %zu\n", set.size()); return true; } /* * Measure the time it takes for android_lookupEventTag_len */ static void BM_lookupEventTag(int iters) { prechargeEventMap(); std::unordered_set<uint32_t>::const_iterator it = set.begin(); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { size_t len; android_lookupEventTag_len(map, &len, (*it)); ++it; if (it == set.end()) it = set.begin(); } StopBenchmarkTiming(); } BENCHMARK(BM_lookupEventTag); /* * Measure the time it takes for android_lookupEventTag_len */ static uint32_t notTag = 1; static void BM_lookupEventTag_NOT(int iters) { prechargeEventMap(); while (set.find(notTag) != set.end()) { ++notTag; if (notTag >= USHRT_MAX) notTag = 1; } StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { size_t len; android_lookupEventTag_len(map, &len, notTag); } StopBenchmarkTiming(); ++notTag; if (notTag >= USHRT_MAX) notTag = 1; } BENCHMARK(BM_lookupEventTag_NOT); /* * Measure the time it takes for android_lookupEventFormat_len */ static void BM_lookupEventFormat(int iters) { prechargeEventMap(); std::unordered_set<uint32_t>::const_iterator it = set.begin(); StartBenchmarkTiming(); for (int i = 0; i < iters; ++i) { size_t len; android_lookupEventFormat_len(map, &len, (*it)); ++it; if (it == set.end()) it = set.begin(); } StopBenchmarkTiming(); } BENCHMARK(BM_lookupEventFormat); /* * Measure the time it takes for android_lookupEventTagNum plus above */ static void BM_lookupEventTagNum(int iters) { prechargeEventMap(); std::unordered_set<uint32_t>::const_iterator it = set.begin(); for (int i = 0; i < iters; ++i) { size_t len; const char* name = android_lookupEventTag_len(map, &len, (*it)); std::string Name(name, len); const char* format = android_lookupEventFormat_len(map, &len, (*it)); std::string Format(format, len); StartBenchmarkTiming(); android_lookupEventTagNum(map, Name.c_str(), Format.c_str(), ANDROID_LOG_UNKNOWN); StopBenchmarkTiming(); ++it; if (it == set.end()) it = set.begin(); } } BENCHMARK(BM_lookupEventTagNum); // Must be functionally identical to liblog internal __send_log_msg. static void send_to_control(char* buf, size_t len) { int sock = socket_local_client("logd", ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_STREAM); if (sock < 0) return; size_t writeLen = strlen(buf) + 1; ssize_t ret = TEMP_FAILURE_RETRY(write(sock, buf, writeLen)); if (ret <= 0) { close(sock); return; } while ((ret = read(sock, buf, len)) > 0) { if (((size_t)ret == len) || (len < PAGE_SIZE)) { break; } len -= ret; buf += ret; struct pollfd p = {.fd = sock, .events = POLLIN, .revents = 0 }; ret = poll(&p, 1, 20); if ((ret <= 0) || !(p.revents & POLLIN)) { break; } } close(sock); } static void BM_lookupEventTagNum_logd_new(int iters) { fprintf(stderr, "WARNING: " "This test can cause logd to grow in size and hit DOS limiter\n"); // Make copies static const char empty_event_log_tags[] = "# content owned by logd\n"; static const char dev_event_log_tags_path[] = "/dev/event-log-tags"; std::string dev_event_log_tags; if (android::base::ReadFileToString(dev_event_log_tags_path, &dev_event_log_tags) && (dev_event_log_tags.length() == 0)) { dev_event_log_tags = empty_event_log_tags; } static const char data_event_log_tags_path[] = "/data/misc/logd/event-log-tags"; std::string data_event_log_tags; if (android::base::ReadFileToString(data_event_log_tags_path, &data_event_log_tags) && (data_event_log_tags.length() == 0)) { data_event_log_tags = empty_event_log_tags; } for (int i = 0; i < iters; ++i) { char buffer[256]; memset(buffer, 0, sizeof(buffer)); log_time now(CLOCK_MONOTONIC); char name[64]; snprintf(name, sizeof(name), "a%" PRIu64, now.nsec()); snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"(new|1)\"", name); StartBenchmarkTiming(); send_to_control(buffer, sizeof(buffer)); StopBenchmarkTiming(); } // Restore copies (logd still know about them, until crash or reboot) if (dev_event_log_tags.length() && !android::base::WriteStringToFile(dev_event_log_tags, dev_event_log_tags_path)) { fprintf(stderr, "WARNING: " "failed to restore %s\n", dev_event_log_tags_path); } if (data_event_log_tags.length() && !android::base::WriteStringToFile(data_event_log_tags, data_event_log_tags_path)) { fprintf(stderr, "WARNING: " "failed to restore %s\n", data_event_log_tags_path); } fprintf(stderr, "WARNING: " "Restarting logd to make it forget what we just did\n"); system("stop logd ; start logd"); } BENCHMARK(BM_lookupEventTagNum_logd_new); static void BM_lookupEventTagNum_logd_existing(int iters) { prechargeEventMap(); std::unordered_set<uint32_t>::const_iterator it = set.begin(); for (int i = 0; i < iters; ++i) { size_t len; const char* name = android_lookupEventTag_len(map, &len, (*it)); std::string Name(name, len); const char* format = android_lookupEventFormat_len(map, &len, (*it)); std::string Format(format, len); char buffer[256]; snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"%s\"", Name.c_str(), Format.c_str()); StartBenchmarkTiming(); send_to_control(buffer, sizeof(buffer)); StopBenchmarkTiming(); ++it; if (it == set.end()) it = set.begin(); } } BENCHMARK(BM_lookupEventTagNum_logd_existing);