/* Copyright (c) 2015-2016 The Khronos Group Inc. * Copyright (c) 2015-2016 Valve Corporation * Copyright (c) 2015-2016 LunarG, Inc. * Copyright (C) 2015-2016 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Ian Elliott <ian@lunarg.com> * Author: Ian Elliott <ianelliott@google.com> */ #include <mutex> #include <stdio.h> #include <string.h> #include <vk_loader_platform.h> #include <vulkan/vk_icd.h> #include "swapchain.h" #include "vk_layer_extension_utils.h" #include "vk_enum_string_helper.h" #include "vk_layer_utils.h" namespace swapchain { static std::mutex global_lock; // The following is for logging error messages: static std::unordered_map<void *, layer_data *> layer_data_map; static const VkExtensionProperties instance_extensions[] = {{VK_EXT_DEBUG_REPORT_EXTENSION_NAME, VK_EXT_DEBUG_REPORT_SPEC_VERSION}}; static const VkLayerProperties swapchain_layer = { "VK_LAYER_LUNARG_swapchain", VK_LAYER_API_VERSION, 1, "LunarG Validation Layer", }; static void createDeviceRegisterExtensions(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, VkDevice device) { uint32_t i; layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); layer_data *my_instance_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); VkLayerDispatchTable *pDisp = my_device_data->device_dispatch_table; PFN_vkGetDeviceProcAddr gpa = pDisp->GetDeviceProcAddr; pDisp->CreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)gpa(device, "vkCreateSwapchainKHR"); pDisp->DestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)gpa(device, "vkDestroySwapchainKHR"); pDisp->GetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)gpa(device, "vkGetSwapchainImagesKHR"); pDisp->AcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)gpa(device, "vkAcquireNextImageKHR"); pDisp->QueuePresentKHR = (PFN_vkQueuePresentKHR)gpa(device, "vkQueuePresentKHR"); pDisp->GetDeviceQueue = (PFN_vkGetDeviceQueue)gpa(device, "vkGetDeviceQueue"); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_instance_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_instance_data->physicalDeviceMap.end()) ? NULL : &it->second; } if (pPhysicalDevice) { my_device_data->deviceMap[device].pPhysicalDevice = pPhysicalDevice; pPhysicalDevice->pDevice = &my_device_data->deviceMap[device]; } else { // TBD: Should we leave error in (since Swapchain really needs this // link)? log_msg(my_instance_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, (uint64_t)physicalDevice, __LINE__, SWAPCHAIN_INVALID_HANDLE, "Swapchain", "vkCreateDevice() called with a non-valid VkPhysicalDevice."); } my_device_data->deviceMap[device].device = device; my_device_data->deviceMap[device].swapchainExtensionEnabled = false; // Record whether the WSI device extension was enabled for this VkDevice. // No need to check if the extension was advertised by // vkEnumerateDeviceExtensionProperties(), since the loader handles that. for (i = 0; i < pCreateInfo->enabledExtensionCount; i++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) { my_device_data->deviceMap[device].swapchainExtensionEnabled = true; } } } static void createInstanceRegisterExtensions(const VkInstanceCreateInfo *pCreateInfo, VkInstance instance) { uint32_t i; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); VkLayerInstanceDispatchTable *pDisp = my_data->instance_dispatch_table; PFN_vkGetInstanceProcAddr gpa = pDisp->GetInstanceProcAddr; #ifdef VK_USE_PLATFORM_ANDROID_KHR pDisp->CreateAndroidSurfaceKHR = (PFN_vkCreateAndroidSurfaceKHR)gpa(instance, "vkCreateAndroidSurfaceKHR"); #endif // VK_USE_PLATFORM_ANDROID_KHR #ifdef VK_USE_PLATFORM_MIR_KHR pDisp->CreateMirSurfaceKHR = (PFN_vkCreateMirSurfaceKHR)gpa(instance, "vkCreateMirSurfaceKHR"); pDisp->GetPhysicalDeviceMirPresentationSupportKHR = (PFN_vkGetPhysicalDeviceMirPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceMirPresentationSupportKHR"); #endif // VK_USE_PLATFORM_MIR_KHR #ifdef VK_USE_PLATFORM_WAYLAND_KHR pDisp->CreateWaylandSurfaceKHR = (PFN_vkCreateWaylandSurfaceKHR)gpa(instance, "vkCreateWaylandSurfaceKHR"); pDisp->GetPhysicalDeviceWaylandPresentationSupportKHR = (PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceWaylandPresentationSupportKHR"); #endif // VK_USE_PLATFORM_WAYLAND_KHR #ifdef VK_USE_PLATFORM_WIN32_KHR pDisp->CreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR)gpa(instance, "vkCreateWin32SurfaceKHR"); pDisp->GetPhysicalDeviceWin32PresentationSupportKHR = (PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceWin32PresentationSupportKHR"); #endif // VK_USE_PLATFORM_WIN32_KHR #ifdef VK_USE_PLATFORM_XCB_KHR pDisp->CreateXcbSurfaceKHR = (PFN_vkCreateXcbSurfaceKHR)gpa(instance, "vkCreateXcbSurfaceKHR"); pDisp->GetPhysicalDeviceXcbPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceXcbPresentationSupportKHR"); #endif // VK_USE_PLATFORM_XCB_KHR #ifdef VK_USE_PLATFORM_XLIB_KHR pDisp->CreateXlibSurfaceKHR = (PFN_vkCreateXlibSurfaceKHR)gpa(instance, "vkCreateXlibSurfaceKHR"); pDisp->GetPhysicalDeviceXlibPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceXlibPresentationSupportKHR"); #endif // VK_USE_PLATFORM_XLIB_KHR pDisp->DestroySurfaceKHR = (PFN_vkDestroySurfaceKHR)gpa(instance, "vkDestroySurfaceKHR"); pDisp->GetPhysicalDeviceSurfaceSupportKHR = (PFN_vkGetPhysicalDeviceSurfaceSupportKHR)gpa(instance, "vkGetPhysicalDeviceSurfaceSupportKHR"); pDisp->GetPhysicalDeviceSurfaceCapabilitiesKHR = (PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR)gpa(instance, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR"); pDisp->GetPhysicalDeviceSurfaceFormatsKHR = (PFN_vkGetPhysicalDeviceSurfaceFormatsKHR)gpa(instance, "vkGetPhysicalDeviceSurfaceFormatsKHR"); pDisp->GetPhysicalDeviceSurfacePresentModesKHR = (PFN_vkGetPhysicalDeviceSurfacePresentModesKHR)gpa(instance, "vkGetPhysicalDeviceSurfacePresentModesKHR"); // Remember this instance, and whether the VK_KHR_surface extension // was enabled for it: my_data->instanceMap[instance].instance = instance; my_data->instanceMap[instance].surfaceExtensionEnabled = false; #ifdef VK_USE_PLATFORM_ANDROID_KHR my_data->instanceMap[instance].androidSurfaceExtensionEnabled = false; #endif // VK_USE_PLATFORM_ANDROID_KHR #ifdef VK_USE_PLATFORM_MIR_KHR my_data->instanceMap[instance].mirSurfaceExtensionEnabled = false; #endif // VK_USE_PLATFORM_MIR_KHR #ifdef VK_USE_PLATFORM_WAYLAND_KHR my_data->instanceMap[instance].waylandSurfaceExtensionEnabled = false; #endif // VK_USE_PLATFORM_WAYLAND_KHR #ifdef VK_USE_PLATFORM_WIN32_KHR my_data->instanceMap[instance].win32SurfaceExtensionEnabled = false; #endif // VK_USE_PLATFORM_WIN32_KHR #ifdef VK_USE_PLATFORM_XCB_KHR my_data->instanceMap[instance].xcbSurfaceExtensionEnabled = false; #endif // VK_USE_PLATFORM_XCB_KHR #ifdef VK_USE_PLATFORM_XLIB_KHR my_data->instanceMap[instance].xlibSurfaceExtensionEnabled = false; #endif // VK_USE_PLATFORM_XLIB_KHR // Look for one or more debug report create info structures, and copy the // callback(s) for each one found (for use by vkDestroyInstance) layer_copy_tmp_callbacks(pCreateInfo->pNext, &my_data->num_tmp_callbacks, &my_data->tmp_dbg_create_infos, &my_data->tmp_callbacks); // Record whether the WSI instance extension was enabled for this // VkInstance. No need to check if the extension was advertised by // vkEnumerateInstanceExtensionProperties(), since the loader handles that. for (i = 0; i < pCreateInfo->enabledExtensionCount; i++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].surfaceExtensionEnabled = true; } #ifdef VK_USE_PLATFORM_ANDROID_KHR if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_ANDROID_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].androidSurfaceExtensionEnabled = true; } #endif // VK_USE_PLATFORM_ANDROID_KHR #ifdef VK_USE_PLATFORM_MIR_KHR if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_MIR_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].mirSurfaceExtensionEnabled = true; } #endif // VK_USE_PLATFORM_MIR_KHR #ifdef VK_USE_PLATFORM_WAYLAND_KHR if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].waylandSurfaceExtensionEnabled = true; } #endif // VK_USE_PLATFORM_WAYLAND_KHR #ifdef VK_USE_PLATFORM_WIN32_KHR if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WIN32_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].win32SurfaceExtensionEnabled = true; } #endif // VK_USE_PLATFORM_WIN32_KHR #ifdef VK_USE_PLATFORM_XCB_KHR if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XCB_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].xcbSurfaceExtensionEnabled = true; } #endif // VK_USE_PLATFORM_XCB_KHR #ifdef VK_USE_PLATFORM_XLIB_KHR if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XLIB_SURFACE_EXTENSION_NAME) == 0) { my_data->instanceMap[instance].xlibSurfaceExtensionEnabled = true; } #endif // VK_USE_PLATFORM_XLIB_KHR } } #include "vk_dispatch_table_helper.h" static void init_swapchain(layer_data *my_data, const VkAllocationCallbacks *pAllocator) { layer_debug_actions(my_data->report_data, my_data->logging_callback, pAllocator, "lunarg_swapchain"); } static const char *surfaceTransformStr(VkSurfaceTransformFlagBitsKHR value) { // Return a string corresponding to the value: return string_VkSurfaceTransformFlagBitsKHR(value); } static const char *surfaceCompositeAlphaStr(VkCompositeAlphaFlagBitsKHR value) { // Return a string corresponding to the value: return string_VkCompositeAlphaFlagBitsKHR(value); } static const char *presentModeStr(VkPresentModeKHR value) { // Return a string corresponding to the value: return string_VkPresentModeKHR(value); } static const char *sharingModeStr(VkSharingMode value) { // Return a string corresponding to the value: return string_VkSharingMode(value); } VKAPI_ATTR VkResult VKAPI_CALL CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) { VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO); assert(chain_info->u.pLayerInfo); PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr; PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance"); if (fpCreateInstance == NULL) { return VK_ERROR_INITIALIZATION_FAILED; } // Advance the link info for the next element on the chain chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext; VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance); if (result != VK_SUCCESS) { return result; } layer_data *my_data = get_my_data_ptr(get_dispatch_key(*pInstance), layer_data_map); my_data->instance = *pInstance; my_data->instance_dispatch_table = new VkLayerInstanceDispatchTable; layer_init_instance_dispatch_table(*pInstance, my_data->instance_dispatch_table, fpGetInstanceProcAddr); my_data->report_data = debug_report_create_instance(my_data->instance_dispatch_table, *pInstance, pCreateInfo->enabledExtensionCount, pCreateInfo->ppEnabledExtensionNames); // Call the following function after my_data is initialized: createInstanceRegisterExtensions(pCreateInfo, *pInstance); init_swapchain(my_data, pAllocator); return result; } VKAPI_ATTR void VKAPI_CALL DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) { dispatch_key key = get_dispatch_key(instance); layer_data *my_data = get_my_data_ptr(key, layer_data_map); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Call down the call chain: my_data->instance_dispatch_table->DestroyInstance(instance, pAllocator); std::lock_guard<std::mutex> lock(global_lock); // Enable the temporary callback(s) here to catch cleanup issues: bool callback_setup = false; if (my_data->num_tmp_callbacks > 0) { if (!layer_enable_tmp_callbacks(my_data->report_data, my_data->num_tmp_callbacks, my_data->tmp_dbg_create_infos, my_data->tmp_callbacks)) { callback_setup = true; } } // Do additional internal cleanup: if (pInstance) { // Delete all of the SwpPhysicalDevice's, SwpSurface's, and the // SwpInstance associated with this instance: for (auto it = pInstance->physicalDevices.begin(); it != pInstance->physicalDevices.end(); it++) { // Free memory that was allocated for/by this SwpPhysicalDevice: SwpPhysicalDevice *pPhysicalDevice = it->second; if (pPhysicalDevice) { if (pPhysicalDevice->pDevice) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, instance, "VkInstance", SWAPCHAIN_DEL_OBJECT_BEFORE_CHILDREN, "%s() called before all of its associated " "VkDevices were destroyed.", __FUNCTION__); } free(pPhysicalDevice->pSurfaceFormats); free(pPhysicalDevice->pPresentModes); } // Erase the SwpPhysicalDevice's from the my_data->physicalDeviceMap (which // are simply pointed to by the SwpInstance): my_data->physicalDeviceMap.erase(it->second->physicalDevice); } for (auto it = pInstance->surfaces.begin(); it != pInstance->surfaces.end(); it++) { // Free memory that was allocated for/by this SwpPhysicalDevice: SwpSurface *pSurface = it->second; if (pSurface) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, instance, "VkInstance", SWAPCHAIN_DEL_OBJECT_BEFORE_CHILDREN, "%s() called before all of its associated " "VkSurfaceKHRs were destroyed.", __FUNCTION__); } } my_data->instanceMap.erase(instance); } // Disable and cleanup the temporary callback(s): if (callback_setup) { layer_disable_tmp_callbacks(my_data->report_data, my_data->num_tmp_callbacks, my_data->tmp_callbacks); } if (my_data->num_tmp_callbacks > 0) { layer_free_tmp_callbacks(my_data->tmp_dbg_create_infos, my_data->tmp_callbacks); my_data->num_tmp_callbacks = 0; } // Clean up logging callback, if any while (my_data->logging_callback.size() > 0) { VkDebugReportCallbackEXT callback = my_data->logging_callback.back(); layer_destroy_msg_callback(my_data->report_data, callback, pAllocator); my_data->logging_callback.pop_back(); } layer_debug_report_destroy_instance(my_data->report_data); delete my_data->instance_dispatch_table; layer_data_map.erase(key); } VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties *pQueueFamilyProperties) { layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); // Call down the call chain: my_data->instance_dispatch_table->GetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties); // Record the result of this query: std::lock_guard<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } if (pPhysicalDevice && pQueueFamilyPropertyCount && !pQueueFamilyProperties) { pPhysicalDevice->gotQueueFamilyPropertyCount = true; pPhysicalDevice->numOfQueueFamilies = *pQueueFamilyPropertyCount; } } #ifdef VK_USE_PLATFORM_ANDROID_KHR VKAPI_ATTR VkResult VKAPI_CALL CreateAndroidSurfaceKHR(VkInstance instance, const VkAndroidSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->androidSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_ANDROID_SURFACE_EXTENSION_NAME); } if (!pCreateInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->CreateAndroidSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pSurface) { // Record the VkSurfaceKHR returned by the ICD: my_data->surfaceMap[*pSurface].surface = *pSurface; my_data->surfaceMap[*pSurface].pInstance = pInstance; my_data->surfaceMap[*pSurface].usedAllocatorToCreate = (pAllocator != NULL); my_data->surfaceMap[*pSurface].numQueueFamilyIndexSupport = 0; my_data->surfaceMap[*pSurface].pQueueFamilyIndexSupport = NULL; // Point to the associated SwpInstance: pInstance->surfaces[*pSurface] = &my_data->surfaceMap[*pSurface]; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } #endif // VK_USE_PLATFORM_ANDROID_KHR #ifdef VK_USE_PLATFORM_MIR_KHR VKAPI_ATTR VkResult VKAPI_CALL CreateMirSurfaceKHR(VkInstance instance, const VkMirSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->mirSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_MIR_SURFACE_EXTENSION_NAME); } if (!pCreateInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_MIR_SURFACE_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_MIR_SURFACE_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->CreateMirSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pSurface) { // Record the VkSurfaceKHR returned by the ICD: my_data->surfaceMap[*pSurface].surface = *pSurface; my_data->surfaceMap[*pSurface].pInstance = pInstance; my_data->surfaceMap[*pSurface].usedAllocatorToCreate = (pAllocator != NULL); my_data->surfaceMap[*pSurface].numQueueFamilyIndexSupport = 0; my_data->surfaceMap[*pSurface].pQueueFamilyIndexSupport = NULL; // Point to the associated SwpInstance: pInstance->surfaces[*pSurface] = &my_data->surfaceMap[*pSurface]; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkBool32 VKAPI_CALL GetPhysicalDeviceMirPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, MirConnection *connection) { VkBool32 result = VK_FALSE; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->mirSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_MIR_SURFACE_EXTENSION_NAME); } if (pPhysicalDevice->gotQueueFamilyPropertyCount && (queueFamilyIndex >= pPhysicalDevice->numOfQueueFamilies)) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", queueFamilyIndex, pPhysicalDevice->numOfQueueFamilies); } lock.unlock(); if (!skipCall) { // Call down the call chain: result = my_data->instance_dispatch_table->GetPhysicalDeviceMirPresentationSupportKHR(physicalDevice, queueFamilyIndex, connection); } return result; } #endif // VK_USE_PLATFORM_MIR_KHR #ifdef VK_USE_PLATFORM_WAYLAND_KHR VKAPI_ATTR VkResult VKAPI_CALL CreateWaylandSurfaceKHR(VkInstance instance, const VkWaylandSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->waylandSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME); } if (!pCreateInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->CreateWaylandSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pSurface) { // Record the VkSurfaceKHR returned by the ICD: my_data->surfaceMap[*pSurface].surface = *pSurface; my_data->surfaceMap[*pSurface].pInstance = pInstance; my_data->surfaceMap[*pSurface].usedAllocatorToCreate = (pAllocator != NULL); my_data->surfaceMap[*pSurface].numQueueFamilyIndexSupport = 0; my_data->surfaceMap[*pSurface].pQueueFamilyIndexSupport = NULL; // Point to the associated SwpInstance: pInstance->surfaces[*pSurface] = &my_data->surfaceMap[*pSurface]; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkBool32 VKAPI_CALL GetPhysicalDeviceWaylandPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, struct wl_display *display) { VkBool32 result = VK_FALSE; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->waylandSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME); } if (pPhysicalDevice->gotQueueFamilyPropertyCount && (queueFamilyIndex >= pPhysicalDevice->numOfQueueFamilies)) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", queueFamilyIndex, pPhysicalDevice->numOfQueueFamilies); } lock.unlock(); if (!skipCall) { // Call down the call chain: result = my_data->instance_dispatch_table->GetPhysicalDeviceWaylandPresentationSupportKHR(physicalDevice, queueFamilyIndex, display); } return result; } #endif // VK_USE_PLATFORM_WAYLAND_KHR #ifdef VK_USE_PLATFORM_WIN32_KHR VKAPI_ATTR VkResult VKAPI_CALL CreateWin32SurfaceKHR(VkInstance instance, const VkWin32SurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->win32SurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_WIN32_SURFACE_EXTENSION_NAME); } if (!pCreateInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->CreateWin32SurfaceKHR(instance, pCreateInfo, pAllocator, pSurface); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pSurface) { // Record the VkSurfaceKHR returned by the ICD: my_data->surfaceMap[*pSurface].surface = *pSurface; my_data->surfaceMap[*pSurface].pInstance = pInstance; my_data->surfaceMap[*pSurface].usedAllocatorToCreate = (pAllocator != NULL); my_data->surfaceMap[*pSurface].numQueueFamilyIndexSupport = 0; my_data->surfaceMap[*pSurface].pQueueFamilyIndexSupport = NULL; // Point to the associated SwpInstance: pInstance->surfaces[*pSurface] = &my_data->surfaceMap[*pSurface]; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkBool32 VKAPI_CALL GetPhysicalDeviceWin32PresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex) { VkBool32 result = VK_FALSE; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->win32SurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_WIN32_SURFACE_EXTENSION_NAME); } if (pPhysicalDevice->gotQueueFamilyPropertyCount && (queueFamilyIndex >= pPhysicalDevice->numOfQueueFamilies)) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", queueFamilyIndex, pPhysicalDevice->numOfQueueFamilies); } lock.unlock(); if (!skipCall) { // Call down the call chain: result = my_data->instance_dispatch_table->GetPhysicalDeviceWin32PresentationSupportKHR(physicalDevice, queueFamilyIndex); } return result; } #endif // VK_USE_PLATFORM_WIN32_KHR #ifdef VK_USE_PLATFORM_XCB_KHR VKAPI_ATTR VkResult VKAPI_CALL CreateXcbSurfaceKHR(VkInstance instance, const VkXcbSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->xcbSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_XCB_SURFACE_EXTENSION_NAME); } if (!pCreateInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->CreateXcbSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pSurface) { // Record the VkSurfaceKHR returned by the ICD: my_data->surfaceMap[*pSurface].surface = *pSurface; my_data->surfaceMap[*pSurface].pInstance = pInstance; my_data->surfaceMap[*pSurface].usedAllocatorToCreate = (pAllocator != NULL); my_data->surfaceMap[*pSurface].numQueueFamilyIndexSupport = 0; my_data->surfaceMap[*pSurface].pQueueFamilyIndexSupport = NULL; // Point to the associated SwpInstance: pInstance->surfaces[*pSurface] = &my_data->surfaceMap[*pSurface]; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkBool32 VKAPI_CALL GetPhysicalDeviceXcbPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, xcb_connection_t *connection, xcb_visualid_t visual_id) { VkBool32 result = VK_FALSE; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->xcbSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_XCB_SURFACE_EXTENSION_NAME); } if (pPhysicalDevice->gotQueueFamilyPropertyCount && (queueFamilyIndex >= pPhysicalDevice->numOfQueueFamilies)) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", queueFamilyIndex, pPhysicalDevice->numOfQueueFamilies); } lock.unlock(); if (!skipCall) { // Call down the call chain: result = my_data->instance_dispatch_table->GetPhysicalDeviceXcbPresentationSupportKHR(physicalDevice, queueFamilyIndex, connection, visual_id); } return result; } #endif // VK_USE_PLATFORM_XCB_KHR #ifdef VK_USE_PLATFORM_XLIB_KHR VKAPI_ATTR VkResult VKAPI_CALL CreateXlibSurfaceKHR(VkInstance instance, const VkXlibSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->xlibSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_XLIB_SURFACE_EXTENSION_NAME); } if (!pCreateInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->CreateXlibSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pSurface) { // Record the VkSurfaceKHR returned by the ICD: my_data->surfaceMap[*pSurface].surface = *pSurface; my_data->surfaceMap[*pSurface].pInstance = pInstance; my_data->surfaceMap[*pSurface].usedAllocatorToCreate = (pAllocator != NULL); my_data->surfaceMap[*pSurface].numQueueFamilyIndexSupport = 0; my_data->surfaceMap[*pSurface].pQueueFamilyIndexSupport = NULL; // Point to the associated SwpInstance: pInstance->surfaces[*pSurface] = &my_data->surfaceMap[*pSurface]; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkBool32 VKAPI_CALL GetPhysicalDeviceXlibPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, Display *dpy, VisualID visualID) { VkBool32 result = VK_FALSE; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->xlibSurfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_XLIB_SURFACE_EXTENSION_NAME); } if (pPhysicalDevice->gotQueueFamilyPropertyCount && (queueFamilyIndex >= pPhysicalDevice->numOfQueueFamilies)) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", queueFamilyIndex, pPhysicalDevice->numOfQueueFamilies); } lock.unlock(); if (!skipCall) { // Call down the call chain: result = my_data->instance_dispatch_table->GetPhysicalDeviceXlibPresentationSupportKHR(physicalDevice, queueFamilyIndex, dpy, visualID); } return result; } #endif // VK_USE_PLATFORM_XLIB_KHR VKAPI_ATTR void VKAPI_CALL DestroySurfaceKHR(VkInstance instance, VkSurfaceKHR surface, const VkAllocationCallbacks *pAllocator) { bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpSurface *pSurface = NULL; { auto it = my_data->surfaceMap.find(surface); pSurface = (it == my_data->surfaceMap.end()) ? NULL : &it->second; } SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } // Validate that the platform extension was enabled: if (pInstance && !pInstance->surfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_SURFACE_EXTENSION_NAME); } // Regardless of skipCall value, do some internal cleanup: if (pSurface) { // Delete the SwpSurface associated with this surface: if (pSurface->pInstance) { pSurface->pInstance->surfaces.erase(surface); } if (!pSurface->swapchains.empty()) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, instance, "VkInstance", SWAPCHAIN_DEL_OBJECT_BEFORE_CHILDREN, "%s() called before all of its associated " "VkSwapchainKHRs were destroyed.", __FUNCTION__); // Empty and then delete all SwpSwapchain's for (auto it = pSurface->swapchains.begin(); it != pSurface->swapchains.end(); it++) { // Delete all SwpImage's it->second->images.clear(); // In case the swapchain's device hasn't been destroyed yet // (which isn't likely, but is possible), delete its // association with this swapchain (i.e. so we can't point to // this swpchain from that device, later on): if (it->second->pDevice) { it->second->pDevice->swapchains.clear(); } } pSurface->swapchains.clear(); } if ((pAllocator != NULL) != pSurface->usedAllocatorToCreate) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, instance, "VkInstance", SWAPCHAIN_INCOMPATIBLE_ALLOCATOR, "%s() called with incompatible pAllocator from when " "the object was created.", __FUNCTION__); } my_data->surfaceMap.erase(surface); } lock.unlock(); if (!skipCall) { // Call down the call chain: my_data->instance_dispatch_table->DestroySurfaceKHR(instance, surface, pAllocator); } } VKAPI_ATTR VkResult VKAPI_CALL EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount, VkPhysicalDevice *pPhysicalDevices) { VkResult result = VK_SUCCESS; layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); // Call down the call chain: result = my_data->instance_dispatch_table->EnumeratePhysicalDevices(instance, pPhysicalDeviceCount, pPhysicalDevices); std::lock_guard<std::mutex> lock(global_lock); SwpInstance *pInstance = NULL; { auto it = my_data->instanceMap.find(instance); pInstance = (it == my_data->instanceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pInstance && pPhysicalDevices && (*pPhysicalDeviceCount > 0)) { // Record the VkPhysicalDevices returned by the ICD: for (uint32_t i = 0; i < *pPhysicalDeviceCount; i++) { my_data->physicalDeviceMap[pPhysicalDevices[i]].physicalDevice = pPhysicalDevices[i]; my_data->physicalDeviceMap[pPhysicalDevices[i]].pInstance = pInstance; my_data->physicalDeviceMap[pPhysicalDevices[i]].pDevice = NULL; my_data->physicalDeviceMap[pPhysicalDevices[i]].gotQueueFamilyPropertyCount = false; my_data->physicalDeviceMap[pPhysicalDevices[i]].gotSurfaceCapabilities = false; my_data->physicalDeviceMap[pPhysicalDevices[i]].surfaceFormatCount = 0; my_data->physicalDeviceMap[pPhysicalDevices[i]].pSurfaceFormats = NULL; my_data->physicalDeviceMap[pPhysicalDevices[i]].presentModeCount = 0; my_data->physicalDeviceMap[pPhysicalDevices[i]].pPresentModes = NULL; // Point to the associated SwpInstance: if (pInstance) { pInstance->physicalDevices[pPhysicalDevices[i]] = &my_data->physicalDeviceMap[pPhysicalDevices[i]]; } } } return result; } VKAPI_ATTR VkResult VKAPI_CALL CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) { layer_data *my_instance_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO); assert(chain_info->u.pLayerInfo); PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr; PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr; PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(my_instance_data->instance, "vkCreateDevice"); if (fpCreateDevice == NULL) { return VK_ERROR_INITIALIZATION_FAILED; } // Advance the link info for the next element on the chain chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext; VkResult result = fpCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice); if (result != VK_SUCCESS) { return result; } std::lock_guard<std::mutex> lock(global_lock); layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(*pDevice), layer_data_map); // Setup device dispatch table my_device_data->device_dispatch_table = new VkLayerDispatchTable; layer_init_device_dispatch_table(*pDevice, my_device_data->device_dispatch_table, fpGetDeviceProcAddr); my_device_data->report_data = layer_debug_report_create_device(my_instance_data->report_data, *pDevice); createDeviceRegisterExtensions(physicalDevice, pCreateInfo, *pDevice); return result; } VKAPI_ATTR void VKAPI_CALL DestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) { dispatch_key key = get_dispatch_key(device); layer_data *my_data = get_my_data_ptr(key, layer_data_map); // Call down the call chain: my_data->device_dispatch_table->DestroyDevice(device, pAllocator); // Do some internal cleanup: std::lock_guard<std::mutex> lock(global_lock); SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } if (pDevice) { // Delete the SwpDevice associated with this device: if (pDevice->pPhysicalDevice) { pDevice->pPhysicalDevice->pDevice = NULL; } if (!pDevice->swapchains.empty()) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_DEL_OBJECT_BEFORE_CHILDREN, "%s() called before all of its associated " "VkSwapchainKHRs were destroyed.", __FUNCTION__); // Empty and then delete all SwpSwapchain's for (auto it = pDevice->swapchains.begin(); it != pDevice->swapchains.end(); it++) { // Delete all SwpImage's it->second->images.clear(); // In case the swapchain's surface hasn't been destroyed yet // (which is likely) delete its association with this swapchain // (i.e. so we can't point to this swpchain from that surface, // later on): if (it->second->pSurface) { it->second->pSurface->swapchains.clear(); } } pDevice->swapchains.clear(); } my_data->deviceMap.erase(device); } delete my_data->device_dispatch_table; layer_data_map.erase(key); } VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, VkSurfaceKHR surface, VkBool32 *pSupported) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the surface extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->surfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_SURFACE_EXTENSION_NAME); } if (!pPhysicalDevice->gotQueueFamilyPropertyCount) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", SWAPCHAIN_DID_NOT_QUERY_QUEUE_FAMILIES, "%s() called before calling the " "vkGetPhysicalDeviceQueueFamilyProperties " "function.", __FUNCTION__); } else if (pPhysicalDevice->gotQueueFamilyPropertyCount && (queueFamilyIndex >= pPhysicalDevice->numOfQueueFamilies)) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", queueFamilyIndex, pPhysicalDevice->numOfQueueFamilies); } if (!pSupported) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pSupported"); } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->GetPhysicalDeviceSurfaceSupportKHR(physicalDevice, queueFamilyIndex, surface, pSupported); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pSupported && pPhysicalDevice) { // Record the result of this query: SwpInstance *pInstance = pPhysicalDevice->pInstance; SwpSurface *pSurface = (pInstance) ? pInstance->surfaces[surface] : NULL; if (pSurface) { pPhysicalDevice->supportedSurfaces[surface] = pSurface; if (!pSurface->numQueueFamilyIndexSupport) { if (pPhysicalDevice->gotQueueFamilyPropertyCount) { pSurface->pQueueFamilyIndexSupport = (VkBool32 *)malloc(pPhysicalDevice->numOfQueueFamilies * sizeof(VkBool32)); if (pSurface->pQueueFamilyIndexSupport != NULL) { pSurface->numQueueFamilyIndexSupport = pPhysicalDevice->numOfQueueFamilies; } } } if (pSurface->numQueueFamilyIndexSupport) { pSurface->pQueueFamilyIndexSupport[queueFamilyIndex] = *pSupported; } } } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR *pSurfaceCapabilities) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the surface extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->surfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_SURFACE_EXTENSION_NAME); } if (!pSurfaceCapabilities) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pSurfaceCapabilities"); } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, pSurfaceCapabilities); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pPhysicalDevice) { // Record the result of this query: pPhysicalDevice->gotSurfaceCapabilities = true; // FIXME: NEED TO COPY THIS DATA, BECAUSE pSurfaceCapabilities POINTS TO APP-ALLOCATED DATA pPhysicalDevice->surfaceCapabilities = *pSurfaceCapabilities; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t *pSurfaceFormatCount, VkSurfaceFormatKHR *pSurfaceFormats) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the surface extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->surfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_SURFACE_EXTENSION_NAME); } if (!pSurfaceFormatCount) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pSurfaceFormatCount"); } else if (pPhysicalDevice && pSurfaceFormats) { // Compare the preliminary value of *pSurfaceFormatCount with the // value this time: if (pPhysicalDevice->surfaceFormatCount == 0) { // Since we haven't recorded a preliminary value of // *pSurfaceFormatCount, that likely means that the application // didn't previously call this function with a NULL value of // pSurfaceFormats: skipCall |= LOG_ERROR_ZERO_PRIOR_COUNT( VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pSurfaceFormatCount", "pSurfaceFormats"); } else if (*pSurfaceFormatCount > pPhysicalDevice->surfaceFormatCount) { skipCall |= LOG_ERROR_INVALID_COUNT( VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pSurfaceFormatCount", "pSurfaceFormats", *pSurfaceFormatCount, pPhysicalDevice->surfaceFormatCount); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, pSurfaceFormatCount, pSurfaceFormats); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pPhysicalDevice && !pSurfaceFormats && pSurfaceFormatCount) { // Record the result of this preliminary query: pPhysicalDevice->surfaceFormatCount = *pSurfaceFormatCount; } else if ((result == VK_SUCCESS) && pPhysicalDevice && pSurfaceFormats && pSurfaceFormatCount && (*pSurfaceFormatCount > 0)) { // Record the result of this query: pPhysicalDevice->surfaceFormatCount = *pSurfaceFormatCount; pPhysicalDevice->pSurfaceFormats = (VkSurfaceFormatKHR *)malloc(*pSurfaceFormatCount * sizeof(VkSurfaceFormatKHR)); if (pPhysicalDevice->pSurfaceFormats) { for (uint32_t i = 0; i < *pSurfaceFormatCount; i++) { pPhysicalDevice->pSurfaceFormats[i] = pSurfaceFormats[i]; } } else { pPhysicalDevice->surfaceFormatCount = 0; } } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t *pPresentModeCount, VkPresentModeKHR *pPresentModes) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpPhysicalDevice *pPhysicalDevice = NULL; { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } // Validate that the surface extension was enabled: if (pPhysicalDevice && pPhysicalDevice->pInstance && !pPhysicalDevice->pInstance->surfaceExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, pPhysicalDevice->pInstance, "VkInstance", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkInstance.", __FUNCTION__, VK_KHR_SURFACE_EXTENSION_NAME); } if (!pPresentModeCount) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pPresentModeCount"); } else if (pPhysicalDevice && pPresentModes) { // Compare the preliminary value of *pPresentModeCount with the // value this time: if (pPhysicalDevice->presentModeCount == 0) { // Since we haven't recorded a preliminary value of // *pPresentModeCount, that likely means that the application // didn't previously call this function with a NULL value of // pPresentModes: skipCall |= LOG_ERROR_ZERO_PRIOR_COUNT( VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pPresentModeCount", "pPresentModes"); } else if (*pPresentModeCount > pPhysicalDevice->presentModeCount) { skipCall |= LOG_ERROR_INVALID_COUNT( VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, physicalDevice, "pPresentModeCount", "pPresentModes", *pPresentModeCount, pPhysicalDevice->presentModeCount); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->instance_dispatch_table->GetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, pPresentModeCount, pPresentModes); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->physicalDeviceMap.find(physicalDevice); pPhysicalDevice = (it == my_data->physicalDeviceMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pPhysicalDevice && !pPresentModes && pPresentModeCount) { // Record the result of this preliminary query: pPhysicalDevice->presentModeCount = *pPresentModeCount; } else if ((result == VK_SUCCESS) && pPhysicalDevice && pPresentModes && pPresentModeCount && (*pPresentModeCount > 0)) { // Record the result of this query: pPhysicalDevice->presentModeCount = *pPresentModeCount; pPhysicalDevice->pPresentModes = (VkPresentModeKHR *)malloc(*pPresentModeCount * sizeof(VkPresentModeKHR)); if (pPhysicalDevice->pPresentModes) { for (uint32_t i = 0; i < *pPresentModeCount; i++) { pPhysicalDevice->pPresentModes[i] = pPresentModes[i]; } } else { pPhysicalDevice->presentModeCount = 0; } } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } // This function does the up-front validation work for vkCreateSwapchainKHR(), // and returns true if a logging callback indicates that the call down the // chain should be skipped: static bool validateCreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo, VkSwapchainKHR *pSwapchain) { // TODO: Validate cases of re-creating a swapchain (the current code // assumes a new swapchain is being created). bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); char fn[] = "vkCreateSwapchainKHR"; SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } // Validate that the swapchain extension was enabled: if (pDevice && !pDevice->swapchainExtensionEnabled) { return LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkDevice.", fn, VK_KHR_SWAPCHAIN_EXTENSION_NAME); } if (!pCreateInfo) { return LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } else { if (pCreateInfo->sType != VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo", "VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR"); } if (pCreateInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pCreateInfo"); } } if (!pSwapchain) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pSwapchain"); } // Keep around a useful pointer to pPhysicalDevice: SwpPhysicalDevice *pPhysicalDevice = pDevice->pPhysicalDevice; // Validate pCreateInfo values with result of // vkGetPhysicalDeviceQueueFamilyProperties if (pPhysicalDevice && pPhysicalDevice->gotQueueFamilyPropertyCount) { for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; i++) { if (pCreateInfo->pQueueFamilyIndices[i] >= pPhysicalDevice->numOfQueueFamilies) { skipCall |= LOG_ERROR_QUEUE_FAMILY_INDEX_TOO_LARGE(VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, pPhysicalDevice, "VkPhysicalDevice", pCreateInfo->pQueueFamilyIndices[i], pPhysicalDevice->numOfQueueFamilies); } } } // Validate pCreateInfo values with the results of // vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): if (!pPhysicalDevice || !pPhysicalDevice->gotSurfaceCapabilities) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_WITHOUT_QUERY, "%s() called before calling " "vkGetPhysicalDeviceSurfaceCapabilitiesKHR().", fn); } else if (pCreateInfo) { // Validate pCreateInfo->surface to make sure that // vkGetPhysicalDeviceSurfaceSupportKHR() reported this as a supported // surface: SwpSurface *pSurface = ((pPhysicalDevice) ? pPhysicalDevice->supportedSurfaces[pCreateInfo->surface] : NULL); if (!pSurface) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_UNSUPPORTED_SURFACE, "%s() called with pCreateInfo->surface that " "was not returned by " "vkGetPhysicalDeviceSurfaceSupportKHR() " "for the device.", fn); } // Validate pCreateInfo->minImageCount against // VkSurfaceCapabilitiesKHR::{min|max}ImageCount: VkSurfaceCapabilitiesKHR *pCapabilities = &pPhysicalDevice->surfaceCapabilities; if ((pCreateInfo->minImageCount < pCapabilities->minImageCount) || ((pCapabilities->maxImageCount > 0) && (pCreateInfo->minImageCount > pCapabilities->maxImageCount))) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_MIN_IMG_COUNT, "%s() called with pCreateInfo->minImageCount " "= %d, which is outside the bounds returned " "by vkGetPhysicalDeviceSurfaceCapabilitiesKHR() (i.e. " "minImageCount = %d, maxImageCount = %d).", fn, pCreateInfo->minImageCount, pCapabilities->minImageCount, pCapabilities->maxImageCount); } // Validate pCreateInfo->imageExtent against // VkSurfaceCapabilitiesKHR::{current|min|max}ImageExtent: if ((pCapabilities->currentExtent.width == -1) && ((pCreateInfo->imageExtent.width < pCapabilities->minImageExtent.width) || (pCreateInfo->imageExtent.width > pCapabilities->maxImageExtent.width) || (pCreateInfo->imageExtent.height < pCapabilities->minImageExtent.height) || (pCreateInfo->imageExtent.height > pCapabilities->maxImageExtent.height))) { skipCall |= LOG_ERROR( VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_OUT_OF_BOUNDS_EXTENTS, "%s() called with pCreateInfo->imageExtent = " "(%d,%d), which is outside the bounds " "returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): " "currentExtent = (%d,%d), minImageExtent = " "(%d,%d), maxImageExtent = (%d,%d).", fn, pCreateInfo->imageExtent.width, pCreateInfo->imageExtent.height, pCapabilities->currentExtent.width, pCapabilities->currentExtent.height, pCapabilities->minImageExtent.width, pCapabilities->minImageExtent.height, pCapabilities->maxImageExtent.width, pCapabilities->maxImageExtent.height); } if ((pCapabilities->currentExtent.width != -1) && ((pCreateInfo->imageExtent.width != pCapabilities->currentExtent.width) || (pCreateInfo->imageExtent.height != pCapabilities->currentExtent.height))) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_EXTENTS_NO_MATCH_WIN, "%s() called with pCreateInfo->imageExtent = " "(%d,%d), which is not equal to the " "currentExtent = (%d,%d) returned by " "vkGetPhysicalDeviceSurfaceCapabilitiesKHR().", fn, pCreateInfo->imageExtent.width, pCreateInfo->imageExtent.height, pCapabilities->currentExtent.width, pCapabilities->currentExtent.height); } // Validate pCreateInfo->preTransform has one bit set (1st two // lines of if-statement), which bit is also set in // VkSurfaceCapabilitiesKHR::supportedTransforms (3rd line of if-statement): if (!pCreateInfo->preTransform || (pCreateInfo->preTransform & (pCreateInfo->preTransform - 1)) || !(pCreateInfo->preTransform & pCapabilities->supportedTransforms)) { // This is an error situation; one for which we'd like to give // the developer a helpful, multi-line error message. Build it // up a little at a time, and then log it: std::string errorString = ""; char str[1024]; // Here's the first part of the message: sprintf(str, "%s() called with a non-supported " "pCreateInfo->preTransform (i.e. %s). " "Supported values are:\n", fn, surfaceTransformStr(pCreateInfo->preTransform)); errorString += str; for (int i = 0; i < 32; i++) { // Build up the rest of the message: if ((1 << i) & pCapabilities->supportedTransforms) { const char *newStr = surfaceTransformStr((VkSurfaceTransformFlagBitsKHR)(1 << i)); sprintf(str, " %s\n", newStr); errorString += str; } } // Log the message that we've built up: skipCall |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, reinterpret_cast<uint64_t &>(device), __LINE__, SWAPCHAIN_CREATE_SWAP_BAD_PRE_TRANSFORM, LAYER_NAME, "%s", errorString.c_str()); } // Validate pCreateInfo->compositeAlpha has one bit set (1st two // lines of if-statement), which bit is also set in // VkSurfaceCapabilitiesKHR::supportedCompositeAlpha (3rd line of if-statement): if (!pCreateInfo->compositeAlpha || (pCreateInfo->compositeAlpha & (pCreateInfo->compositeAlpha - 1)) || !((pCreateInfo->compositeAlpha) & pCapabilities->supportedCompositeAlpha)) { // This is an error situation; one for which we'd like to give // the developer a helpful, multi-line error message. Build it // up a little at a time, and then log it: std::string errorString = ""; char str[1024]; // Here's the first part of the message: sprintf(str, "%s() called with a non-supported " "pCreateInfo->compositeAlpha (i.e. %s). " "Supported values are:\n", fn, surfaceCompositeAlphaStr(pCreateInfo->compositeAlpha)); errorString += str; for (int i = 0; i < 32; i++) { // Build up the rest of the message: if ((1 << i) & pCapabilities->supportedCompositeAlpha) { const char *newStr = surfaceCompositeAlphaStr((VkCompositeAlphaFlagBitsKHR)(1 << i)); sprintf(str, " %s\n", newStr); errorString += str; } } // Log the message that we've built up: skipCall |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, reinterpret_cast<uint64_t &>(device), __LINE__, SWAPCHAIN_CREATE_SWAP_BAD_COMPOSITE_ALPHA, LAYER_NAME, "%s", errorString.c_str()); } // Validate pCreateInfo->imageArraySize against // VkSurfaceCapabilitiesKHR::maxImageArraySize: if ((pCreateInfo->imageArrayLayers < 1) || (pCreateInfo->imageArrayLayers > pCapabilities->maxImageArrayLayers)) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_IMG_ARRAY_SIZE, "%s() called with a non-supported " "pCreateInfo->imageArraySize (i.e. %d). " "Minimum value is 1, maximum value is %d.", fn, pCreateInfo->imageArrayLayers, pCapabilities->maxImageArrayLayers); } // Validate pCreateInfo->imageUsage against // VkSurfaceCapabilitiesKHR::supportedUsageFlags: if (pCreateInfo->imageUsage != (pCreateInfo->imageUsage & pCapabilities->supportedUsageFlags)) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_IMG_USAGE_FLAGS, "%s() called with a non-supported " "pCreateInfo->imageUsage (i.e. 0x%08x)." " Supported flag bits are 0x%08x.", fn, pCreateInfo->imageUsage, pCapabilities->supportedUsageFlags); } } // Validate pCreateInfo values with the results of // vkGetPhysicalDeviceSurfaceFormatsKHR(): if (!pPhysicalDevice || !pPhysicalDevice->surfaceFormatCount) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_WITHOUT_QUERY, "%s() called before calling " "vkGetPhysicalDeviceSurfaceFormatsKHR().", fn); } else if (pCreateInfo) { // Validate pCreateInfo->imageFormat against // VkSurfaceFormatKHR::format: bool foundFormat = false; bool foundColorSpace = false; bool foundMatch = false; for (uint32_t i = 0; i < pPhysicalDevice->surfaceFormatCount; i++) { if (pCreateInfo->imageFormat == pPhysicalDevice->pSurfaceFormats[i].format) { // Validate pCreateInfo->imageColorSpace against // VkSurfaceFormatKHR::colorSpace: foundFormat = true; if (pCreateInfo->imageColorSpace == pPhysicalDevice->pSurfaceFormats[i].colorSpace) { foundMatch = true; break; } } else { if (pCreateInfo->imageColorSpace == pPhysicalDevice->pSurfaceFormats[i].colorSpace) { foundColorSpace = true; } } } if (!foundMatch) { if (!foundFormat) { if (!foundColorSpace) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_IMG_FMT_CLR_SP, "%s() called with neither a " "supported pCreateInfo->imageFormat " "(i.e. %d) nor a supported " "pCreateInfo->imageColorSpace " "(i.e. %d).", fn, pCreateInfo->imageFormat, pCreateInfo->imageColorSpace); } else { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_IMG_FORMAT, "%s() called with a non-supported " "pCreateInfo->imageFormat (i.e. %d).", fn, pCreateInfo->imageFormat); } } else if (!foundColorSpace) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_IMG_COLOR_SPACE, "%s() called with a non-supported " "pCreateInfo->imageColorSpace (i.e. %d).", fn, pCreateInfo->imageColorSpace); } } } // Validate pCreateInfo values with the results of // vkGetPhysicalDeviceSurfacePresentModesKHR(): if (!pPhysicalDevice || !pPhysicalDevice->presentModeCount) { if (!pCreateInfo || (pCreateInfo->presentMode != VK_PRESENT_MODE_FIFO_KHR)) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_WITHOUT_QUERY, "%s() called before calling " "vkGetPhysicalDeviceSurfacePresentModesKHR().", fn); } } else if (pCreateInfo) { // Validate pCreateInfo->presentMode against // vkGetPhysicalDeviceSurfacePresentModesKHR(): bool foundMatch = false; for (uint32_t i = 0; i < pPhysicalDevice->presentModeCount; i++) { if (pPhysicalDevice->pPresentModes[i] == pCreateInfo->presentMode) { foundMatch = true; break; } } if (!foundMatch) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_PRESENT_MODE, "%s() called with a non-supported " "pCreateInfo->presentMode (i.e. %s).", fn, presentModeStr(pCreateInfo->presentMode)); } } // Validate pCreateInfo->imageSharingMode and related values: if (pCreateInfo->imageSharingMode == VK_SHARING_MODE_CONCURRENT) { if ((pCreateInfo->queueFamilyIndexCount <= 1) || !pCreateInfo->pQueueFamilyIndices) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_SHARING_VALUES, "%s() called with a supported " "pCreateInfo->sharingMode of (i.e. %s), " "but with a bad value(s) for " "pCreateInfo->queueFamilyIndexCount or " "pCreateInfo->pQueueFamilyIndices).", fn, sharingModeStr(pCreateInfo->imageSharingMode)); } } else if (pCreateInfo->imageSharingMode != VK_SHARING_MODE_EXCLUSIVE) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_BAD_SHARING_MODE, "%s() called with a non-supported " "pCreateInfo->imageSharingMode (i.e. %s).", fn, sharingModeStr(pCreateInfo->imageSharingMode)); } // Validate pCreateInfo->clipped: if (pCreateInfo && (pCreateInfo->clipped != VK_FALSE) && (pCreateInfo->clipped != VK_TRUE)) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_BAD_BOOL, "%s() called with a VkBool32 value that is " "neither VK_TRUE nor VK_FALSE, but has the " "numeric value of %d.", fn, pCreateInfo->clipped); } // Validate pCreateInfo->oldSwapchain: if (pCreateInfo && pCreateInfo->oldSwapchain) { SwpSwapchain *pOldSwapchain = NULL; { auto it = my_data->swapchainMap.find(pCreateInfo->oldSwapchain); pOldSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if (pOldSwapchain) { if (device != pOldSwapchain->pDevice->device) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_DESTROY_SWAP_DIFF_DEVICE, "%s() called with a different VkDevice " "than the VkSwapchainKHR was created with.", __FUNCTION__); } if (pCreateInfo->surface != pOldSwapchain->pSurface->surface) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_CREATE_SWAP_DIFF_SURFACE, "%s() called with pCreateInfo->oldSwapchain " "that has a different VkSurfaceKHR than " "pCreateInfo->surface.", fn); } } else { // TBD: Leave this in (not sure object_track will check this)? skipCall |= LOG_ERROR_NON_VALID_OBJ(VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, pCreateInfo->oldSwapchain, "VkSwapchainKHR"); } } return skipCall; } VKAPI_ATTR VkResult VKAPI_CALL CreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) { VkResult result = VK_SUCCESS; layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); bool skipCall = validateCreateSwapchainKHR(device, pCreateInfo, pSwapchain); if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->device_dispatch_table->CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain); lock.lock(); if (result == VK_SUCCESS) { // Remember the swapchain's handle, and link it to the device: SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } my_data->swapchainMap[*pSwapchain].swapchain = *pSwapchain; if (pDevice) { pDevice->swapchains[*pSwapchain] = &my_data->swapchainMap[*pSwapchain]; } my_data->swapchainMap[*pSwapchain].pDevice = pDevice; my_data->swapchainMap[*pSwapchain].imageCount = 0; my_data->swapchainMap[*pSwapchain].usedAllocatorToCreate = (pAllocator != NULL); // Store a pointer to the surface SwpPhysicalDevice *pPhysicalDevice = pDevice->pPhysicalDevice; SwpInstance *pInstance = (pPhysicalDevice) ? pPhysicalDevice->pInstance : NULL; layer_data *my_instance_data = ((pInstance) ? get_my_data_ptr(get_dispatch_key(pInstance->instance), layer_data_map) : NULL); SwpSurface *pSurface = ((my_data && pCreateInfo) ? &my_instance_data->surfaceMap[pCreateInfo->surface] : NULL); my_data->swapchainMap[*pSwapchain].pSurface = pSurface; if (pSurface) { pSurface->swapchains[*pSwapchain] = &my_data->swapchainMap[*pSwapchain]; } } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR void VKAPI_CALL DestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks *pAllocator) { // TODOs: // // - Implement a check for validity language that reads: All uses of // presentable images acquired from pname:swapchain must: have completed // execution bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } // Validate that the swapchain extension was enabled: if (pDevice && !pDevice->swapchainExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkDevice.", __FUNCTION__, VK_KHR_SWAPCHAIN_EXTENSION_NAME); } // Regardless of skipCall value, do some internal cleanup: SwpSwapchain *pSwapchain = NULL; { auto it = my_data->swapchainMap.find(swapchain); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if (pSwapchain) { // Delete the SwpSwapchain associated with this swapchain: if (pSwapchain->pDevice) { pSwapchain->pDevice->swapchains.erase(swapchain); if (device != pSwapchain->pDevice->device) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_DESTROY_SWAP_DIFF_DEVICE, "%s() called with a different VkDevice than the " "VkSwapchainKHR was created with.", __FUNCTION__); } } if (pSwapchain->pSurface) { pSwapchain->pSurface->swapchains.erase(swapchain); } if (pSwapchain->imageCount) { pSwapchain->images.clear(); } if ((pAllocator != NULL) != pSwapchain->usedAllocatorToCreate) { LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, instance, "VkInstance", SWAPCHAIN_INCOMPATIBLE_ALLOCATOR, "%s() called with incompatible pAllocator from when " "the object was created.", __FUNCTION__); } my_data->swapchainMap.erase(swapchain); } lock.unlock(); if (!skipCall) { // Call down the call chain: my_data->device_dispatch_table->DestroySwapchainKHR(device, swapchain, pAllocator); } } VKAPI_ATTR VkResult VKAPI_CALL GetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t *pSwapchainImageCount, VkImage *pSwapchainImages) { VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } // Validate that the swapchain extension was enabled: if (pDevice && !pDevice->swapchainExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkDevice.", __FUNCTION__, VK_KHR_SWAPCHAIN_EXTENSION_NAME); } SwpSwapchain *pSwapchain = NULL; { auto it = my_data->swapchainMap.find(swapchain); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if (!pSwapchainImageCount) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pSwapchainImageCount"); } else if (pSwapchain && pSwapchainImages) { // Compare the preliminary value of *pSwapchainImageCount with the // value this time: if (pSwapchain->imageCount == 0) { // Since we haven't recorded a preliminary value of // *pSwapchainImageCount, that likely means that the application // didn't previously call this function with a NULL value of // pSwapchainImages: skipCall |= LOG_ERROR_ZERO_PRIOR_COUNT( VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pSwapchainImageCount", "pSwapchainImages"); } else if (*pSwapchainImageCount > pSwapchain->imageCount) { skipCall |= LOG_ERROR_INVALID_COUNT( VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pSwapchainImageCount", "pSwapchainImages", *pSwapchainImageCount, pSwapchain->imageCount); } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->device_dispatch_table->GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->swapchainMap.find(swapchain); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if ((result == VK_SUCCESS) && pSwapchain && !pSwapchainImages && pSwapchainImageCount) { // Record the result of this preliminary query: pSwapchain->imageCount = *pSwapchainImageCount; } else if ((result == VK_SUCCESS) && pSwapchain && pSwapchainImages && pSwapchainImageCount && (*pSwapchainImageCount > 0)) { // Record the images and their state: pSwapchain->imageCount = *pSwapchainImageCount; for (uint32_t i = 0; i < *pSwapchainImageCount; i++) { pSwapchain->images[i].image = pSwapchainImages[i]; pSwapchain->images[i].pSwapchain = pSwapchain; pSwapchain->images[i].acquiredByApp = false; } } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkResult VKAPI_CALL AcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout, VkSemaphore semaphore, VkFence fence, uint32_t *pImageIndex) { // TODOs: // // - Address the timeout. Possibilities include looking at the state of the // swapchain's images, depending on the timeout value. // - Implement a check for validity language that reads: If pname:semaphore is // not sname:VK_NULL_HANDLE it must: be unsignalled // - Implement a check for validity language that reads: If pname:fence is not // sname:VK_NULL_HANDLE it must: be unsignalled and mustnot: be associated // with any other queue command that has not yet completed execution on that // queue // - Record/update the state of the swapchain, in case an error occurs // (e.g. VK_ERROR_OUT_OF_DATE_KHR). VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); std::unique_lock<std::mutex> lock(global_lock); SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } // Validate that the swapchain extension was enabled: if (pDevice && !pDevice->swapchainExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkDevice.", __FUNCTION__, VK_KHR_SWAPCHAIN_EXTENSION_NAME); } if ((semaphore == VK_NULL_HANDLE) && (fence == VK_NULL_HANDLE)) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "VkDevice", SWAPCHAIN_NO_SYNC_FOR_ACQUIRE, "%s() called with both the semaphore and fence parameters set to " "VK_NULL_HANDLE (at least one should be used).", __FUNCTION__); } SwpSwapchain *pSwapchain = NULL; { auto it = my_data->swapchainMap.find(swapchain); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } SwpPhysicalDevice *pPhysicalDevice = pDevice->pPhysicalDevice; if (pSwapchain && pPhysicalDevice && pPhysicalDevice->gotSurfaceCapabilities) { // Look to see if the application has already acquired the maximum // number of images, and this will push it past the spec-defined // limits: uint32_t minImageCount = pPhysicalDevice->surfaceCapabilities.minImageCount; uint32_t imagesAcquiredByApp = 0; for (uint32_t i = 0; i < pSwapchain->imageCount; i++) { if (pSwapchain->images[i].acquiredByApp) { imagesAcquiredByApp++; } } if (imagesAcquiredByApp > (pSwapchain->imageCount - minImageCount)) { skipCall |= LOG_ERROR( VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, swapchain, "VkSwapchainKHR", SWAPCHAIN_APP_ACQUIRES_TOO_MANY_IMAGES, "%s() called when it cannot succeed. The application has " "acquired %d image(s) that have not yet been presented. The " "maximum number of images that the application can " "simultaneously acquire from this swapchain (including this " "call to %s()) is %d. That value is derived by subtracting " "VkSurfaceCapabilitiesKHR::minImageCount (%d) from the number " "of images in the swapchain (%d) and adding 1.\n", __FUNCTION__, imagesAcquiredByApp, __FUNCTION__, (pSwapchain->imageCount - minImageCount + 1), minImageCount, pSwapchain->imageCount); } } if (!pImageIndex) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pImageIndex"); } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->device_dispatch_table->AcquireNextImageKHR(device, swapchain, timeout, semaphore, fence, pImageIndex); lock.lock(); // Obtain this pointer again after locking: { auto it = my_data->swapchainMap.find(swapchain); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if (((result == VK_SUCCESS) || (result == VK_SUBOPTIMAL_KHR)) && pSwapchain) { // Change the state of the image (now acquired by the application): pSwapchain->images[*pImageIndex].acquiredByApp = true; } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR VkResult VKAPI_CALL QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR *pPresentInfo) { // TODOs: // // - Implement a check for validity language that reads: Any given element of // sname:VkSemaphore in pname:pWaitSemaphores must: refer to a prior signal // of that sname:VkSemaphore that won't be consumed by any other wait on that // semaphore // - Record/update the state of the swapchain, in case an error occurs // (e.g. VK_ERROR_OUT_OF_DATE_KHR). VkResult result = VK_SUCCESS; bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map); if (!pPresentInfo) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pPresentInfo"); } else { if (pPresentInfo->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR) { skipCall |= LOG_ERROR_WRONG_STYPE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pPresentInfo", "VK_STRUCTURE_TYPE_PRESENT_INFO_KHR"); } if (pPresentInfo->pNext != NULL) { skipCall |= LOG_INFO_WRONG_NEXT(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pPresentInfo"); } if (!pPresentInfo->swapchainCount) { skipCall |= LOG_ERROR_ZERO_VALUE(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pPresentInfo->swapchainCount"); } if (!pPresentInfo->pSwapchains) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pPresentInfo->pSwapchains"); } if (!pPresentInfo->pImageIndices) { skipCall |= LOG_ERROR_NULL_POINTER(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, device, "pPresentInfo->pImageIndices"); } // Note: pPresentInfo->pResults is allowed to be NULL } std::unique_lock<std::mutex> lock(global_lock); for (uint32_t i = 0; pPresentInfo && (i < pPresentInfo->swapchainCount); i++) { uint32_t index = pPresentInfo->pImageIndices[i]; SwpSwapchain *pSwapchain = NULL; { auto it = my_data->swapchainMap.find(pPresentInfo->pSwapchains[i]); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if (pSwapchain) { if (!pSwapchain->pDevice->swapchainExtensionEnabled) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, pSwapchain->pDevice, "VkDevice", SWAPCHAIN_EXT_NOT_ENABLED_BUT_USED, "%s() called even though the %s extension was not enabled for this VkDevice.", __FUNCTION__, VK_KHR_SWAPCHAIN_EXTENSION_NAME); } if (index >= pSwapchain->imageCount) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, pPresentInfo->pSwapchains[i], "VkSwapchainKHR", SWAPCHAIN_INDEX_TOO_LARGE, "%s() called for an index that is too " "large (i.e. %d). There are only %d " "images in this VkSwapchainKHR.\n", __FUNCTION__, index, pSwapchain->imageCount); } else { if (!pSwapchain->images[index].acquiredByApp) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, pPresentInfo->pSwapchains[i], "VkSwapchainKHR", SWAPCHAIN_INDEX_NOT_IN_USE, "%s() returned an index (i.e. %d) " "for an image that is not acquired by " "the application.", __FUNCTION__, index); } } SwpQueue *pQueue = NULL; { auto it = my_data->queueMap.find(queue); pQueue = (it == my_data->queueMap.end()) ? NULL : &it->second; } SwpSurface *pSurface = pSwapchain->pSurface; if (pQueue && pSurface && pSurface->numQueueFamilyIndexSupport) { uint32_t queueFamilyIndex = pQueue->queueFamilyIndex; // Note: the 1st test is to ensure queueFamilyIndex is in range, // and the 2nd test is the validation check: if ((pSurface->numQueueFamilyIndexSupport > queueFamilyIndex) && (!pSurface->pQueueFamilyIndexSupport[queueFamilyIndex])) { skipCall |= LOG_ERROR(VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, pPresentInfo->pSwapchains[i], "VkSwapchainKHR", SWAPCHAIN_SURFACE_NOT_SUPPORTED_WITH_QUEUE, "%s() called with a swapchain whose " "surface is not supported for " "presention on this device with the " "queueFamilyIndex (i.e. %d) of the " "given queue.", __FUNCTION__, queueFamilyIndex); } } } } if (!skipCall) { // Call down the call chain: lock.unlock(); result = my_data->device_dispatch_table->QueuePresentKHR(queue, pPresentInfo); lock.lock(); if (pPresentInfo && ((result == VK_SUCCESS) || (result == VK_SUBOPTIMAL_KHR))) { for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) { int index = pPresentInfo->pImageIndices[i]; SwpSwapchain *pSwapchain = NULL; { auto it = my_data->swapchainMap.find(pPresentInfo->pSwapchains[i]); pSwapchain = (it == my_data->swapchainMap.end()) ? NULL : &it->second; } if (pSwapchain) { // Change the state of the image (no longer acquired by the // application): pSwapchain->images[index].acquiredByApp = false; } } } return result; } return VK_ERROR_VALIDATION_FAILED_EXT; } VKAPI_ATTR void VKAPI_CALL GetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue *pQueue) { bool skipCall = false; layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); if (!skipCall) { // Call down the call chain: my_data->device_dispatch_table->GetDeviceQueue(device, queueFamilyIndex, queueIndex, pQueue); // Remember the queue's handle, and link it to the device: std::lock_guard<std::mutex> lock(global_lock); SwpDevice *pDevice = NULL; { auto it = my_data->deviceMap.find(device); pDevice = (it == my_data->deviceMap.end()) ? NULL : &it->second; } my_data->queueMap[&pQueue].queue = *pQueue; if (pDevice) { pDevice->queues[*pQueue] = &my_data->queueMap[*pQueue]; } my_data->queueMap[&pQueue].pDevice = pDevice; my_data->queueMap[&pQueue].queueFamilyIndex = queueFamilyIndex; } } VKAPI_ATTR VkResult VKAPI_CALL CreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDebugReportCallbackEXT *pMsgCallback) { layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); VkResult result = my_data->instance_dispatch_table->CreateDebugReportCallbackEXT(instance, pCreateInfo, pAllocator, pMsgCallback); if (VK_SUCCESS == result) { std::lock_guard<std::mutex> lock(global_lock); result = layer_create_msg_callback(my_data->report_data, pCreateInfo, pAllocator, pMsgCallback); } return result; } VKAPI_ATTR void VKAPI_CALL DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT msgCallback, const VkAllocationCallbacks *pAllocator) { layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); my_data->instance_dispatch_table->DestroyDebugReportCallbackEXT(instance, msgCallback, pAllocator); std::lock_guard<std::mutex> lock(global_lock); layer_destroy_msg_callback(my_data->report_data, msgCallback, pAllocator); } VKAPI_ATTR void VKAPI_CALL DebugReportMessageEXT(VkInstance instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objType, uint64_t object, size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg) { layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); my_data->instance_dispatch_table->DebugReportMessageEXT(instance, flags, objType, object, location, msgCode, pLayerPrefix, pMsg); } VKAPI_ATTR VkResult VKAPI_CALL EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) { if (pLayerName && !strcmp(pLayerName, swapchain_layer.layerName)) return util_GetExtensionProperties(0, nullptr, pCount, pProperties); assert(physicalDevice); dispatch_key key = get_dispatch_key(physicalDevice); layer_data *my_data = get_my_data_ptr(key, layer_data_map); return my_data->instance_dispatch_table->EnumerateDeviceExtensionProperties(physicalDevice, NULL, pCount, pProperties); } static PFN_vkVoidFunction intercept_core_instance_command(const char *name); static PFN_vkVoidFunction intercept_khr_surface_command(const char *name, VkInstance instance); static PFN_vkVoidFunction intercept_core_device_command(const char *name); static PFN_vkVoidFunction intercept_khr_swapchain_command(const char *name, VkDevice dev); VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetDeviceProcAddr(VkDevice device, const char *funcName) { PFN_vkVoidFunction proc = intercept_core_device_command(funcName); if (proc) return proc; assert(device); layer_data *my_data; my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map); VkLayerDispatchTable *pDisp = my_data->device_dispatch_table; proc = intercept_khr_swapchain_command(funcName, device); if (proc) return proc; if (pDisp->GetDeviceProcAddr == NULL) return NULL; return pDisp->GetDeviceProcAddr(device, funcName); } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetInstanceProcAddr(VkInstance instance, const char *funcName) { PFN_vkVoidFunction proc = intercept_core_instance_command(funcName); if (!proc) proc = intercept_core_device_command(funcName); if (!proc) proc = intercept_khr_swapchain_command(funcName, VK_NULL_HANDLE); if (proc) return proc; assert(instance); layer_data *my_data; my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map); VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table; proc = debug_report_get_instance_proc_addr(my_data->report_data, funcName); if (!proc) proc = intercept_khr_surface_command(funcName, instance); if (proc) return proc; if (pTable->GetInstanceProcAddr == NULL) return NULL; return pTable->GetInstanceProcAddr(instance, funcName); } static PFN_vkVoidFunction intercept_core_instance_command(const char *name) { static const struct { const char *name; PFN_vkVoidFunction proc; } core_instance_commands[] = { { "vkGetInstanceProcAddr", reinterpret_cast<PFN_vkVoidFunction>(GetInstanceProcAddr) }, { "vkCreateInstance", reinterpret_cast<PFN_vkVoidFunction>(CreateInstance) }, { "vkDestroyInstance", reinterpret_cast<PFN_vkVoidFunction>(DestroyInstance) }, { "vkCreateDevice", reinterpret_cast<PFN_vkVoidFunction>(CreateDevice) }, { "vkEnumeratePhysicalDevices", reinterpret_cast<PFN_vkVoidFunction>(EnumeratePhysicalDevices) }, { "vkEnumerateDeviceExtensionProperties", reinterpret_cast<PFN_vkVoidFunction>(EnumerateDeviceExtensionProperties) }, { "vkGetPhysicalDeviceQueueFamilyProperties", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceQueueFamilyProperties) }, }; // we should never be queried for these commands assert(strcmp(name, "vkEnumerateInstanceLayerProperties") && strcmp(name, "vkEnumerateInstanceExtensionProperties") && strcmp(name, "vkEnumerateDeviceLayerProperties")); for (size_t i = 0; i < ARRAY_SIZE(core_instance_commands); i++) { if (!strcmp(core_instance_commands[i].name, name)) return core_instance_commands[i].proc; } return nullptr; } static PFN_vkVoidFunction intercept_khr_surface_command(const char *name, VkInstance instance) { static const struct { const char *name; PFN_vkVoidFunction proc; } khr_surface_commands[] = { #ifdef VK_USE_PLATFORM_ANDROID_KHR { "vkCreateAndroidSurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateAndroidSurfaceKHR) }, #endif // VK_USE_PLATFORM_ANDROID_KHR #ifdef VK_USE_PLATFORM_MIR_KHR { "vkCreateMirSurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateMirSurfaceKHR) }, { "vkGetPhysicalDeviceMirPresentationSupportKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceMirPresentationSupportKHR) }, #endif // VK_USE_PLATFORM_MIR_KHR #ifdef VK_USE_PLATFORM_WAYLAND_KHR { "vkCreateWaylandSurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateWaylandSurfaceKHR) }, { "vkGetPhysicalDeviceWaylandPresentationSupportKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceWaylandPresentationSupportKHR) }, #endif // VK_USE_PLATFORM_WAYLAND_KHR #ifdef VK_USE_PLATFORM_WIN32_KHR { "vkCreateWin32SurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateWin32SurfaceKHR) }, { "vkGetPhysicalDeviceWin32PresentationSupportKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceWin32PresentationSupportKHR) }, #endif // VK_USE_PLATFORM_WIN32_KHR #ifdef VK_USE_PLATFORM_XCB_KHR { "vkCreateXcbSurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateXcbSurfaceKHR) }, { "vkGetPhysicalDeviceXcbPresentationSupportKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceXcbPresentationSupportKHR) }, #endif // VK_USE_PLATFORM_XCB_KHR #ifdef VK_USE_PLATFORM_XLIB_KHR { "vkCreateXlibSurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateXlibSurfaceKHR) }, { "vkGetPhysicalDeviceXlibPresentationSupportKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceXlibPresentationSupportKHR) }, #endif // VK_USE_PLATFORM_XLIB_KHR { "vkDestroySurfaceKHR", reinterpret_cast<PFN_vkVoidFunction>(DestroySurfaceKHR) }, { "vkGetPhysicalDeviceSurfaceSupportKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceSurfaceSupportKHR) }, { "vkGetPhysicalDeviceSurfaceCapabilitiesKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceSurfaceCapabilitiesKHR) }, { "vkGetPhysicalDeviceSurfaceFormatsKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceSurfaceFormatsKHR) }, { "vkGetPhysicalDeviceSurfacePresentModesKHR", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceSurfacePresentModesKHR) }, }; // do not check if VK_KHR_*_surface is enabled (why?) for (size_t i = 0; i < ARRAY_SIZE(khr_surface_commands); i++) { if (!strcmp(khr_surface_commands[i].name, name)) return khr_surface_commands[i].proc; } return nullptr; } static PFN_vkVoidFunction intercept_core_device_command(const char *name) { static const struct { const char *name; PFN_vkVoidFunction proc; } core_device_commands[] = { { "vkGetDeviceProcAddr", reinterpret_cast<PFN_vkVoidFunction>(GetDeviceProcAddr) }, { "vkDestroyDevice", reinterpret_cast<PFN_vkVoidFunction>(DestroyDevice) }, { "vkGetDeviceQueue", reinterpret_cast<PFN_vkVoidFunction>(GetDeviceQueue) }, }; for (size_t i = 0; i < ARRAY_SIZE(core_device_commands); i++) { if (!strcmp(core_device_commands[i].name, name)) return core_device_commands[i].proc; } return nullptr; } static PFN_vkVoidFunction intercept_khr_swapchain_command(const char *name, VkDevice dev) { static const struct { const char *name; PFN_vkVoidFunction proc; } khr_swapchain_commands[] = { { "vkCreateSwapchainKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateSwapchainKHR) }, { "vkDestroySwapchainKHR", reinterpret_cast<PFN_vkVoidFunction>(DestroySwapchainKHR) }, { "vkGetSwapchainImagesKHR", reinterpret_cast<PFN_vkVoidFunction>(GetSwapchainImagesKHR) }, { "vkAcquireNextImageKHR", reinterpret_cast<PFN_vkVoidFunction>(AcquireNextImageKHR) }, { "vkQueuePresentKHR", reinterpret_cast<PFN_vkVoidFunction>(QueuePresentKHR) }, }; // do not check if VK_KHR_swapchain is enabled (why?) for (size_t i = 0; i < ARRAY_SIZE(khr_swapchain_commands); i++) { if (!strcmp(khr_swapchain_commands[i].name, name)) return khr_swapchain_commands[i].proc; } return nullptr; } } // namespace swapchain // vk_layer_logging.h expects these to be defined VKAPI_ATTR VkResult VKAPI_CALL vkCreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDebugReportCallbackEXT *pMsgCallback) { return swapchain::CreateDebugReportCallbackEXT(instance, pCreateInfo, pAllocator, pMsgCallback); } VKAPI_ATTR void VKAPI_CALL vkDestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT msgCallback, const VkAllocationCallbacks *pAllocator) { swapchain::DestroyDebugReportCallbackEXT(instance, msgCallback, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkDebugReportMessageEXT(VkInstance instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objType, uint64_t object, size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg) { swapchain::DebugReportMessageEXT(instance, flags, objType, object, location, msgCode, pLayerPrefix, pMsg); } // loader-layer interface v0 VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) { return util_GetExtensionProperties(ARRAY_SIZE(swapchain::instance_extensions), swapchain::instance_extensions, pCount, pProperties); } VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(uint32_t *pCount, VkLayerProperties *pProperties) { return util_GetLayerProperties(1, &swapchain::swapchain_layer, pCount, pProperties); } VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount, VkLayerProperties *pProperties) { return util_GetLayerProperties(1, &swapchain::swapchain_layer, pCount, pProperties); } VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) { // the layer command handles VK_NULL_HANDLE just fine return swapchain::EnumerateDeviceExtensionProperties(VK_NULL_HANDLE, pLayerName, pCount, pProperties); } VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev, const char *funcName) { return swapchain::GetDeviceProcAddr(dev, funcName); } VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char *funcName) { if (!strcmp(funcName, "vkEnumerateInstanceLayerProperties")) return reinterpret_cast<PFN_vkVoidFunction>(vkEnumerateInstanceLayerProperties); if (!strcmp(funcName, "vkEnumerateDeviceLayerProperties")) return reinterpret_cast<PFN_vkVoidFunction>(vkEnumerateDeviceLayerProperties); if (!strcmp(funcName, "vkEnumerateInstanceExtensionProperties")) return reinterpret_cast<PFN_vkVoidFunction>(vkEnumerateInstanceExtensionProperties); if (!strcmp(funcName, "vkGetInstanceProcAddr")) return reinterpret_cast<PFN_vkVoidFunction>(vkGetInstanceProcAddr); return swapchain::GetInstanceProcAddr(instance, funcName); }