/****************************************************************************** * * Copyright (C) 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * This file contains security manager protocol utility functions * ******************************************************************************/ #include "bt_target.h" #if (SMP_DEBUG == TRUE) #include <stdio.h> #endif #include <base/bind.h> #include <string.h> #include "aes.h" #include "bt_utils.h" #include "btm_ble_api.h" #include "btm_ble_int.h" #include "btm_int.h" #include "device/include/controller.h" #include "hcimsgs.h" #include "osi/include/osi.h" #include "p_256_ecc_pp.h" #include "smp_int.h" using base::Bind; #ifndef SMP_MAX_ENC_REPEAT #define SMP_MAX_ENC_REPEAT 3 #endif static void smp_process_stk(tSMP_CB* p_cb, tSMP_ENC* p); static bool smp_calculate_legacy_short_term_key(tSMP_CB* p_cb, tSMP_ENC* output); static void smp_process_private_key(tSMP_CB* p_cb); #define SMP_PASSKEY_MASK 0xfff00000 void smp_debug_print_nbyte_little_endian(uint8_t* p, const char* key_name, uint8_t len) { #if (SMP_DEBUG == TRUE) int ind; int col_count = 32; int row_count; uint8_t p_buf[512]; SMP_TRACE_DEBUG("%s(LSB ~ MSB):", key_name); memset(p_buf, 0, sizeof(p_buf)); row_count = len % col_count ? len / col_count + 1 : len / col_count; ind = 0; for (int row = 0; row < row_count; row++) { for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++) { x += snprintf((char*)&p_buf[x], sizeof(p_buf) - x, "%02x ", p[ind]); } SMP_TRACE_DEBUG(" [%03d]: %s", row * col_count, p_buf); } #endif } void smp_debug_print_nbyte_big_endian(uint8_t* p, const char* key_name, uint8_t len) { #if (SMP_DEBUG == TRUE) uint8_t p_buf[512]; SMP_TRACE_DEBUG("%s(MSB ~ LSB):", key_name); memset(p_buf, 0, sizeof(p_buf)); int ind = 0; int ncols = 32; /* num entries in one line */ int nrows; /* num lines */ nrows = len % ncols ? len / ncols + 1 : len / ncols; for (int row = 0; row < nrows; row++) { for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++) { x += snprintf((char*)&p_buf[len - x - 1], sizeof(p_buf) - (len - x - 1), "%02x ", p[ind]); } SMP_TRACE_DEBUG("[%03d]: %s", row * ncols, p_buf); } #endif } /******************************************************************************* * * Function smp_encrypt_data * * Description This function is called to encrypt data. * It uses AES-128 encryption algorithm. * Plain_text is encrypted using key, the result is at p_out. * * Returns void * ******************************************************************************/ bool smp_encrypt_data(uint8_t* key, uint8_t key_len, uint8_t* plain_text, uint8_t pt_len, tSMP_ENC* p_out) { aes_context ctx; uint8_t* p_start = NULL; uint8_t* p = NULL; uint8_t* p_rev_data = NULL; /* input data in big endilan format */ uint8_t* p_rev_key = NULL; /* input key in big endilan format */ uint8_t* p_rev_output = NULL; /* encrypted output in big endilan format */ SMP_TRACE_DEBUG("%s", __func__); if ((p_out == NULL) || (key_len != SMP_ENCRYT_KEY_SIZE)) { SMP_TRACE_ERROR("%s failed", __func__); return false; } p_start = (uint8_t*)osi_calloc(SMP_ENCRYT_DATA_SIZE * 4); if (pt_len > SMP_ENCRYT_DATA_SIZE) pt_len = SMP_ENCRYT_DATA_SIZE; p = p_start; ARRAY_TO_STREAM(p, plain_text, pt_len); /* byte 0 to byte 15 */ p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */ REVERSE_ARRAY_TO_STREAM(p, p_start, SMP_ENCRYT_DATA_SIZE); /* byte 16 to byte 31 */ p_rev_key = p; /* start at byte 32 */ REVERSE_ARRAY_TO_STREAM(p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */ #if (SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE) smp_debug_print_nbyte_little_endian(key, "Key", SMP_ENCRYT_KEY_SIZE); smp_debug_print_nbyte_little_endian(p_start, "Plain text", SMP_ENCRYT_DATA_SIZE); #endif p_rev_output = p; aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx); aes_encrypt(p_rev_data, p, &ctx); /* outputs in byte 48 to byte 63 */ p = p_out->param_buf; REVERSE_ARRAY_TO_STREAM(p, p_rev_output, SMP_ENCRYT_DATA_SIZE); #if (SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE) smp_debug_print_nbyte_little_endian(p_out->param_buf, "Encrypted text", SMP_ENCRYT_KEY_SIZE); #endif p_out->param_len = SMP_ENCRYT_KEY_SIZE; p_out->status = HCI_SUCCESS; p_out->opcode = HCI_BLE_ENCRYPT; osi_free(p_start); return true; } /******************************************************************************* * * Function smp_proc_passkey * * Description This function is called to process a passkey. * * Returns void * ******************************************************************************/ void smp_proc_passkey(tSMP_CB* p_cb, BT_OCTET8 rand) { uint8_t* tt = p_cb->tk; tSMP_KEY key; uint32_t passkey; /* 19655 test number; */ uint8_t* pp = rand; SMP_TRACE_DEBUG("%s", __func__); STREAM_TO_UINT32(passkey, pp); passkey &= ~SMP_PASSKEY_MASK; /* truncate by maximum value */ while (passkey > BTM_MAX_PASSKEY_VAL) passkey >>= 1; /* save the TK */ memset(p_cb->tk, 0, BT_OCTET16_LEN); UINT32_TO_STREAM(tt, passkey); key.key_type = SMP_KEY_TYPE_TK; key.p_data = p_cb->tk; if (p_cb->p_callback) { (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA*)&passkey); } if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) { smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey); } else { smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA*)&key); } } /******************************************************************************* * * Function smp_generate_passkey * * Description This function is called to generate passkey. * * Returns void * ******************************************************************************/ void smp_generate_passkey(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); /* generate MRand or SRand */ btsnd_hcic_ble_rand(Bind(&smp_proc_passkey, p_cb)); } /******************************************************************************* * * Function smp_generate_stk * * Description This function is called to generate STK calculated by * running AES with the TK value as key and a concatenation of * the random values. * * Returns void * ******************************************************************************/ void smp_generate_stk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG("%s", __func__); if (p_cb->le_secure_connections_mode_is_used) { SMP_TRACE_WARNING("FOR LE SC LTK IS USED INSTEAD OF STK"); output.param_len = SMP_ENCRYT_KEY_SIZE; output.status = HCI_SUCCESS; output.opcode = HCI_BLE_ENCRYPT; memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE); } else if (!smp_calculate_legacy_short_term_key(p_cb, &output)) { SMP_TRACE_ERROR("%s failed", __func__); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); return; } smp_process_stk(p_cb, &output); } /** * This function is called to calculate CSRK */ void smp_compute_csrk(uint16_t div, tSMP_CB* p_cb) { BT_OCTET16 er; uint8_t buffer[4]; /* for (r || DIV) r=1*/ uint16_t r = 1; uint8_t* p = buffer; tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; p_cb->div = div; SMP_TRACE_DEBUG("%s: div=%x", __func__, p_cb->div); BTM_GetDeviceEncRoot(er); /* CSRK = d1(ER, DIV, 1) */ UINT16_TO_STREAM(p, p_cb->div); UINT16_TO_STREAM(p, r); if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output)) { SMP_TRACE_ERROR("smp_generate_csrk failed"); if (p_cb->smp_over_br) { smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status); } else { smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } } else { memcpy((void*)p_cb->csrk, output.param_buf, BT_OCTET16_LEN); smp_send_csrk_info(p_cb, NULL); } } /** * This function is called to calculate CSRK, starting with DIV generation. */ void smp_generate_csrk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { bool div_status; SMP_TRACE_DEBUG("smp_generate_csrk"); div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); if (div_status) { smp_compute_csrk(p_cb->div, p_cb); } else { SMP_TRACE_DEBUG("Generate DIV for CSRK"); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { uint16_t div; STREAM_TO_UINT16(div, rand); smp_compute_csrk(div, p_cb); }, p_cb)); } } /******************************************************************************* * Function smp_concatenate_peer - LSB first * add pairing command sent from local device into p1. ******************************************************************************/ void smp_concatenate_local(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) { uint8_t* p = *p_data; SMP_TRACE_DEBUG("%s", __func__); UINT8_TO_STREAM(p, op_code); UINT8_TO_STREAM(p, p_cb->local_io_capability); UINT8_TO_STREAM(p, p_cb->loc_oob_flag); UINT8_TO_STREAM(p, p_cb->loc_auth_req); UINT8_TO_STREAM(p, p_cb->loc_enc_size); UINT8_TO_STREAM(p, p_cb->local_i_key); UINT8_TO_STREAM(p, p_cb->local_r_key); *p_data = p; } /******************************************************************************* * Function smp_concatenate_peer - LSB first * add pairing command received from peer device into p1. ******************************************************************************/ void smp_concatenate_peer(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) { uint8_t* p = *p_data; SMP_TRACE_DEBUG("smp_concatenate_peer "); UINT8_TO_STREAM(p, op_code); UINT8_TO_STREAM(p, p_cb->peer_io_caps); UINT8_TO_STREAM(p, p_cb->peer_oob_flag); UINT8_TO_STREAM(p, p_cb->peer_auth_req); UINT8_TO_STREAM(p, p_cb->peer_enc_size); UINT8_TO_STREAM(p, p_cb->peer_i_key); UINT8_TO_STREAM(p, p_cb->peer_r_key); *p_data = p; } /******************************************************************************* * * Function smp_gen_p1_4_confirm * * Description Generate Confirm/Compare Step1: * p1 = (MSB) pres || preq || rat' || iat' (LSB) * Fill in values LSB first thus * p1 = iat' || rat' || preq || pres * * Returns void * ******************************************************************************/ void smp_gen_p1_4_confirm(tSMP_CB* p_cb, tBLE_ADDR_TYPE remote_bd_addr_type, BT_OCTET16 p1) { SMP_TRACE_DEBUG("%s", __func__); uint8_t* p = (uint8_t*)p1; if (p_cb->role == HCI_ROLE_MASTER) { /* iat': initiator's (local) address type */ UINT8_TO_STREAM(p, p_cb->addr_type); /* rat': responder's (remote) address type */ UINT8_TO_STREAM(p, remote_bd_addr_type); /* preq : Pairing Request (local) command */ smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ); /* pres : Pairing Response (remote) command */ smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP); } else { /* iat': initiator's (remote) address type */ UINT8_TO_STREAM(p, remote_bd_addr_type); /* rat': responder's (local) address type */ UINT8_TO_STREAM(p, p_cb->addr_type); /* preq : Pairing Request (remote) command */ smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ); /* pres : Pairing Response (local) command */ smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP); } smp_debug_print_nbyte_little_endian((uint8_t*)p1, "p1 = iat' || rat' || preq || pres", 16); } /******************************************************************************* * * Function smp_gen_p2_4_confirm * * Description Generate Confirm/Compare Step2: * p2 = (MSB) padding || ia || ra (LSB) * Fill values LSB first and thus: * p2 = ra || ia || padding * * Returns void * ******************************************************************************/ void smp_gen_p2_4_confirm(tSMP_CB* p_cb, BD_ADDR remote_bda, BT_OCTET16 p2) { SMP_TRACE_DEBUG("%s", __func__); uint8_t* p = (uint8_t*)p2; /* 32-bit Padding */ memset(p, 0, sizeof(BT_OCTET16)); if (p_cb->role == HCI_ROLE_MASTER) { /* ra : Responder's (remote) address */ BDADDR_TO_STREAM(p, remote_bda); /* ia : Initiator's (local) address */ BDADDR_TO_STREAM(p, p_cb->local_bda); } else { /* ra : Responder's (local) address */ BDADDR_TO_STREAM(p, p_cb->local_bda); /* ia : Initiator's (remote) address */ BDADDR_TO_STREAM(p, remote_bda); } smp_debug_print_nbyte_little_endian(p2, "p2 = ra || ia || padding", 16); } /******************************************************************************* * * Function smp_calculate_comfirm * * Description This function (c1) is called to calculate Confirm value. * * Returns tSMP_STATUS status of confirmation calculation * ******************************************************************************/ tSMP_STATUS smp_calculate_comfirm(tSMP_CB* p_cb, BT_OCTET16 rand, tSMP_ENC* output) { SMP_TRACE_DEBUG("%s", __func__); BD_ADDR remote_bda; tBLE_ADDR_TYPE remote_bd_addr_type = 0; /* get remote connection specific bluetooth address */ if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &remote_bd_addr_type)) { SMP_TRACE_ERROR("%s: cannot obtain remote device address", __func__); return SMP_PAIR_FAIL_UNKNOWN; } /* get local connection specific bluetooth address */ BTM_ReadConnectionAddr(p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type); /* generate p1 = pres || preq || rat' || iat' */ BT_OCTET16 p1; smp_gen_p1_4_confirm(p_cb, remote_bd_addr_type, p1); /* p1' = rand XOR p1 */ smp_xor_128(p1, rand); smp_debug_print_nbyte_little_endian((uint8_t*)p1, "p1' = p1 XOR r", 16); /* calculate e1 = e(k, p1'), where k = TK */ smp_debug_print_nbyte_little_endian(p_cb->tk, "TK", 16); memset(output, 0, sizeof(tSMP_ENC)); if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, output)) { SMP_TRACE_ERROR("%s: failed encryption at e1 = e(k, p1')"); return SMP_PAIR_FAIL_UNKNOWN; } smp_debug_print_nbyte_little_endian(output->param_buf, "e1 = e(k, p1')", 16); /* generate p2 = padding || ia || ra */ BT_OCTET16 p2; smp_gen_p2_4_confirm(p_cb, remote_bda, p2); /* calculate p2' = (p2 XOR e1) */ smp_xor_128(p2, output->param_buf); smp_debug_print_nbyte_little_endian((uint8_t*)p2, "p2' = p2 XOR e1", 16); /* calculate: c1 = e(k, p2') */ memset(output, 0, sizeof(tSMP_ENC)); if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, output)) { SMP_TRACE_ERROR("%s: failed encryption at e1 = e(k, p2')"); return SMP_PAIR_FAIL_UNKNOWN; } return SMP_SUCCESS; } /******************************************************************************* * * Function smp_generate_confirm * * Description This function is called when random number (MRand or SRand) * is generated by the controller and the stack needs to * calculate c1 value (MConfirm or SConfirm) for the first time * * Returns void * ******************************************************************************/ static void smp_generate_confirm(tSMP_CB* p_cb) { SMP_TRACE_DEBUG("%s", __func__); smp_debug_print_nbyte_little_endian((uint8_t*)p_cb->rand, "local_rand", 16); tSMP_ENC output; tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rand, &output); if (status != SMP_SUCCESS) { smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); return; } tSMP_KEY key; memcpy(p_cb->confirm, output.param_buf, BT_OCTET16_LEN); smp_debug_print_nbyte_little_endian(p_cb->confirm, "Local Confirm generated", 16); key.key_type = SMP_KEY_TYPE_CFM; key.p_data = output.param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /******************************************************************************* * * Function smp_generate_srand_mrand_confirm * * Description This function is called to start the second pairing phase by * start generating random number. * * * Returns void * ******************************************************************************/ void smp_generate_srand_mrand_confirm(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); /* generate MRand or SRand */ btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)p_cb->rand, rand, 8); /* generate 64 MSB of MRand or SRand */ btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN); smp_generate_confirm(p_cb); }, p_cb)); }, p_cb)); } /******************************************************************************* * * Function smp_generate_compare * * Description This function is called when random number (MRand or SRand) * is received from remote device and the c1 value (MConfirm * or SConfirm) needs to be generated to authenticate remote * device. * * Returns void * ******************************************************************************/ void smp_generate_compare(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("smp_generate_compare "); smp_debug_print_nbyte_little_endian((uint8_t*)p_cb->rrand, "peer rand", 16); tSMP_ENC output; tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rrand, &output); if (status != SMP_SUCCESS) { smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); return; } tSMP_KEY key; smp_debug_print_nbyte_little_endian(output.param_buf, "Remote Confirm generated", 16); key.key_type = SMP_KEY_TYPE_CMP; key.p_data = output.param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /******************************************************************************* * * Function smp_process_stk * * Description This function is called when STK is generated * proceed to send the encrypt the link using STK. * * Returns void * ******************************************************************************/ static void smp_process_stk(tSMP_CB* p_cb, tSMP_ENC* p) { tSMP_KEY key; SMP_TRACE_DEBUG("smp_process_stk "); #if (SMP_DEBUG == TRUE) SMP_TRACE_ERROR("STK Generated"); #endif smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf); key.key_type = SMP_KEY_TYPE_STK; key.p_data = p->param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /** * This function is to calculate EDIV = Y xor DIV */ static void smp_process_ediv(tSMP_CB* p_cb, tSMP_ENC* p) { tSMP_KEY key; uint8_t* pp = p->param_buf; uint16_t y; SMP_TRACE_DEBUG("smp_process_ediv "); STREAM_TO_UINT16(y, pp); /* EDIV = Y xor DIV */ p_cb->ediv = p_cb->div ^ y; /* send LTK ready */ SMP_TRACE_ERROR("LTK ready"); key.key_type = SMP_KEY_TYPE_LTK; key.p_data = p->param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /** * This function is to proceed generate Y = E(DHK, Rand) */ static void smp_generate_y(tSMP_CB* p_cb, BT_OCTET8 rand) { SMP_TRACE_DEBUG("%s ", __func__); BT_OCTET16 dhk; BTM_GetDeviceDHK(dhk); memcpy(p_cb->enc_rand, rand, BT_OCTET8_LEN); tSMP_ENC output; if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, rand, BT_OCTET8_LEN, &output)) { SMP_TRACE_ERROR("%s failed", __func__); tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } else { smp_process_ediv(p_cb, &output); } } /** * Calculate LTK = d1(ER, DIV, 0)= e(ER, DIV) */ static void smp_generate_ltk_cont(uint16_t div, tSMP_CB* p_cb) { p_cb->div = div; SMP_TRACE_DEBUG("%s", __func__); BT_OCTET16 er; BTM_GetDeviceEncRoot(er); tSMP_ENC output; /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/ if (!SMP_Encrypt(er, BT_OCTET16_LEN, (uint8_t*)&p_cb->div, sizeof(uint16_t), &output)) { SMP_TRACE_ERROR("%s failed", __func__); tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } else { /* mask the LTK */ smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf); memcpy((void*)p_cb->ltk, output.param_buf, BT_OCTET16_LEN); /* generate EDIV and rand now */ btsnd_hcic_ble_rand(Bind(&smp_generate_y, p_cb)); } } /******************************************************************************* * * Function smp_generate_ltk * * Description This function is called: * - in legacy pairing - to calculate LTK, starting with DIV * generation; * - in LE Secure Connections pairing over LE transport - to * process LTK already generated to encrypt LE link; * - in LE Secure Connections pairing over BR/EDR transport - * to start BR/EDR Link Key processing. * * Returns void * ******************************************************************************/ void smp_generate_ltk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) { smp_br_process_link_key(p_cb, NULL); return; } else if (p_cb->le_secure_connections_mode_is_used) { smp_process_secure_connection_long_term_key(); return; } bool div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); if (div_status) { smp_generate_ltk_cont(p_cb->div, p_cb); } else { SMP_TRACE_DEBUG("%s: Generate DIV for LTK", __func__); /* generate MRand or SRand */ btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { uint16_t div; STREAM_TO_UINT16(div, rand); smp_generate_ltk_cont(div, p_cb); }, p_cb)); } } /******************************************************************************* * * Function smp_calculate_legacy_short_term_key * * Description The function calculates legacy STK. * * Returns false if out of resources, true in other cases. * ******************************************************************************/ bool smp_calculate_legacy_short_term_key(tSMP_CB* p_cb, tSMP_ENC* output) { SMP_TRACE_DEBUG("%s", __func__); BT_OCTET16 ptext; uint8_t* p = ptext; memset(p, 0, BT_OCTET16_LEN); if (p_cb->role == HCI_ROLE_MASTER) { memcpy(p, p_cb->rand, BT_OCTET8_LEN); memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN); } else { memcpy(p, p_cb->rrand, BT_OCTET8_LEN); memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN); } /* generate STK = Etk(rand|rrand)*/ bool encrypted = SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output); if (!encrypted) { SMP_TRACE_ERROR("%s failed", __func__); } return encrypted; } /******************************************************************************* * * Function smp_create_private_key * * Description This function is called to create private key used to * calculate public key and DHKey. * The function starts private key creation requesting * for the controller to generate [0-7] octets of private key. * * Returns void * ******************************************************************************/ void smp_create_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)p_cb->private_key, rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->private_key[8], rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->private_key[16], rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->private_key[24], rand, BT_OCTET8_LEN); smp_process_private_key(p_cb); }, p_cb)); }, p_cb)); }, p_cb)); }, p_cb)); } /******************************************************************************* * * Function smp_use_oob_private_key * * Description This function is called * - to save the secret key used to calculate the public key * used in calculations of commitment sent OOB to a peer * - to use this secret key to recalculate the public key and * start the process of sending this public key to the peer * if secret/public keys have to be reused. * If the keys aren't supposed to be reused, continue from the * point from which request for OOB data was issued. * * Returns void * ******************************************************************************/ void smp_use_oob_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s req_oob_type: %d, role: %d", __func__, p_cb->req_oob_type, p_cb->role); switch (p_cb->req_oob_type) { case SMP_OOB_BOTH: case SMP_OOB_LOCAL: SMP_TRACE_DEBUG("%s restore secret key", __func__) memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN); smp_process_private_key(p_cb); break; default: SMP_TRACE_DEBUG("%s create secret key anew", __func__); smp_set_state(SMP_STATE_PAIR_REQ_RSP); smp_decide_association_model(p_cb, NULL); break; } } /******************************************************************************* * * Function smp_process_private_key * * Description This function processes private key. * It calculates public key and notifies SM that private key / * public key pair is created. * * Returns void * ******************************************************************************/ void smp_process_private_key(tSMP_CB* p_cb) { Point public_key; BT_OCTET32 private_key; SMP_TRACE_DEBUG("%s", __func__); memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); ECC_PointMult(&public_key, &(curve_p256.G), (uint32_t*)private_key, KEY_LENGTH_DWORDS_P256); memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN); memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->private_key, "private", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.x, "local public(x)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.y, "local public(y)", BT_OCTET32_LEN); p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY; smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL); } /******************************************************************************* * * Function smp_compute_dhkey * * Description The function: * - calculates a new public key using as input local private * key and peer public key; * - saves the new public key x-coordinate as DHKey. * * Returns void * ******************************************************************************/ void smp_compute_dhkey(tSMP_CB* p_cb) { Point peer_publ_key, new_publ_key; BT_OCTET32 private_key; SMP_TRACE_DEBUG("%s", __func__); memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN); memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN); ECC_PointMult(&new_publ_key, &peer_publ_key, (uint32_t*)private_key, KEY_LENGTH_DWORDS_P256); memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Old DHKey", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->private_key, "private", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.x, "rem public(x)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.y, "rem public(y)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Reverted DHKey", BT_OCTET32_LEN); } /******************************************************************************* * * Function smp_calculate_local_commitment * * Description The function calculates and saves local commmitment in CB. * * Returns void * ******************************************************************************/ void smp_calculate_local_commitment(tSMP_CB* p_cb) { uint8_t random_input; SMP_TRACE_DEBUG("%s", __func__); switch (p_cb->selected_association_model) { case SMP_MODEL_SEC_CONN_JUSTWORKS: case SMP_MODEL_SEC_CONN_NUM_COMP: if (p_cb->role == HCI_ROLE_MASTER) SMP_TRACE_WARNING( "local commitment calc on master is not expected \ for Just Works/Numeric Comparison models"); smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0, p_cb->commitment); break; case SMP_MODEL_SEC_CONN_PASSKEY_ENT: case SMP_MODEL_SEC_CONN_PASSKEY_DISP: random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round); smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, random_input, p_cb->commitment); break; case SMP_MODEL_SEC_CONN_OOB: SMP_TRACE_WARNING( "local commitment calc is expected for OOB model BEFORE pairing"); smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0, p_cb->commitment); break; default: SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", p_cb->selected_association_model); return; } SMP_TRACE_EVENT("local commitment calculation is completed"); } /******************************************************************************* * * Function smp_calculate_peer_commitment * * Description The function calculates and saves peer commmitment at the * provided output buffer. * * Returns void * ******************************************************************************/ void smp_calculate_peer_commitment(tSMP_CB* p_cb, BT_OCTET16 output_buf) { uint8_t ri; SMP_TRACE_DEBUG("%s", __func__); switch (p_cb->selected_association_model) { case SMP_MODEL_SEC_CONN_JUSTWORKS: case SMP_MODEL_SEC_CONN_NUM_COMP: if (p_cb->role == HCI_ROLE_SLAVE) SMP_TRACE_WARNING( "peer commitment calc on slave is not expected \ for Just Works/Numeric Comparison models"); smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0, output_buf); break; case SMP_MODEL_SEC_CONN_PASSKEY_ENT: case SMP_MODEL_SEC_CONN_PASSKEY_DISP: ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round); smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri, output_buf); break; case SMP_MODEL_SEC_CONN_OOB: smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0, output_buf); break; default: SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", p_cb->selected_association_model); return; } SMP_TRACE_EVENT("peer commitment calculation is completed"); } /******************************************************************************* * * Function smp_calculate_f4 * * Description The function calculates * C = f4(U, V, X, Z) = AES-CMAC (U||V||Z) * X * where * input: U is 256 bit, * V is 256 bit, * X is 128 bit, * Z is 8 bit, * output: C is 128 bit. * * Returns void * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ void smp_calculate_f4(uint8_t* u, uint8_t* v, uint8_t* x, uint8_t z, uint8_t* c) { uint8_t msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */; uint8_t msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1]; uint8_t key[BT_OCTET16_LEN]; uint8_t cmac[BT_OCTET16_LEN]; uint8_t* p = NULL; #if (SMP_DEBUG == TRUE) uint8_t* p_prnt = NULL; #endif SMP_TRACE_DEBUG("%s", __func__); #if (SMP_DEBUG == TRUE) p_prnt = u; smp_debug_print_nbyte_little_endian(p_prnt, "U", BT_OCTET32_LEN); p_prnt = v; smp_debug_print_nbyte_little_endian(p_prnt, "V", BT_OCTET32_LEN); p_prnt = x; smp_debug_print_nbyte_little_endian(p_prnt, "X", BT_OCTET16_LEN); p_prnt = &z; smp_debug_print_nbyte_little_endian(p_prnt, "Z", 1); #endif p = msg; UINT8_TO_STREAM(p, z); ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN); ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN); #if (SMP_DEBUG == TRUE) p_prnt = msg; smp_debug_print_nbyte_little_endian(p_prnt, "M", msg_len); #endif p = key; ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) p_prnt = key; smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); #endif aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac); #if (SMP_DEBUG == TRUE) p_prnt = cmac; smp_debug_print_nbyte_little_endian(p_prnt, "AES_CMAC", BT_OCTET16_LEN); #endif p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); } /******************************************************************************* * * Function smp_calculate_numeric_comparison_display_number * * Description The function calculates and saves number to display in * numeric comparison association mode. * * Returns void * ******************************************************************************/ void smp_calculate_numeric_comparison_display_number(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); if (p_cb->role == HCI_ROLE_MASTER) { p_cb->number_to_display = smp_calculate_g2( p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, p_cb->rrand); } else { p_cb->number_to_display = smp_calculate_g2( p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, p_cb->rand); } if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) { uint8_t reason; reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason); return; } SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display); p_cb->cb_evt = SMP_NC_REQ_EVT; smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display); return; } /******************************************************************************* * * Function smp_calculate_g2 * * Description The function calculates * g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6 * X * and * Vres = g2(U, V, X, Y) mod 10**6 * where * input: U is 256 bit, * V is 256 bit, * X is 128 bit, * Y is 128 bit, * * Returns Vres. * Expected value has to be in the range [0 - 999999] i.e. * [0 - 0xF423F]. * Vres = 1000000 means that the calculation fails. * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ uint32_t smp_calculate_g2(uint8_t* u, uint8_t* v, uint8_t* x, uint8_t* y) { uint8_t msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + BT_OCTET16_LEN /* Y size */; uint8_t msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN]; uint8_t key[BT_OCTET16_LEN]; uint8_t cmac[BT_OCTET16_LEN]; uint8_t* p = NULL; uint32_t vres; #if (SMP_DEBUG == TRUE) uint8_t* p_prnt = NULL; #endif SMP_TRACE_DEBUG("%s", __func__); p = msg; ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN); ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN); #if (SMP_DEBUG == TRUE) p_prnt = u; smp_debug_print_nbyte_little_endian(p_prnt, "U", BT_OCTET32_LEN); p_prnt = v; smp_debug_print_nbyte_little_endian(p_prnt, "V", BT_OCTET32_LEN); p_prnt = x; smp_debug_print_nbyte_little_endian(p_prnt, "X", BT_OCTET16_LEN); p_prnt = y; smp_debug_print_nbyte_little_endian(p_prnt, "Y", BT_OCTET16_LEN); #endif p = key; ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) p_prnt = key; smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); #endif if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __func__); return (BTM_MAX_PASSKEY_VAL + 1); } #if (SMP_DEBUG == TRUE) p_prnt = cmac; smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN); #endif /* vres = cmac mod 2**32 mod 10**6 */ p = &cmac[0]; STREAM_TO_UINT32(vres, p); #if (SMP_DEBUG == TRUE) p_prnt = (uint8_t*)&vres; smp_debug_print_nbyte_little_endian(p_prnt, "cmac mod 2**32", 4); #endif while (vres > BTM_MAX_PASSKEY_VAL) vres -= (BTM_MAX_PASSKEY_VAL + 1); #if (SMP_DEBUG == TRUE) p_prnt = (uint8_t*)&vres; smp_debug_print_nbyte_little_endian(p_prnt, "cmac mod 2**32 mod 10**6", 4); #endif SMP_TRACE_ERROR("Value for numeric comparison = %d", vres); return vres; } /******************************************************************************* * * Function smp_calculate_f5 * * Description The function provides two AES-CMAC that are supposed to be * used as * - MacKey (used in pairing DHKey check calculation); * - LTK (used to ecrypt the link after completion of Phase 2 * and on reconnection, to derive BR/EDR LK). * The function inputs are W, N1, N2, A1, A2. * F5 rules: * - the value used as key in MacKey/LTK (T) is calculated * (function smp_calculate_f5_key(...)); * The formula is: * T = AES-CMAC (W) * salt * where salt is internal parameter of * smp_calculate_f5_key(...). * - MacKey and LTK are calculated as AES-MAC values received * with the key T calculated in the previous step and the * plaintext message built from the external parameters N1, * N2, A1, A2 and the internal parameters counter, keyID, * length. * The function smp_calculate_f5_mackey_or_long_term_key(...) * is used in the calculations. * The same formula is used in calculation of MacKey and LTK * and the same parameter values except the value of the * internal parameter counter: * - in MacKey calculations the value is 0; * - in LTK calculations the value is 1. * MacKey = * AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256) * T * LTK = * AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256) * T * The parameters are * input: * W is 256 bits, * N1 is 128 bits, * N2 is 128 bits, * A1 is 56 bit, * A2 is 56 bit. * internal: * Counter is 8 bits, its value is 0 for MacKey, * 1 for LTK; * KeyId is 32 bits, its value is * 0x62746c65 (MSB~LSB); * Length is 16 bits, its value is 0x0100 * (MSB~LSB). * output: * MacKey is 128 bits; * LTK is 128 bits * * Returns false if out of resources, true in other cases. * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ bool smp_calculate_f5(uint8_t* w, uint8_t* n1, uint8_t* n2, uint8_t* a1, uint8_t* a2, uint8_t* mac_key, uint8_t* ltk) { BT_OCTET16 t; /* AES-CMAC output in smp_calculate_f5_key(...), key in */ /* smp_calculate_f5_mackey_or_long_term_key(...) */ #if (SMP_DEBUG == TRUE) uint8_t* p_prnt = NULL; #endif /* internal parameters: */ /* counter is 0 for MacKey, is 1 for LTK */ uint8_t counter_mac_key[1] = {0}; uint8_t counter_ltk[1] = {1}; /* keyID 62746c65 */ uint8_t key_id[4] = {0x65, 0x6c, 0x74, 0x62}; /* length 0100 */ uint8_t length[2] = {0x00, 0x01}; SMP_TRACE_DEBUG("%s", __func__); #if (SMP_DEBUG == TRUE) p_prnt = w; smp_debug_print_nbyte_little_endian(p_prnt, "W", BT_OCTET32_LEN); p_prnt = n1; smp_debug_print_nbyte_little_endian(p_prnt, "N1", BT_OCTET16_LEN); p_prnt = n2; smp_debug_print_nbyte_little_endian(p_prnt, "N2", BT_OCTET16_LEN); p_prnt = a1; smp_debug_print_nbyte_little_endian(p_prnt, "A1", 7); p_prnt = a2; smp_debug_print_nbyte_little_endian(p_prnt, "A2", 7); #endif if (!smp_calculate_f5_key(w, t)) { SMP_TRACE_ERROR("%s failed to calc T", __func__); return false; } #if (SMP_DEBUG == TRUE) p_prnt = t; smp_debug_print_nbyte_little_endian(p_prnt, "T", BT_OCTET16_LEN); #endif if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2, length, mac_key)) { SMP_TRACE_ERROR("%s failed to calc MacKey", __func__); return false; } #if (SMP_DEBUG == TRUE) p_prnt = mac_key; smp_debug_print_nbyte_little_endian(p_prnt, "MacKey", BT_OCTET16_LEN); #endif if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2, length, ltk)) { SMP_TRACE_ERROR("%s failed to calc LTK", __func__); return false; } #if (SMP_DEBUG == TRUE) p_prnt = ltk; smp_debug_print_nbyte_little_endian(p_prnt, "LTK", BT_OCTET16_LEN); #endif return true; } /******************************************************************************* * * Function smp_calculate_f5_mackey_or_long_term_key * * Description The function calculates the value of MacKey or LTK by the * rules defined for f5 function. * At the moment exactly the same formula is used to calculate * LTK and MacKey. * The difference is the value of input parameter Counter: * - in MacKey calculations the value is 0; * - in LTK calculations the value is 1. * The formula: * mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length) * T * where * input: T is 256 bits; * Counter is 8 bits, its value is 0 for MacKey, * 1 for LTK; * keyID is 32 bits, its value is 0x62746c65; * N1 is 128 bits; * N2 is 128 bits; * A1 is 56 bits; * A2 is 56 bits; * Length is 16 bits, its value is 0x0100 * output: LTK is 128 bit. * * Returns false if out of resources, true in other cases. * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ bool smp_calculate_f5_mackey_or_long_term_key(uint8_t* t, uint8_t* counter, uint8_t* key_id, uint8_t* n1, uint8_t* n2, uint8_t* a1, uint8_t* a2, uint8_t* length, uint8_t* mac) { uint8_t* p = NULL; uint8_t cmac[BT_OCTET16_LEN]; uint8_t key[BT_OCTET16_LEN]; uint8_t msg_len = 1 /* Counter size */ + 4 /* keyID size */ + BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ + 7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */; uint8_t msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2]; bool ret = true; #if (SMP_DEBUG == TRUE) uint8_t* p_prnt = NULL; #endif SMP_TRACE_DEBUG("%s", __func__); #if (SMP_DEBUG == TRUE) p_prnt = t; smp_debug_print_nbyte_little_endian(p_prnt, "T", BT_OCTET16_LEN); p_prnt = counter; smp_debug_print_nbyte_little_endian(p_prnt, "Counter", 1); p_prnt = key_id; smp_debug_print_nbyte_little_endian(p_prnt, "KeyID", 4); p_prnt = n1; smp_debug_print_nbyte_little_endian(p_prnt, "N1", BT_OCTET16_LEN); p_prnt = n2; smp_debug_print_nbyte_little_endian(p_prnt, "N2", BT_OCTET16_LEN); p_prnt = a1; smp_debug_print_nbyte_little_endian(p_prnt, "A1", 7); p_prnt = a2; smp_debug_print_nbyte_little_endian(p_prnt, "A2", 7); p_prnt = length; smp_debug_print_nbyte_little_endian(p_prnt, "Length", 2); #endif p = key; ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) p_prnt = key; smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); #endif p = msg; ARRAY_TO_STREAM(p, length, 2); ARRAY_TO_STREAM(p, a2, 7); ARRAY_TO_STREAM(p, a1, 7); ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, key_id, 4); ARRAY_TO_STREAM(p, counter, 1); #if (SMP_DEBUG == TRUE) p_prnt = msg; smp_debug_print_nbyte_little_endian(p_prnt, "M", msg_len); #endif if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __func__); ret = false; } #if (SMP_DEBUG == TRUE) p_prnt = cmac; smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN); #endif p = mac; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* * * Function smp_calculate_f5_key * * Description The function calculates key T used in calculation of * MacKey and LTK (f5 output is defined as MacKey || LTK). * T = AES-CMAC (W) * salt * where * Internal: salt is 128 bit. * input: W is 256 bit. * Output: T is 128 bit. * * Returns false if out of resources, true in other cases. * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ bool smp_calculate_f5_key(uint8_t* w, uint8_t* t) { uint8_t* p = NULL; /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */ /* salt: 6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE */ BT_OCTET16 salt = {0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60, 0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C}; #if (SMP_DEBUG == TRUE) uint8_t* p_prnt = NULL; #endif SMP_TRACE_DEBUG("%s", __func__); #if (SMP_DEBUG == TRUE) p_prnt = salt; smp_debug_print_nbyte_little_endian(p_prnt, "salt", BT_OCTET16_LEN); p_prnt = w; smp_debug_print_nbyte_little_endian(p_prnt, "W", BT_OCTET32_LEN); #endif BT_OCTET16 key; BT_OCTET32 msg; p = key; ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN); p = msg; ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN); #if (SMP_DEBUG == TRUE) p_prnt = key; smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); p_prnt = msg; smp_debug_print_nbyte_little_endian(p_prnt, "M", BT_OCTET32_LEN); #endif BT_OCTET16 cmac; bool ret = true; if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __func__); ret = false; } #if (SMP_DEBUG == TRUE) p_prnt = cmac; smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN); #endif p = t; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* * * Function smp_calculate_local_dhkey_check * * Description The function calculates and saves local device DHKey check * value in CB. * Before doing this it calls * smp_calculate_f5_mackey_and_long_term_key(...). * to calculate MacKey and LTK. * MacKey is used in dhkey calculation. * * Returns void * ******************************************************************************/ void smp_calculate_local_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { uint8_t iocap[3], a[7], b[7]; SMP_TRACE_DEBUG("%s", __func__); smp_calculate_f5_mackey_and_long_term_key(p_cb); smp_collect_local_io_capabilities(iocap, p_cb); smp_collect_local_ble_address(a, p_cb); smp_collect_peer_ble_address(b, p_cb); smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b, p_cb->dhkey_check); SMP_TRACE_EVENT("local DHKey check calculation is completed"); } /******************************************************************************* * * Function smp_calculate_peer_dhkey_check * * Description The function calculates peer device DHKey check value. * * Returns void * ******************************************************************************/ void smp_calculate_peer_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { uint8_t iocap[3], a[7], b[7]; BT_OCTET16 param_buf; bool ret; tSMP_KEY key; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG("%s", __func__); smp_collect_peer_io_capabilities(iocap, p_cb); smp_collect_local_ble_address(a, p_cb); smp_collect_peer_ble_address(b, p_cb); ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap, b, a, param_buf); if (ret) { SMP_TRACE_EVENT("peer DHKey check calculation is completed"); #if (SMP_DEBUG == TRUE) smp_debug_print_nbyte_little_endian(param_buf, "peer DHKey check", BT_OCTET16_LEN); #endif key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK; key.p_data = param_buf; smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key); } else { SMP_TRACE_EVENT("peer DHKey check calculation failed"); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } } /******************************************************************************* * * Function smp_calculate_f6 * * Description The function calculates * C = f6(W, N1, N2, R, IOcap, A1, A2) = * AES-CMAC (N1||N2||R||IOcap||A1||A2) * W * where * input: W is 128 bit, * N1 is 128 bit, * N2 is 128 bit, * R is 128 bit, * IOcap is 24 bit, * A1 is 56 bit, * A2 is 56 bit, * output: C is 128 bit. * * Returns false if out of resources, true in other cases. * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ bool smp_calculate_f6(uint8_t* w, uint8_t* n1, uint8_t* n2, uint8_t* r, uint8_t* iocap, uint8_t* a1, uint8_t* a2, uint8_t* c) { uint8_t* p = NULL; uint8_t msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ + BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/ + 7 /* A2 size*/; uint8_t msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7]; #if (SMP_DEBUG == TRUE) uint8_t* p_print = NULL; #endif SMP_TRACE_DEBUG("%s", __func__); #if (SMP_DEBUG == TRUE) p_print = w; smp_debug_print_nbyte_little_endian(p_print, "W", BT_OCTET16_LEN); p_print = n1; smp_debug_print_nbyte_little_endian(p_print, "N1", BT_OCTET16_LEN); p_print = n2; smp_debug_print_nbyte_little_endian(p_print, "N2", BT_OCTET16_LEN); p_print = r; smp_debug_print_nbyte_little_endian(p_print, "R", BT_OCTET16_LEN); p_print = iocap; smp_debug_print_nbyte_little_endian(p_print, "IOcap", 3); p_print = a1; smp_debug_print_nbyte_little_endian(p_print, "A1", 7); p_print = a2; smp_debug_print_nbyte_little_endian(p_print, "A2", 7); #endif uint8_t cmac[BT_OCTET16_LEN]; uint8_t key[BT_OCTET16_LEN]; p = key; ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) p_print = key; smp_debug_print_nbyte_little_endian(p_print, "K", BT_OCTET16_LEN); #endif p = msg; ARRAY_TO_STREAM(p, a2, 7); ARRAY_TO_STREAM(p, a1, 7); ARRAY_TO_STREAM(p, iocap, 3); ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) p_print = msg; smp_debug_print_nbyte_little_endian(p_print, "M", msg_len); #endif bool ret = true; if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __func__); ret = false; } #if (SMP_DEBUG == TRUE) p_print = cmac; smp_debug_print_nbyte_little_endian(p_print, "AES-CMAC", BT_OCTET16_LEN); #endif p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* * * Function smp_calculate_link_key_from_long_term_key * * Description The function calculates and saves BR/EDR link key derived * from LE SC LTK. * * Returns false if out of resources, true in other cases. * ******************************************************************************/ bool smp_calculate_link_key_from_long_term_key(tSMP_CB* p_cb) { tBTM_SEC_DEV_REC* p_dev_rec; BD_ADDR bda_for_lk; tBLE_ADDR_TYPE conn_addr_type; BT_OCTET16 salt = {0x31, 0x70, 0x6D, 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; SMP_TRACE_DEBUG("%s", __func__); if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) { SMP_TRACE_DEBUG( "Use rcvd identity address as BD_ADDR of LK rcvd identity address"); memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN); } else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) && conn_addr_type == BLE_ADDR_PUBLIC) { SMP_TRACE_DEBUG("Use rcvd connection address as BD_ADDR of LK"); } else { SMP_TRACE_WARNING("Don't have peer public address to associate with LK"); return false; } p_dev_rec = btm_find_dev(p_cb->pairing_bda); if (p_dev_rec == NULL) { SMP_TRACE_ERROR("%s failed to find Security Record", __func__); return false; } BT_OCTET16 intermediate_link_key; bool ret = true; if (p_cb->key_derivation_h7_used) ret = smp_calculate_h7((uint8_t*)salt, p_cb->ltk, intermediate_link_key); else ret = smp_calculate_h6(p_cb->ltk, (uint8_t*)"1pmt" /* reversed "tmp1" */, intermediate_link_key); if (!ret) { SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__); return ret; } BT_OCTET16 link_key; ret = smp_calculate_h6(intermediate_link_key, (uint8_t*)"rbel" /* reversed "lebr" */, link_key); if (!ret) { SMP_TRACE_ERROR("%s failed", __func__); } else { uint8_t link_key_type; if (btm_cb.security_mode == BTM_SEC_MODE_SC) { /* Secure Connections Only Mode */ link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; } else if (controller_get_interface()->supports_secure_connections()) { /* both transports are SC capable */ if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; else link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256; } else if (btm_cb.security_mode == BTM_SEC_MODE_SP) { /* BR/EDR transport is SSP capable */ if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) link_key_type = BTM_LKEY_TYPE_AUTH_COMB; else link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB; } else { SMP_TRACE_ERROR( "%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x", __func__, btm_cb.security_mode, p_dev_rec->sm4); return false; } link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET; uint8_t* p; BT_OCTET16 notif_link_key; p = notif_link_key; ARRAY16_TO_STREAM(p, link_key); btm_sec_link_key_notification(bda_for_lk, notif_link_key, link_key_type); SMP_TRACE_EVENT("%s is completed", __func__); } return ret; } /******************************************************************************* * * Function smp_calculate_long_term_key_from_link_key * * Description The function calculates and saves SC LTK derived from BR/EDR * link key. * * Returns false if out of resources, true in other cases. * ******************************************************************************/ bool smp_calculate_long_term_key_from_link_key(tSMP_CB* p_cb) { bool ret = true; tBTM_SEC_DEV_REC* p_dev_rec; uint8_t rev_link_key[16]; BT_OCTET16 salt = {0x32, 0x70, 0x6D, 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; SMP_TRACE_DEBUG("%s", __func__); p_dev_rec = btm_find_dev(p_cb->pairing_bda); if (p_dev_rec == NULL) { SMP_TRACE_ERROR("%s failed to find Security Record", __func__); return false; } uint8_t br_link_key_type; br_link_key_type = BTM_SecGetDeviceLinkKeyType(p_cb->pairing_bda); if (br_link_key_type == BTM_LKEY_TYPE_IGNORE) { SMP_TRACE_ERROR("%s failed to retrieve BR link type", __func__); return false; } if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) && (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) { SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d", __func__, br_link_key_type); return false; } uint8_t* p1; uint8_t* p2; p1 = rev_link_key; p2 = p_dev_rec->link_key; REVERSE_ARRAY_TO_STREAM(p1, p2, 16); BT_OCTET16 intermediate_long_term_key; if (p_cb->key_derivation_h7_used) { ret = smp_calculate_h7((uint8_t*)salt, rev_link_key, intermediate_long_term_key); } else { /* "tmp2" obtained from the spec */ ret = smp_calculate_h6(rev_link_key, (uint8_t*)"2pmt" /* reversed "tmp2" */, intermediate_long_term_key); } if (!ret) { SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key", __func__); return ret; } /* "brle" obtained from the spec */ ret = smp_calculate_h6(intermediate_long_term_key, (uint8_t*)"elrb" /* reversed "brle" */, p_cb->ltk); if (!ret) { SMP_TRACE_ERROR("%s failed", __func__); } else { p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256) ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE; SMP_TRACE_EVENT("%s is completed", __func__); } return ret; } /******************************************************************************* * * Function smp_calculate_h6 * * Description The function calculates * C = h6(W, KeyID) = AES-CMAC (KeyID) * W * where * input: W is 128 bit, * KeyId is 32 bit, * output: C is 128 bit. * * Returns false if out of resources, true in other cases. * * Note The LSB is the first octet, the MSB is the last octet of * the AES-CMAC input/output stream. * ******************************************************************************/ bool smp_calculate_h6(uint8_t* w, uint8_t* keyid, uint8_t* c) { #if (SMP_DEBUG == TRUE) uint8_t* p_print = NULL; #endif SMP_TRACE_DEBUG("%s", __func__); #if (SMP_DEBUG == TRUE) p_print = w; smp_debug_print_nbyte_little_endian(p_print, "W", BT_OCTET16_LEN); p_print = keyid; smp_debug_print_nbyte_little_endian(p_print, "keyID", 4); #endif uint8_t* p = NULL; uint8_t key[BT_OCTET16_LEN]; p = key; ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) p_print = key; smp_debug_print_nbyte_little_endian(p_print, "K", BT_OCTET16_LEN); #endif uint8_t msg_len = 4 /* KeyID size */; uint8_t msg[4]; p = msg; ARRAY_TO_STREAM(p, keyid, 4); #if (SMP_DEBUG == TRUE) p_print = msg; smp_debug_print_nbyte_little_endian(p_print, "M", msg_len); #endif bool ret = true; uint8_t cmac[BT_OCTET16_LEN]; if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __func__); ret = false; } #if (SMP_DEBUG == TRUE) p_print = cmac; smp_debug_print_nbyte_little_endian(p_print, "AES-CMAC", BT_OCTET16_LEN); #endif p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* ** ** Function smp_calculate_h7 ** ** Description The function calculates ** C = h7(SALT, W) = AES-CMAC (W) ** SALT ** where ** input: W is 128 bit, ** SALT is 128 bit, ** output: C is 128 bit. ** ** Returns FALSE if out of resources, TRUE in other cases. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ bool smp_calculate_h7(uint8_t* salt, uint8_t* w, uint8_t* c) { SMP_TRACE_DEBUG("%s", __FUNCTION__); uint8_t key[BT_OCTET16_LEN]; uint8_t* p = key; ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN); uint8_t msg_len = BT_OCTET16_LEN /* msg size */; uint8_t msg[BT_OCTET16_LEN]; p = msg; ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); bool ret = true; uint8_t cmac[BT_OCTET16_LEN]; if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __FUNCTION__); ret = false; } p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /** * This function generates nonce. */ void smp_start_nonce_generation(tSMP_CB* p_cb) { SMP_TRACE_DEBUG("%s", __func__); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)p_cb->rand, rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN); SMP_TRACE_DEBUG("%s round %d", __func__, p_cb->round); /* notifies SM that it has new nonce. */ smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL); }, p_cb)); }, p_cb)); }