/******************************************************************************
 *
 *  Copyright (C) 1999-2012 Broadcom Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at:
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 ******************************************************************************/

/******************************************************************************
 *
 *  This file contains security manager protocol utility functions
 *
 ******************************************************************************/
#include "bt_target.h"

#if (SMP_DEBUG == TRUE)
#include <stdio.h>
#endif
#include <base/bind.h>
#include <string.h>
#include "aes.h"
#include "bt_utils.h"
#include "btm_ble_api.h"
#include "btm_ble_int.h"
#include "btm_int.h"
#include "device/include/controller.h"
#include "hcimsgs.h"
#include "osi/include/osi.h"
#include "p_256_ecc_pp.h"
#include "smp_int.h"

using base::Bind;

#ifndef SMP_MAX_ENC_REPEAT
#define SMP_MAX_ENC_REPEAT 3
#endif

static void smp_process_stk(tSMP_CB* p_cb, tSMP_ENC* p);
static bool smp_calculate_legacy_short_term_key(tSMP_CB* p_cb,
                                                tSMP_ENC* output);
static void smp_process_private_key(tSMP_CB* p_cb);

#define SMP_PASSKEY_MASK 0xfff00000

void smp_debug_print_nbyte_little_endian(uint8_t* p, const char* key_name,
                                         uint8_t len) {
#if (SMP_DEBUG == TRUE)
  int ind;
  int col_count = 32;
  int row_count;
  uint8_t p_buf[512];

  SMP_TRACE_DEBUG("%s(LSB ~ MSB):", key_name);
  memset(p_buf, 0, sizeof(p_buf));
  row_count = len % col_count ? len / col_count + 1 : len / col_count;

  ind = 0;
  for (int row = 0; row < row_count; row++) {
    for (int column = 0, x = 0; (ind < len) && (column < col_count);
         column++, ind++) {
      x += snprintf((char*)&p_buf[x], sizeof(p_buf) - x, "%02x ", p[ind]);
    }
    SMP_TRACE_DEBUG("  [%03d]: %s", row * col_count, p_buf);
  }
#endif
}

void smp_debug_print_nbyte_big_endian(uint8_t* p, const char* key_name,
                                      uint8_t len) {
#if (SMP_DEBUG == TRUE)
  uint8_t p_buf[512];

  SMP_TRACE_DEBUG("%s(MSB ~ LSB):", key_name);
  memset(p_buf, 0, sizeof(p_buf));

  int ind = 0;
  int ncols = 32; /* num entries in one line */
  int nrows;      /* num lines */

  nrows = len % ncols ? len / ncols + 1 : len / ncols;
  for (int row = 0; row < nrows; row++) {
    for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++) {
      x += snprintf((char*)&p_buf[len - x - 1], sizeof(p_buf) - (len - x - 1),
                    "%02x ", p[ind]);
    }
    SMP_TRACE_DEBUG("[%03d]: %s", row * ncols, p_buf);
  }
#endif
}

/*******************************************************************************
 *
 * Function         smp_encrypt_data
 *
 * Description      This function is called to encrypt data.
 *                  It uses AES-128 encryption algorithm.
 *                  Plain_text is encrypted using key, the result is at p_out.
 *
 * Returns          void
 *
 ******************************************************************************/
bool smp_encrypt_data(uint8_t* key, uint8_t key_len, uint8_t* plain_text,
                      uint8_t pt_len, tSMP_ENC* p_out) {
  aes_context ctx;
  uint8_t* p_start = NULL;
  uint8_t* p = NULL;
  uint8_t* p_rev_data = NULL;   /* input data in big endilan format */
  uint8_t* p_rev_key = NULL;    /* input key in big endilan format */
  uint8_t* p_rev_output = NULL; /* encrypted output in big endilan format */

  SMP_TRACE_DEBUG("%s", __func__);
  if ((p_out == NULL) || (key_len != SMP_ENCRYT_KEY_SIZE)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    return false;
  }

  p_start = (uint8_t*)osi_calloc(SMP_ENCRYT_DATA_SIZE * 4);

  if (pt_len > SMP_ENCRYT_DATA_SIZE) pt_len = SMP_ENCRYT_DATA_SIZE;

  p = p_start;
  ARRAY_TO_STREAM(p, plain_text, pt_len);          /* byte 0 to byte 15 */
  p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */
  REVERSE_ARRAY_TO_STREAM(p, p_start,
                          SMP_ENCRYT_DATA_SIZE);        /* byte 16 to byte 31 */
  p_rev_key = p;                                        /* start at byte 32 */
  REVERSE_ARRAY_TO_STREAM(p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */

#if (SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE)
  smp_debug_print_nbyte_little_endian(key, "Key", SMP_ENCRYT_KEY_SIZE);
  smp_debug_print_nbyte_little_endian(p_start, "Plain text",
                                      SMP_ENCRYT_DATA_SIZE);
#endif
  p_rev_output = p;
  aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx);
  aes_encrypt(p_rev_data, p, &ctx); /* outputs in byte 48 to byte 63 */

  p = p_out->param_buf;
  REVERSE_ARRAY_TO_STREAM(p, p_rev_output, SMP_ENCRYT_DATA_SIZE);
#if (SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE)
  smp_debug_print_nbyte_little_endian(p_out->param_buf, "Encrypted text",
                                      SMP_ENCRYT_KEY_SIZE);
#endif

  p_out->param_len = SMP_ENCRYT_KEY_SIZE;
  p_out->status = HCI_SUCCESS;
  p_out->opcode = HCI_BLE_ENCRYPT;

  osi_free(p_start);

  return true;
}

/*******************************************************************************
 *
 * Function         smp_proc_passkey
 *
 * Description      This function is called to process a passkey.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_proc_passkey(tSMP_CB* p_cb, BT_OCTET8 rand) {
  uint8_t* tt = p_cb->tk;
  tSMP_KEY key;
  uint32_t passkey; /* 19655 test number; */
  uint8_t* pp = rand;

  SMP_TRACE_DEBUG("%s", __func__);
  STREAM_TO_UINT32(passkey, pp);
  passkey &= ~SMP_PASSKEY_MASK;

  /* truncate by maximum value */
  while (passkey > BTM_MAX_PASSKEY_VAL) passkey >>= 1;

  /* save the TK */
  memset(p_cb->tk, 0, BT_OCTET16_LEN);
  UINT32_TO_STREAM(tt, passkey);

  key.key_type = SMP_KEY_TYPE_TK;
  key.p_data = p_cb->tk;

  if (p_cb->p_callback) {
    (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda,
                        (tSMP_EVT_DATA*)&passkey);
  }

  if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) {
    smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
  } else {
    smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA*)&key);
  }
}

/*******************************************************************************
 *
 * Function         smp_generate_passkey
 *
 * Description      This function is called to generate passkey.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_generate_passkey(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("%s", __func__);
  /* generate MRand or SRand */
  btsnd_hcic_ble_rand(Bind(&smp_proc_passkey, p_cb));
}

/*******************************************************************************
 *
 * Function         smp_generate_stk
 *
 * Description      This function is called to generate STK calculated by
 *                  running AES with the TK value as key and a concatenation of
 *                  the random values.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_generate_stk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
  tSMP_ENC output;
  tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;

  SMP_TRACE_DEBUG("%s", __func__);

  if (p_cb->le_secure_connections_mode_is_used) {
    SMP_TRACE_WARNING("FOR LE SC LTK IS USED INSTEAD OF STK");
    output.param_len = SMP_ENCRYT_KEY_SIZE;
    output.status = HCI_SUCCESS;
    output.opcode = HCI_BLE_ENCRYPT;
    memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE);
  } else if (!smp_calculate_legacy_short_term_key(p_cb, &output)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    return;
  }

  smp_process_stk(p_cb, &output);
}

/**
 * This function is called to calculate CSRK
 */
void smp_compute_csrk(uint16_t div, tSMP_CB* p_cb) {
  BT_OCTET16 er;
  uint8_t buffer[4]; /* for (r || DIV)  r=1*/
  uint16_t r = 1;
  uint8_t* p = buffer;
  tSMP_ENC output;
  tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;

  p_cb->div = div;

  SMP_TRACE_DEBUG("%s: div=%x", __func__, p_cb->div);
  BTM_GetDeviceEncRoot(er);
  /* CSRK = d1(ER, DIV, 1) */
  UINT16_TO_STREAM(p, p_cb->div);
  UINT16_TO_STREAM(p, r);

  if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output)) {
    SMP_TRACE_ERROR("smp_generate_csrk failed");
    if (p_cb->smp_over_br) {
      smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status);
    } else {
      smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    }
  } else {
    memcpy((void*)p_cb->csrk, output.param_buf, BT_OCTET16_LEN);
    smp_send_csrk_info(p_cb, NULL);
  }
}

/**
 * This function is called to calculate CSRK, starting with DIV generation.
 */
void smp_generate_csrk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
  bool div_status;

  SMP_TRACE_DEBUG("smp_generate_csrk");

  div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
  if (div_status) {
    smp_compute_csrk(p_cb->div, p_cb);
  } else {
    SMP_TRACE_DEBUG("Generate DIV for CSRK");
    btsnd_hcic_ble_rand(Bind(
        [](tSMP_CB* p_cb, BT_OCTET8 rand) {
          uint16_t div;
          STREAM_TO_UINT16(div, rand);
          smp_compute_csrk(div, p_cb);
        },
        p_cb));
  }
}

/*******************************************************************************
 * Function         smp_concatenate_peer - LSB first
 *                  add pairing command sent from local device into p1.
 ******************************************************************************/
void smp_concatenate_local(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) {
  uint8_t* p = *p_data;

  SMP_TRACE_DEBUG("%s", __func__);
  UINT8_TO_STREAM(p, op_code);
  UINT8_TO_STREAM(p, p_cb->local_io_capability);
  UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
  UINT8_TO_STREAM(p, p_cb->loc_auth_req);
  UINT8_TO_STREAM(p, p_cb->loc_enc_size);
  UINT8_TO_STREAM(p, p_cb->local_i_key);
  UINT8_TO_STREAM(p, p_cb->local_r_key);

  *p_data = p;
}

/*******************************************************************************
 * Function         smp_concatenate_peer - LSB first
 *                  add pairing command received from peer device into p1.
 ******************************************************************************/
void smp_concatenate_peer(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) {
  uint8_t* p = *p_data;

  SMP_TRACE_DEBUG("smp_concatenate_peer ");
  UINT8_TO_STREAM(p, op_code);
  UINT8_TO_STREAM(p, p_cb->peer_io_caps);
  UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
  UINT8_TO_STREAM(p, p_cb->peer_auth_req);
  UINT8_TO_STREAM(p, p_cb->peer_enc_size);
  UINT8_TO_STREAM(p, p_cb->peer_i_key);
  UINT8_TO_STREAM(p, p_cb->peer_r_key);

  *p_data = p;
}

/*******************************************************************************
 *
 * Function         smp_gen_p1_4_confirm
 *
 * Description      Generate Confirm/Compare Step1:
 *                  p1 = (MSB) pres || preq || rat' || iat' (LSB)
 *                  Fill in values LSB first thus
 *                  p1 = iat' || rat' || preq || pres
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_gen_p1_4_confirm(tSMP_CB* p_cb, tBLE_ADDR_TYPE remote_bd_addr_type,
                          BT_OCTET16 p1) {
  SMP_TRACE_DEBUG("%s", __func__);
  uint8_t* p = (uint8_t*)p1;
  if (p_cb->role == HCI_ROLE_MASTER) {
    /* iat': initiator's (local) address type */
    UINT8_TO_STREAM(p, p_cb->addr_type);
    /* rat': responder's (remote) address type */
    UINT8_TO_STREAM(p, remote_bd_addr_type);
    /* preq : Pairing Request (local) command */
    smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
    /* pres : Pairing Response (remote) command */
    smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
  } else {
    /* iat': initiator's (remote) address type */
    UINT8_TO_STREAM(p, remote_bd_addr_type);
    /* rat': responder's (local) address type */
    UINT8_TO_STREAM(p, p_cb->addr_type);
    /* preq : Pairing Request (remote) command */
    smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
    /* pres : Pairing Response (local) command */
    smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
  }
  smp_debug_print_nbyte_little_endian((uint8_t*)p1,
                                      "p1 = iat' || rat' || preq || pres", 16);
}

/*******************************************************************************
 *
 * Function         smp_gen_p2_4_confirm
 *
 * Description      Generate Confirm/Compare Step2:
 *                  p2 = (MSB) padding || ia || ra (LSB)
 *                  Fill values LSB first and thus:
 *                  p2 = ra || ia || padding
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_gen_p2_4_confirm(tSMP_CB* p_cb, BD_ADDR remote_bda, BT_OCTET16 p2) {
  SMP_TRACE_DEBUG("%s", __func__);
  uint8_t* p = (uint8_t*)p2;
  /* 32-bit Padding */
  memset(p, 0, sizeof(BT_OCTET16));
  if (p_cb->role == HCI_ROLE_MASTER) {
    /* ra : Responder's (remote) address */
    BDADDR_TO_STREAM(p, remote_bda);
    /* ia : Initiator's (local) address */
    BDADDR_TO_STREAM(p, p_cb->local_bda);
  } else {
    /* ra : Responder's (local) address */
    BDADDR_TO_STREAM(p, p_cb->local_bda);
    /* ia : Initiator's (remote) address */
    BDADDR_TO_STREAM(p, remote_bda);
  }
  smp_debug_print_nbyte_little_endian(p2, "p2 = ra || ia || padding", 16);
}

/*******************************************************************************
 *
 * Function         smp_calculate_comfirm
 *
 * Description      This function (c1) is called to calculate Confirm value.
 *
 * Returns          tSMP_STATUS status of confirmation calculation
 *
 ******************************************************************************/
tSMP_STATUS smp_calculate_comfirm(tSMP_CB* p_cb, BT_OCTET16 rand,
                                  tSMP_ENC* output) {
  SMP_TRACE_DEBUG("%s", __func__);
  BD_ADDR remote_bda;
  tBLE_ADDR_TYPE remote_bd_addr_type = 0;
  /* get remote connection specific bluetooth address */
  if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda,
                                    &remote_bd_addr_type)) {
    SMP_TRACE_ERROR("%s: cannot obtain remote device address", __func__);
    return SMP_PAIR_FAIL_UNKNOWN;
  }
  /* get local connection specific bluetooth address */
  BTM_ReadConnectionAddr(p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
  /* generate p1 = pres || preq || rat' || iat' */
  BT_OCTET16 p1;
  smp_gen_p1_4_confirm(p_cb, remote_bd_addr_type, p1);
  /* p1' = rand XOR p1 */
  smp_xor_128(p1, rand);
  smp_debug_print_nbyte_little_endian((uint8_t*)p1, "p1' = p1 XOR r", 16);
  /* calculate e1 = e(k, p1'), where k = TK */
  smp_debug_print_nbyte_little_endian(p_cb->tk, "TK", 16);
  memset(output, 0, sizeof(tSMP_ENC));
  if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, output)) {
    SMP_TRACE_ERROR("%s: failed encryption at e1 = e(k, p1')");
    return SMP_PAIR_FAIL_UNKNOWN;
  }
  smp_debug_print_nbyte_little_endian(output->param_buf, "e1 = e(k, p1')", 16);
  /* generate p2 = padding || ia || ra */
  BT_OCTET16 p2;
  smp_gen_p2_4_confirm(p_cb, remote_bda, p2);
  /* calculate p2' = (p2 XOR e1) */
  smp_xor_128(p2, output->param_buf);
  smp_debug_print_nbyte_little_endian((uint8_t*)p2, "p2' = p2 XOR e1", 16);
  /* calculate: c1 = e(k, p2') */
  memset(output, 0, sizeof(tSMP_ENC));
  if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, output)) {
    SMP_TRACE_ERROR("%s: failed encryption at e1 = e(k, p2')");
    return SMP_PAIR_FAIL_UNKNOWN;
  }
  return SMP_SUCCESS;
}

/*******************************************************************************
 *
 * Function         smp_generate_confirm
 *
 * Description      This function is called when random number (MRand or SRand)
 *                  is generated by the controller and the stack needs to
 *                  calculate c1 value (MConfirm or SConfirm) for the first time
 *
 * Returns          void
 *
 ******************************************************************************/
static void smp_generate_confirm(tSMP_CB* p_cb) {
  SMP_TRACE_DEBUG("%s", __func__);
  smp_debug_print_nbyte_little_endian((uint8_t*)p_cb->rand, "local_rand", 16);
  tSMP_ENC output;
  tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rand, &output);
  if (status != SMP_SUCCESS) {
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    return;
  }
  tSMP_KEY key;
  memcpy(p_cb->confirm, output.param_buf, BT_OCTET16_LEN);
  smp_debug_print_nbyte_little_endian(p_cb->confirm, "Local Confirm generated",
                                      16);
  key.key_type = SMP_KEY_TYPE_CFM;
  key.p_data = output.param_buf;
  smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
}

/*******************************************************************************
 *
 * Function         smp_generate_srand_mrand_confirm
 *
 * Description      This function is called to start the second pairing phase by
 *                  start generating random number.
 *
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_generate_srand_mrand_confirm(tSMP_CB* p_cb,
                                      UNUSED_ATTR tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("%s", __func__);
  /* generate MRand or SRand */
  btsnd_hcic_ble_rand(Bind(
      [](tSMP_CB* p_cb, BT_OCTET8 rand) {
        memcpy((void*)p_cb->rand, rand, 8);

        /* generate 64 MSB of MRand or SRand */
        btsnd_hcic_ble_rand(Bind(
            [](tSMP_CB* p_cb, BT_OCTET8 rand) {
              memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN);
              smp_generate_confirm(p_cb);
            },
            p_cb));
      },
      p_cb));
}

/*******************************************************************************
 *
 * Function         smp_generate_compare
 *
 * Description      This function is called when random number (MRand or SRand)
 *                  is received from remote device and the c1 value (MConfirm
 *                  or SConfirm) needs to be generated to authenticate remote
 *                  device.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_generate_compare(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("smp_generate_compare ");
  smp_debug_print_nbyte_little_endian((uint8_t*)p_cb->rrand, "peer rand", 16);
  tSMP_ENC output;
  tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rrand, &output);
  if (status != SMP_SUCCESS) {
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    return;
  }
  tSMP_KEY key;
  smp_debug_print_nbyte_little_endian(output.param_buf,
                                      "Remote Confirm generated", 16);
  key.key_type = SMP_KEY_TYPE_CMP;
  key.p_data = output.param_buf;
  smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
}

/*******************************************************************************
 *
 * Function         smp_process_stk
 *
 * Description      This function is called when STK is generated
 *                  proceed to send the encrypt the link using STK.
 *
 * Returns          void
 *
 ******************************************************************************/
static void smp_process_stk(tSMP_CB* p_cb, tSMP_ENC* p) {
  tSMP_KEY key;

  SMP_TRACE_DEBUG("smp_process_stk ");
#if (SMP_DEBUG == TRUE)
  SMP_TRACE_ERROR("STK Generated");
#endif
  smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf);

  key.key_type = SMP_KEY_TYPE_STK;
  key.p_data = p->param_buf;

  smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
}

/**
 * This function is to calculate EDIV = Y xor DIV
 */
static void smp_process_ediv(tSMP_CB* p_cb, tSMP_ENC* p) {
  tSMP_KEY key;
  uint8_t* pp = p->param_buf;
  uint16_t y;

  SMP_TRACE_DEBUG("smp_process_ediv ");
  STREAM_TO_UINT16(y, pp);

  /* EDIV = Y xor DIV */
  p_cb->ediv = p_cb->div ^ y;
  /* send LTK ready */
  SMP_TRACE_ERROR("LTK ready");
  key.key_type = SMP_KEY_TYPE_LTK;
  key.p_data = p->param_buf;

  smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
}

/**
 * This function is to proceed generate Y = E(DHK, Rand)
 */
static void smp_generate_y(tSMP_CB* p_cb, BT_OCTET8 rand) {
  SMP_TRACE_DEBUG("%s ", __func__);

  BT_OCTET16 dhk;
  BTM_GetDeviceDHK(dhk);

  memcpy(p_cb->enc_rand, rand, BT_OCTET8_LEN);
  tSMP_ENC output;
  if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, rand, BT_OCTET8_LEN, &output)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
  } else {
    smp_process_ediv(p_cb, &output);
  }
}

/**
 * Calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
 */
static void smp_generate_ltk_cont(uint16_t div, tSMP_CB* p_cb) {
  p_cb->div = div;

  SMP_TRACE_DEBUG("%s", __func__);
  BT_OCTET16 er;
  BTM_GetDeviceEncRoot(er);

  tSMP_ENC output;
  /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
  if (!SMP_Encrypt(er, BT_OCTET16_LEN, (uint8_t*)&p_cb->div, sizeof(uint16_t),
                   &output)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
  } else {
    /* mask the LTK */
    smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf);
    memcpy((void*)p_cb->ltk, output.param_buf, BT_OCTET16_LEN);

    /* generate EDIV and rand now */
    btsnd_hcic_ble_rand(Bind(&smp_generate_y, p_cb));
  }
}

/*******************************************************************************
 *
 * Function         smp_generate_ltk
 *
 * Description      This function is called:
 *                  - in legacy pairing - to calculate LTK, starting with DIV
 *                    generation;
 *                  - in LE Secure Connections pairing over LE transport - to
 *                    process LTK already generated to encrypt LE link;
 *                  - in LE Secure Connections pairing over BR/EDR transport -
 *                    to start BR/EDR Link Key processing.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_generate_ltk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("%s", __func__);

  if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) {
    smp_br_process_link_key(p_cb, NULL);
    return;
  } else if (p_cb->le_secure_connections_mode_is_used) {
    smp_process_secure_connection_long_term_key();
    return;
  }

  bool div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);

  if (div_status) {
    smp_generate_ltk_cont(p_cb->div, p_cb);
  } else {
    SMP_TRACE_DEBUG("%s: Generate DIV for LTK", __func__);

    /* generate MRand or SRand */
    btsnd_hcic_ble_rand(Bind(
        [](tSMP_CB* p_cb, BT_OCTET8 rand) {
          uint16_t div;
          STREAM_TO_UINT16(div, rand);
          smp_generate_ltk_cont(div, p_cb);
        },
        p_cb));
  }
}

/*******************************************************************************
 *
 * Function         smp_calculate_legacy_short_term_key
 *
 * Description      The function calculates legacy STK.
 *
 * Returns          false if out of resources, true in other cases.
 *
 ******************************************************************************/
bool smp_calculate_legacy_short_term_key(tSMP_CB* p_cb, tSMP_ENC* output) {
  SMP_TRACE_DEBUG("%s", __func__);

  BT_OCTET16 ptext;
  uint8_t* p = ptext;
  memset(p, 0, BT_OCTET16_LEN);
  if (p_cb->role == HCI_ROLE_MASTER) {
    memcpy(p, p_cb->rand, BT_OCTET8_LEN);
    memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN);
  } else {
    memcpy(p, p_cb->rrand, BT_OCTET8_LEN);
    memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN);
  }

  /* generate STK = Etk(rand|rrand)*/
  bool encrypted =
      SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output);
  if (!encrypted) {
    SMP_TRACE_ERROR("%s failed", __func__);
  }
  return encrypted;
}

/*******************************************************************************
 *
 * Function         smp_create_private_key
 *
 * Description      This function is called to create private key used to
 *                  calculate public key and DHKey.
 *                  The function starts private key creation requesting
 *                  for the controller to generate [0-7] octets of private key.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_create_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("%s", __func__);

  btsnd_hcic_ble_rand(Bind(
      [](tSMP_CB* p_cb, BT_OCTET8 rand) {
        memcpy((void*)p_cb->private_key, rand, BT_OCTET8_LEN);
        btsnd_hcic_ble_rand(Bind(
            [](tSMP_CB* p_cb, BT_OCTET8 rand) {
              memcpy((void*)&p_cb->private_key[8], rand, BT_OCTET8_LEN);
              btsnd_hcic_ble_rand(Bind(
                  [](tSMP_CB* p_cb, BT_OCTET8 rand) {
                    memcpy((void*)&p_cb->private_key[16], rand, BT_OCTET8_LEN);
                    btsnd_hcic_ble_rand(Bind(
                        [](tSMP_CB* p_cb, BT_OCTET8 rand) {
                          memcpy((void*)&p_cb->private_key[24], rand,
                                 BT_OCTET8_LEN);
                          smp_process_private_key(p_cb);
                        },
                        p_cb));
                  },
                  p_cb));
            },
            p_cb));
      },
      p_cb));
}

/*******************************************************************************
 *
 * Function         smp_use_oob_private_key
 *
 * Description      This function is called
 *                  - to save the secret key used to calculate the public key
 *                    used in calculations of commitment sent OOB to a peer
 *                  - to use this secret key to recalculate the public key and
 *                    start the process of sending this public key to the peer
 *                  if secret/public keys have to be reused.
 *                  If the keys aren't supposed to be reused, continue from the
 *                  point from which request for OOB data was issued.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_use_oob_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("%s req_oob_type: %d, role: %d", __func__, p_cb->req_oob_type,
                  p_cb->role);

  switch (p_cb->req_oob_type) {
    case SMP_OOB_BOTH:
    case SMP_OOB_LOCAL:
      SMP_TRACE_DEBUG("%s restore secret key", __func__)
      memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used,
             BT_OCTET32_LEN);
      smp_process_private_key(p_cb);
      break;
    default:
      SMP_TRACE_DEBUG("%s create secret key anew", __func__);
      smp_set_state(SMP_STATE_PAIR_REQ_RSP);
      smp_decide_association_model(p_cb, NULL);
      break;
  }
}

/*******************************************************************************
 *
 * Function         smp_process_private_key
 *
 * Description      This function processes private key.
 *                  It calculates public key and notifies SM that private key /
 *                  public key pair is created.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_process_private_key(tSMP_CB* p_cb) {
  Point public_key;
  BT_OCTET32 private_key;

  SMP_TRACE_DEBUG("%s", __func__);

  memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
  ECC_PointMult(&public_key, &(curve_p256.G), (uint32_t*)private_key,
                KEY_LENGTH_DWORDS_P256);
  memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
  memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);

  smp_debug_print_nbyte_little_endian(p_cb->private_key, "private",
                                      BT_OCTET32_LEN);
  smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.x, "local public(x)",
                                      BT_OCTET32_LEN);
  smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.y, "local public(y)",
                                      BT_OCTET32_LEN);
  p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
  smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
}

/*******************************************************************************
 *
 * Function         smp_compute_dhkey
 *
 * Description      The function:
 *                  - calculates a new public key using as input local private
 *                    key and peer public key;
 *                  - saves the new public key x-coordinate as DHKey.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_compute_dhkey(tSMP_CB* p_cb) {
  Point peer_publ_key, new_publ_key;
  BT_OCTET32 private_key;

  SMP_TRACE_DEBUG("%s", __func__);

  memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
  memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
  memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);

  ECC_PointMult(&new_publ_key, &peer_publ_key, (uint32_t*)private_key,
                KEY_LENGTH_DWORDS_P256);

  memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);

  smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Old DHKey", BT_OCTET32_LEN);

  smp_debug_print_nbyte_little_endian(p_cb->private_key, "private",
                                      BT_OCTET32_LEN);
  smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.x, "rem public(x)",
                                      BT_OCTET32_LEN);
  smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.y, "rem public(y)",
                                      BT_OCTET32_LEN);
  smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Reverted DHKey",
                                      BT_OCTET32_LEN);
}

/*******************************************************************************
 *
 * Function         smp_calculate_local_commitment
 *
 * Description      The function calculates and saves local commmitment in CB.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_calculate_local_commitment(tSMP_CB* p_cb) {
  uint8_t random_input;

  SMP_TRACE_DEBUG("%s", __func__);

  switch (p_cb->selected_association_model) {
    case SMP_MODEL_SEC_CONN_JUSTWORKS:
    case SMP_MODEL_SEC_CONN_NUM_COMP:
      if (p_cb->role == HCI_ROLE_MASTER)
        SMP_TRACE_WARNING(
            "local commitment calc on master is not expected \
                                    for Just Works/Numeric Comparison models");
      smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
                       0, p_cb->commitment);
      break;
    case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
    case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
      random_input =
          smp_calculate_random_input(p_cb->local_random, p_cb->round);
      smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
                       random_input, p_cb->commitment);
      break;
    case SMP_MODEL_SEC_CONN_OOB:
      SMP_TRACE_WARNING(
          "local commitment calc is expected for OOB model BEFORE pairing");
      smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x,
                       p_cb->local_random, 0, p_cb->commitment);
      break;
    default:
      SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
                      p_cb->selected_association_model);
      return;
  }

  SMP_TRACE_EVENT("local commitment calculation is completed");
}

/*******************************************************************************
 *
 * Function         smp_calculate_peer_commitment
 *
 * Description      The function calculates and saves peer commmitment at the
 *                  provided output buffer.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_calculate_peer_commitment(tSMP_CB* p_cb, BT_OCTET16 output_buf) {
  uint8_t ri;

  SMP_TRACE_DEBUG("%s", __func__);

  switch (p_cb->selected_association_model) {
    case SMP_MODEL_SEC_CONN_JUSTWORKS:
    case SMP_MODEL_SEC_CONN_NUM_COMP:
      if (p_cb->role == HCI_ROLE_SLAVE)
        SMP_TRACE_WARNING(
            "peer commitment calc on slave is not expected \
                for Just Works/Numeric Comparison models");
      smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
                       0, output_buf);
      break;
    case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
    case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
      ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round);
      smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
                       ri, output_buf);
      break;
    case SMP_MODEL_SEC_CONN_OOB:
      smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x,
                       p_cb->peer_random, 0, output_buf);
      break;
    default:
      SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
                      p_cb->selected_association_model);
      return;
  }

  SMP_TRACE_EVENT("peer commitment calculation is completed");
}

/*******************************************************************************
 *
 * Function         smp_calculate_f4
 *
 * Description      The function calculates
 *                  C = f4(U, V, X, Z) = AES-CMAC (U||V||Z)
 *                                               X
 *                  where
 *                  input:  U is 256 bit,
 *                          V is 256 bit,
 *                          X is 128 bit,
 *                          Z is 8 bit,
 *                  output: C is 128 bit.
 *
 * Returns          void
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
void smp_calculate_f4(uint8_t* u, uint8_t* v, uint8_t* x, uint8_t z,
                      uint8_t* c) {
  uint8_t msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ +
                    1 /* Z size */;
  uint8_t msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1];
  uint8_t key[BT_OCTET16_LEN];
  uint8_t cmac[BT_OCTET16_LEN];
  uint8_t* p = NULL;
#if (SMP_DEBUG == TRUE)
  uint8_t* p_prnt = NULL;
#endif

  SMP_TRACE_DEBUG("%s", __func__);

#if (SMP_DEBUG == TRUE)
  p_prnt = u;
  smp_debug_print_nbyte_little_endian(p_prnt, "U", BT_OCTET32_LEN);
  p_prnt = v;
  smp_debug_print_nbyte_little_endian(p_prnt, "V", BT_OCTET32_LEN);
  p_prnt = x;
  smp_debug_print_nbyte_little_endian(p_prnt, "X", BT_OCTET16_LEN);
  p_prnt = &z;
  smp_debug_print_nbyte_little_endian(p_prnt, "Z", 1);
#endif

  p = msg;
  UINT8_TO_STREAM(p, z);
  ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
  ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
#if (SMP_DEBUG == TRUE)
  p_prnt = msg;
  smp_debug_print_nbyte_little_endian(p_prnt, "M", msg_len);
#endif

  p = key;
  ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
#if (SMP_DEBUG == TRUE)
  p_prnt = key;
  smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN);
#endif

  aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac);
#if (SMP_DEBUG == TRUE)
  p_prnt = cmac;
  smp_debug_print_nbyte_little_endian(p_prnt, "AES_CMAC", BT_OCTET16_LEN);
#endif

  p = c;
  ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
}

/*******************************************************************************
 *
 * Function         smp_calculate_numeric_comparison_display_number
 *
 * Description      The function calculates and saves number to display in
 *                  numeric comparison association mode.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_calculate_numeric_comparison_display_number(tSMP_CB* p_cb,
                                                     tSMP_INT_DATA* p_data) {
  SMP_TRACE_DEBUG("%s", __func__);

  if (p_cb->role == HCI_ROLE_MASTER) {
    p_cb->number_to_display = smp_calculate_g2(
        p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, p_cb->rrand);
  } else {
    p_cb->number_to_display = smp_calculate_g2(
        p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, p_cb->rand);
  }

  if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) {
    uint8_t reason;
    reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason);
    return;
  }

  SMP_TRACE_EVENT("Number to display in numeric comparison = %d",
                  p_cb->number_to_display);
  p_cb->cb_evt = SMP_NC_REQ_EVT;
  smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display);
  return;
}

/*******************************************************************************
 *
 * Function         smp_calculate_g2
 *
 * Description      The function calculates
 *                  g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6
 *                                           X
 *                  and
 *                  Vres = g2(U, V, X, Y) mod 10**6
 *                  where
 *                  input:  U     is 256 bit,
 *                          V     is 256 bit,
 *                          X     is 128 bit,
 *                          Y     is 128 bit,
 *
 * Returns          Vres.
 *                  Expected value has to be in the range [0 - 999999] i.e.
 *                        [0 - 0xF423F].
 *                  Vres = 1000000 means that the calculation fails.
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
uint32_t smp_calculate_g2(uint8_t* u, uint8_t* v, uint8_t* x, uint8_t* y) {
  uint8_t msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */
                    + BT_OCTET16_LEN /* Y size */;
  uint8_t msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN];
  uint8_t key[BT_OCTET16_LEN];
  uint8_t cmac[BT_OCTET16_LEN];
  uint8_t* p = NULL;
  uint32_t vres;
#if (SMP_DEBUG == TRUE)
  uint8_t* p_prnt = NULL;
#endif

  SMP_TRACE_DEBUG("%s", __func__);

  p = msg;
  ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN);
  ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
  ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
#if (SMP_DEBUG == TRUE)
  p_prnt = u;
  smp_debug_print_nbyte_little_endian(p_prnt, "U", BT_OCTET32_LEN);
  p_prnt = v;
  smp_debug_print_nbyte_little_endian(p_prnt, "V", BT_OCTET32_LEN);
  p_prnt = x;
  smp_debug_print_nbyte_little_endian(p_prnt, "X", BT_OCTET16_LEN);
  p_prnt = y;
  smp_debug_print_nbyte_little_endian(p_prnt, "Y", BT_OCTET16_LEN);
#endif

  p = key;
  ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
#if (SMP_DEBUG == TRUE)
  p_prnt = key;
  smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN);
#endif

  if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    return (BTM_MAX_PASSKEY_VAL + 1);
  }

#if (SMP_DEBUG == TRUE)
  p_prnt = cmac;
  smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN);
#endif

  /* vres = cmac mod 2**32 mod 10**6 */
  p = &cmac[0];
  STREAM_TO_UINT32(vres, p);
#if (SMP_DEBUG == TRUE)
  p_prnt = (uint8_t*)&vres;
  smp_debug_print_nbyte_little_endian(p_prnt, "cmac mod 2**32", 4);
#endif

  while (vres > BTM_MAX_PASSKEY_VAL) vres -= (BTM_MAX_PASSKEY_VAL + 1);
#if (SMP_DEBUG == TRUE)
  p_prnt = (uint8_t*)&vres;
  smp_debug_print_nbyte_little_endian(p_prnt, "cmac mod 2**32 mod 10**6", 4);
#endif

  SMP_TRACE_ERROR("Value for numeric comparison = %d", vres);
  return vres;
}

/*******************************************************************************
 *
 * Function         smp_calculate_f5
 *
 * Description      The function provides two AES-CMAC that are supposed to be
 *                    used as
 *                  - MacKey (used in pairing DHKey check calculation);
 *                  - LTK (used to ecrypt the link after completion of Phase 2
 *                    and on reconnection, to derive BR/EDR LK).
 *                  The function inputs are W, N1, N2, A1, A2.
 *                  F5 rules:
 *                  - the value used as key in MacKey/LTK (T) is calculated
 *                    (function smp_calculate_f5_key(...));
 *                    The formula is:
 *                          T = AES-CMAC    (W)
 *                                      salt
 *                    where salt is internal parameter of
 *                    smp_calculate_f5_key(...).
 *                  - MacKey and LTK are calculated as AES-MAC values received
 *                    with the key T calculated in the previous step and the
 *                    plaintext message built from the external parameters N1,
 *                    N2, A1, A2 and the internal parameters counter, keyID,
 *                    length.
 *                    The function smp_calculate_f5_mackey_or_long_term_key(...)
 *                    is used in the calculations.
 *                    The same formula is used in calculation of MacKey and LTK
 *                    and the same parameter values except the value of the
 *                    internal parameter counter:
 *                    - in MacKey calculations the value is 0;
 *                    - in LTK calculations the value is 1.
 *                      MacKey  =
 *                       AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256)
 *                               T
 *                      LTK     =
 *                       AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256)
 *                               T
 *                  The parameters are
 *                  input:
 *                          W       is 256 bits,
 *                          N1      is 128 bits,
 *                          N2      is 128 bits,
 *                          A1 is 56 bit,
 *                          A2 is 56 bit.
 *                  internal:
 *                          Counter is 8 bits,  its value is 0 for MacKey,
 *                                                          1 for LTK;
 *                          KeyId   is 32 bits, its value is
 *                                              0x62746c65 (MSB~LSB);
 *                          Length  is 16 bits, its value is 0x0100
 *                                              (MSB~LSB).
 *                  output:
 *                          MacKey  is 128 bits;
 *                          LTK     is 128 bits
 *
 * Returns          false if out of resources, true in other cases.
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
bool smp_calculate_f5(uint8_t* w, uint8_t* n1, uint8_t* n2, uint8_t* a1,
                      uint8_t* a2, uint8_t* mac_key, uint8_t* ltk) {
  BT_OCTET16 t; /* AES-CMAC output in smp_calculate_f5_key(...), key in */
                /* smp_calculate_f5_mackey_or_long_term_key(...) */
#if (SMP_DEBUG == TRUE)
  uint8_t* p_prnt = NULL;
#endif
  /* internal parameters: */

  /*
      counter is 0 for MacKey,
              is 1 for LTK
  */
  uint8_t counter_mac_key[1] = {0};
  uint8_t counter_ltk[1] = {1};
  /*
      keyID   62746c65
  */
  uint8_t key_id[4] = {0x65, 0x6c, 0x74, 0x62};
  /*
      length  0100
  */
  uint8_t length[2] = {0x00, 0x01};

  SMP_TRACE_DEBUG("%s", __func__);
#if (SMP_DEBUG == TRUE)
  p_prnt = w;
  smp_debug_print_nbyte_little_endian(p_prnt, "W", BT_OCTET32_LEN);
  p_prnt = n1;
  smp_debug_print_nbyte_little_endian(p_prnt, "N1", BT_OCTET16_LEN);
  p_prnt = n2;
  smp_debug_print_nbyte_little_endian(p_prnt, "N2", BT_OCTET16_LEN);
  p_prnt = a1;
  smp_debug_print_nbyte_little_endian(p_prnt, "A1", 7);
  p_prnt = a2;
  smp_debug_print_nbyte_little_endian(p_prnt, "A2", 7);
#endif

  if (!smp_calculate_f5_key(w, t)) {
    SMP_TRACE_ERROR("%s failed to calc T", __func__);
    return false;
  }
#if (SMP_DEBUG == TRUE)
  p_prnt = t;
  smp_debug_print_nbyte_little_endian(p_prnt, "T", BT_OCTET16_LEN);
#endif

  if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1,
                                                n2, a1, a2, length, mac_key)) {
    SMP_TRACE_ERROR("%s failed to calc MacKey", __func__);
    return false;
  }
#if (SMP_DEBUG == TRUE)
  p_prnt = mac_key;
  smp_debug_print_nbyte_little_endian(p_prnt, "MacKey", BT_OCTET16_LEN);
#endif

  if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2,
                                                a1, a2, length, ltk)) {
    SMP_TRACE_ERROR("%s failed to calc LTK", __func__);
    return false;
  }
#if (SMP_DEBUG == TRUE)
  p_prnt = ltk;
  smp_debug_print_nbyte_little_endian(p_prnt, "LTK", BT_OCTET16_LEN);
#endif

  return true;
}

/*******************************************************************************
 *
 * Function         smp_calculate_f5_mackey_or_long_term_key
 *
 * Description      The function calculates the value of MacKey or LTK by the
 *                  rules defined for f5 function.
 *                  At the moment exactly the same formula is used to calculate
 *                  LTK and MacKey.
 *                  The difference is the value of input parameter Counter:
 *                  - in MacKey calculations the value is 0;
 *                  - in LTK calculations the value is 1.
 *                  The formula:
 *                  mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length)
 *                                T
 *                  where
 *                  input:      T       is 256 bits;
 *                              Counter is 8 bits, its value is 0 for MacKey,
 *                                                              1 for LTK;
 *                              keyID   is 32 bits, its value is 0x62746c65;
 *                              N1      is 128 bits;
 *                              N2      is 128 bits;
 *                              A1      is 56 bits;
 *                              A2      is 56 bits;
 *                              Length  is 16 bits, its value is 0x0100
 *                  output:     LTK     is 128 bit.
 *
 * Returns          false if out of resources, true in other cases.
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
bool smp_calculate_f5_mackey_or_long_term_key(uint8_t* t, uint8_t* counter,
                                              uint8_t* key_id, uint8_t* n1,
                                              uint8_t* n2, uint8_t* a1,
                                              uint8_t* a2, uint8_t* length,
                                              uint8_t* mac) {
  uint8_t* p = NULL;
  uint8_t cmac[BT_OCTET16_LEN];
  uint8_t key[BT_OCTET16_LEN];
  uint8_t msg_len = 1 /* Counter size */ + 4 /* keyID size */ +
                    BT_OCTET16_LEN /* N1 size */ +
                    BT_OCTET16_LEN /* N2 size */ + 7 /* A1 size*/ +
                    7 /* A2 size*/ + 2 /* Length size */;
  uint8_t msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2];
  bool ret = true;
#if (SMP_DEBUG == TRUE)
  uint8_t* p_prnt = NULL;
#endif

  SMP_TRACE_DEBUG("%s", __func__);
#if (SMP_DEBUG == TRUE)
  p_prnt = t;
  smp_debug_print_nbyte_little_endian(p_prnt, "T", BT_OCTET16_LEN);
  p_prnt = counter;
  smp_debug_print_nbyte_little_endian(p_prnt, "Counter", 1);
  p_prnt = key_id;
  smp_debug_print_nbyte_little_endian(p_prnt, "KeyID", 4);
  p_prnt = n1;
  smp_debug_print_nbyte_little_endian(p_prnt, "N1", BT_OCTET16_LEN);
  p_prnt = n2;
  smp_debug_print_nbyte_little_endian(p_prnt, "N2", BT_OCTET16_LEN);
  p_prnt = a1;
  smp_debug_print_nbyte_little_endian(p_prnt, "A1", 7);
  p_prnt = a2;
  smp_debug_print_nbyte_little_endian(p_prnt, "A2", 7);
  p_prnt = length;
  smp_debug_print_nbyte_little_endian(p_prnt, "Length", 2);
#endif

  p = key;
  ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN);
#if (SMP_DEBUG == TRUE)
  p_prnt = key;
  smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN);
#endif
  p = msg;
  ARRAY_TO_STREAM(p, length, 2);
  ARRAY_TO_STREAM(p, a2, 7);
  ARRAY_TO_STREAM(p, a1, 7);
  ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
  ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
  ARRAY_TO_STREAM(p, key_id, 4);
  ARRAY_TO_STREAM(p, counter, 1);
#if (SMP_DEBUG == TRUE)
  p_prnt = msg;
  smp_debug_print_nbyte_little_endian(p_prnt, "M", msg_len);
#endif

  if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    ret = false;
  }

#if (SMP_DEBUG == TRUE)
  p_prnt = cmac;
  smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN);
#endif

  p = mac;
  ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
  return ret;
}

/*******************************************************************************
 *
 * Function         smp_calculate_f5_key
 *
 * Description      The function calculates key T used in calculation of
 *                  MacKey and LTK (f5 output is defined as MacKey || LTK).
 *                  T = AES-CMAC    (W)
 *                              salt
 *                  where
 *                  Internal:   salt    is 128 bit.
 *                  input:      W       is 256 bit.
 *                  Output:     T       is 128 bit.
 *
 * Returns          false if out of resources, true in other cases.
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
bool smp_calculate_f5_key(uint8_t* w, uint8_t* t) {
  uint8_t* p = NULL;
  /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */
  /*
      salt:   6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE
  */
  BT_OCTET16 salt = {0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60,
                     0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C};
#if (SMP_DEBUG == TRUE)
  uint8_t* p_prnt = NULL;
#endif

  SMP_TRACE_DEBUG("%s", __func__);
#if (SMP_DEBUG == TRUE)
  p_prnt = salt;
  smp_debug_print_nbyte_little_endian(p_prnt, "salt", BT_OCTET16_LEN);
  p_prnt = w;
  smp_debug_print_nbyte_little_endian(p_prnt, "W", BT_OCTET32_LEN);
#endif

  BT_OCTET16 key;
  BT_OCTET32 msg;

  p = key;
  ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);
  p = msg;
  ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN);
#if (SMP_DEBUG == TRUE)
  p_prnt = key;
  smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN);
  p_prnt = msg;
  smp_debug_print_nbyte_little_endian(p_prnt, "M", BT_OCTET32_LEN);
#endif

  BT_OCTET16 cmac;
  bool ret = true;
  if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN,
                                cmac)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    ret = false;
  }

#if (SMP_DEBUG == TRUE)
  p_prnt = cmac;
  smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN);
#endif

  p = t;
  ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
  return ret;
}

/*******************************************************************************
 *
 * Function         smp_calculate_local_dhkey_check
 *
 * Description      The function calculates and saves local device DHKey check
 *                  value in CB.
 *                  Before doing this it calls
 *                  smp_calculate_f5_mackey_and_long_term_key(...).
 *                  to calculate MacKey and LTK.
 *                  MacKey is used in dhkey calculation.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_calculate_local_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
  uint8_t iocap[3], a[7], b[7];

  SMP_TRACE_DEBUG("%s", __func__);

  smp_calculate_f5_mackey_and_long_term_key(p_cb);

  smp_collect_local_io_capabilities(iocap, p_cb);

  smp_collect_local_ble_address(a, p_cb);
  smp_collect_peer_ble_address(b, p_cb);
  smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random,
                   iocap, a, b, p_cb->dhkey_check);

  SMP_TRACE_EVENT("local DHKey check calculation is completed");
}

/*******************************************************************************
 *
 * Function         smp_calculate_peer_dhkey_check
 *
 * Description      The function calculates peer device DHKey check value.
 *
 * Returns          void
 *
 ******************************************************************************/
void smp_calculate_peer_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
  uint8_t iocap[3], a[7], b[7];
  BT_OCTET16 param_buf;
  bool ret;
  tSMP_KEY key;
  tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;

  SMP_TRACE_DEBUG("%s", __func__);

  smp_collect_peer_io_capabilities(iocap, p_cb);

  smp_collect_local_ble_address(a, p_cb);
  smp_collect_peer_ble_address(b, p_cb);
  ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand,
                         p_cb->local_random, iocap, b, a, param_buf);

  if (ret) {
    SMP_TRACE_EVENT("peer DHKey check calculation is completed");
#if (SMP_DEBUG == TRUE)
    smp_debug_print_nbyte_little_endian(param_buf, "peer DHKey check",
                                        BT_OCTET16_LEN);
#endif
    key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
    key.p_data = param_buf;
    smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key);
  } else {
    SMP_TRACE_EVENT("peer DHKey check calculation failed");
    smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
  }
}

/*******************************************************************************
 *
 * Function         smp_calculate_f6
 *
 * Description      The function calculates
 *                  C = f6(W, N1, N2, R, IOcap, A1, A2) =
 *                      AES-CMAC (N1||N2||R||IOcap||A1||A2)
 *                              W
 *                  where
 *                  input:  W is 128 bit,
 *                          N1 is 128 bit,
 *                          N2 is 128 bit,
 *                          R is 128 bit,
 *                          IOcap is 24 bit,
 *                          A1 is 56 bit,
 *                          A2 is 56 bit,
 *                  output: C is 128 bit.
 *
 * Returns          false if out of resources, true in other cases.
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
bool smp_calculate_f6(uint8_t* w, uint8_t* n1, uint8_t* n2, uint8_t* r,
                      uint8_t* iocap, uint8_t* a1, uint8_t* a2, uint8_t* c) {
  uint8_t* p = NULL;
  uint8_t msg_len = BT_OCTET16_LEN /* N1 size */ +
                    BT_OCTET16_LEN /* N2 size */ + BT_OCTET16_LEN /* R size */ +
                    3 /* IOcap size */ + 7 /* A1 size*/
                    + 7 /* A2 size*/;
  uint8_t msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7];
#if (SMP_DEBUG == TRUE)
  uint8_t* p_print = NULL;
#endif

  SMP_TRACE_DEBUG("%s", __func__);
#if (SMP_DEBUG == TRUE)
  p_print = w;
  smp_debug_print_nbyte_little_endian(p_print, "W", BT_OCTET16_LEN);
  p_print = n1;
  smp_debug_print_nbyte_little_endian(p_print, "N1", BT_OCTET16_LEN);
  p_print = n2;
  smp_debug_print_nbyte_little_endian(p_print, "N2", BT_OCTET16_LEN);
  p_print = r;
  smp_debug_print_nbyte_little_endian(p_print, "R", BT_OCTET16_LEN);
  p_print = iocap;
  smp_debug_print_nbyte_little_endian(p_print, "IOcap", 3);
  p_print = a1;
  smp_debug_print_nbyte_little_endian(p_print, "A1", 7);
  p_print = a2;
  smp_debug_print_nbyte_little_endian(p_print, "A2", 7);
#endif

  uint8_t cmac[BT_OCTET16_LEN];
  uint8_t key[BT_OCTET16_LEN];

  p = key;
  ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
#if (SMP_DEBUG == TRUE)
  p_print = key;
  smp_debug_print_nbyte_little_endian(p_print, "K", BT_OCTET16_LEN);
#endif

  p = msg;
  ARRAY_TO_STREAM(p, a2, 7);
  ARRAY_TO_STREAM(p, a1, 7);
  ARRAY_TO_STREAM(p, iocap, 3);
  ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN);
  ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
  ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
#if (SMP_DEBUG == TRUE)
  p_print = msg;
  smp_debug_print_nbyte_little_endian(p_print, "M", msg_len);
#endif

  bool ret = true;
  if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    ret = false;
  }

#if (SMP_DEBUG == TRUE)
  p_print = cmac;
  smp_debug_print_nbyte_little_endian(p_print, "AES-CMAC", BT_OCTET16_LEN);
#endif

  p = c;
  ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
  return ret;
}

/*******************************************************************************
 *
 * Function         smp_calculate_link_key_from_long_term_key
 *
 * Description      The function calculates and saves BR/EDR link key derived
 *                  from LE SC LTK.
 *
 * Returns          false if out of resources, true in other cases.
 *
 ******************************************************************************/
bool smp_calculate_link_key_from_long_term_key(tSMP_CB* p_cb) {
  tBTM_SEC_DEV_REC* p_dev_rec;
  BD_ADDR bda_for_lk;
  tBLE_ADDR_TYPE conn_addr_type;
  BT_OCTET16 salt = {0x31, 0x70, 0x6D, 0x74, 0x00, 0x00, 0x00, 0x00,
                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

  SMP_TRACE_DEBUG("%s", __func__);

  if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) {
    SMP_TRACE_DEBUG(
        "Use rcvd identity address as BD_ADDR of LK rcvd identity address");
    memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN);
  } else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk,
                                           &conn_addr_type)) &&
             conn_addr_type == BLE_ADDR_PUBLIC) {
    SMP_TRACE_DEBUG("Use rcvd connection address as BD_ADDR of LK");
  } else {
    SMP_TRACE_WARNING("Don't have peer public address to associate with LK");
    return false;
  }

  p_dev_rec = btm_find_dev(p_cb->pairing_bda);
  if (p_dev_rec == NULL) {
    SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
    return false;
  }

  BT_OCTET16 intermediate_link_key;
  bool ret = true;

  if (p_cb->key_derivation_h7_used)
    ret = smp_calculate_h7((uint8_t*)salt, p_cb->ltk, intermediate_link_key);
  else
    ret = smp_calculate_h6(p_cb->ltk, (uint8_t*)"1pmt" /* reversed "tmp1" */,
                           intermediate_link_key);
  if (!ret) {
    SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__);
    return ret;
  }

  BT_OCTET16 link_key;
  ret = smp_calculate_h6(intermediate_link_key,
                         (uint8_t*)"rbel" /* reversed "lebr" */, link_key);
  if (!ret) {
    SMP_TRACE_ERROR("%s failed", __func__);
  } else {
    uint8_t link_key_type;
    if (btm_cb.security_mode == BTM_SEC_MODE_SC) {
      /* Secure Connections Only Mode */
      link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
    } else if (controller_get_interface()->supports_secure_connections()) {
      /* both transports are SC capable */
      if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
        link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
      else
        link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
    } else if (btm_cb.security_mode == BTM_SEC_MODE_SP) {
      /* BR/EDR transport is SSP capable */
      if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
        link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
      else
        link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
    } else {
      SMP_TRACE_ERROR(
          "%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x", __func__,
          btm_cb.security_mode, p_dev_rec->sm4);
      return false;
    }

    link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;

    uint8_t* p;
    BT_OCTET16 notif_link_key;
    p = notif_link_key;
    ARRAY16_TO_STREAM(p, link_key);

    btm_sec_link_key_notification(bda_for_lk, notif_link_key, link_key_type);

    SMP_TRACE_EVENT("%s is completed", __func__);
  }

  return ret;
}

/*******************************************************************************
 *
 * Function         smp_calculate_long_term_key_from_link_key
 *
 * Description      The function calculates and saves SC LTK derived from BR/EDR
 *                  link key.
 *
 * Returns          false if out of resources, true in other cases.
 *
 ******************************************************************************/
bool smp_calculate_long_term_key_from_link_key(tSMP_CB* p_cb) {
  bool ret = true;
  tBTM_SEC_DEV_REC* p_dev_rec;
  uint8_t rev_link_key[16];
  BT_OCTET16 salt = {0x32, 0x70, 0x6D, 0x74, 0x00, 0x00, 0x00, 0x00,
                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

  SMP_TRACE_DEBUG("%s", __func__);

  p_dev_rec = btm_find_dev(p_cb->pairing_bda);
  if (p_dev_rec == NULL) {
    SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
    return false;
  }

  uint8_t br_link_key_type;
  br_link_key_type = BTM_SecGetDeviceLinkKeyType(p_cb->pairing_bda);
  if (br_link_key_type == BTM_LKEY_TYPE_IGNORE) {
    SMP_TRACE_ERROR("%s failed to retrieve BR link type", __func__);
    return false;
  }

  if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
      (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) {
    SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d", __func__,
                    br_link_key_type);
    return false;
  }

  uint8_t* p1;
  uint8_t* p2;
  p1 = rev_link_key;
  p2 = p_dev_rec->link_key;
  REVERSE_ARRAY_TO_STREAM(p1, p2, 16);

  BT_OCTET16 intermediate_long_term_key;
  if (p_cb->key_derivation_h7_used) {
    ret = smp_calculate_h7((uint8_t*)salt, rev_link_key,
                           intermediate_long_term_key);
  } else {
    /* "tmp2" obtained from the spec */
    ret = smp_calculate_h6(rev_link_key, (uint8_t*)"2pmt" /* reversed "tmp2" */,
                           intermediate_long_term_key);
  }

  if (!ret) {
    SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key", __func__);
    return ret;
  }

  /* "brle" obtained from the spec */
  ret = smp_calculate_h6(intermediate_long_term_key,
                         (uint8_t*)"elrb" /* reversed "brle" */, p_cb->ltk);

  if (!ret) {
    SMP_TRACE_ERROR("%s failed", __func__);
  } else {
    p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
                          ? SMP_SEC_AUTHENTICATED
                          : SMP_SEC_UNAUTHENTICATE;
    SMP_TRACE_EVENT("%s is completed", __func__);
  }

  return ret;
}

/*******************************************************************************
 *
 * Function         smp_calculate_h6
 *
 * Description      The function calculates
 *                  C = h6(W, KeyID) = AES-CMAC (KeyID)
 *                                             W
 *                  where
 *                  input:  W is 128 bit,
 *                          KeyId is 32 bit,
 *                  output: C is 128 bit.
 *
 * Returns          false if out of resources, true in other cases.
 *
 * Note             The LSB is the first octet, the MSB is the last octet of
 *                  the AES-CMAC input/output stream.
 *
 ******************************************************************************/
bool smp_calculate_h6(uint8_t* w, uint8_t* keyid, uint8_t* c) {
#if (SMP_DEBUG == TRUE)
  uint8_t* p_print = NULL;
#endif

  SMP_TRACE_DEBUG("%s", __func__);
#if (SMP_DEBUG == TRUE)
  p_print = w;
  smp_debug_print_nbyte_little_endian(p_print, "W", BT_OCTET16_LEN);
  p_print = keyid;
  smp_debug_print_nbyte_little_endian(p_print, "keyID", 4);
#endif

  uint8_t* p = NULL;
  uint8_t key[BT_OCTET16_LEN];

  p = key;
  ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);

#if (SMP_DEBUG == TRUE)
  p_print = key;
  smp_debug_print_nbyte_little_endian(p_print, "K", BT_OCTET16_LEN);
#endif

  uint8_t msg_len = 4 /* KeyID size */;
  uint8_t msg[4];

  p = msg;
  ARRAY_TO_STREAM(p, keyid, 4);

#if (SMP_DEBUG == TRUE)
  p_print = msg;
  smp_debug_print_nbyte_little_endian(p_print, "M", msg_len);
#endif

  bool ret = true;
  uint8_t cmac[BT_OCTET16_LEN];
  if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
    SMP_TRACE_ERROR("%s failed", __func__);
    ret = false;
  }

#if (SMP_DEBUG == TRUE)
  p_print = cmac;
  smp_debug_print_nbyte_little_endian(p_print, "AES-CMAC", BT_OCTET16_LEN);
#endif

  p = c;
  ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
  return ret;
}

/*******************************************************************************
**
** Function         smp_calculate_h7
**
** Description      The function calculates
**                  C = h7(SALT, W) = AES-CMAC   (W)
**                                            SALT
**                  where
**                  input:  W is 128 bit,
**                          SALT is 128 bit,
**                  output: C is 128 bit.
**
** Returns          FALSE if out of resources, TRUE in other cases.
**
** Note             The LSB is the first octet, the MSB is the last octet of
**                  the AES-CMAC input/output stream.
**
*******************************************************************************/
bool smp_calculate_h7(uint8_t* salt, uint8_t* w, uint8_t* c) {
  SMP_TRACE_DEBUG("%s", __FUNCTION__);

  uint8_t key[BT_OCTET16_LEN];
  uint8_t* p = key;
  ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);

  uint8_t msg_len = BT_OCTET16_LEN /* msg size */;
  uint8_t msg[BT_OCTET16_LEN];
  p = msg;
  ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);

  bool ret = true;
  uint8_t cmac[BT_OCTET16_LEN];
  if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
    SMP_TRACE_ERROR("%s failed", __FUNCTION__);
    ret = false;
  }

  p = c;
  ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
  return ret;
}

/**
 * This function generates nonce.
 */
void smp_start_nonce_generation(tSMP_CB* p_cb) {
  SMP_TRACE_DEBUG("%s", __func__);
  btsnd_hcic_ble_rand(Bind(
      [](tSMP_CB* p_cb, BT_OCTET8 rand) {
        memcpy((void*)p_cb->rand, rand, BT_OCTET8_LEN);
        btsnd_hcic_ble_rand(Bind(
            [](tSMP_CB* p_cb, BT_OCTET8 rand) {
              memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN);
              SMP_TRACE_DEBUG("%s round %d", __func__, p_cb->round);
              /* notifies SM that it has new nonce. */
              smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
            },
            p_cb));
      },
      p_cb));
}