// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package quick implements utility functions to help with black box testing. // // The testing/quick package is frozen and is not accepting new features. package quick import ( "flag" "fmt" "math" "math/rand" "reflect" "strings" ) var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check") // A Generator can generate random values of its own type. type Generator interface { // Generate returns a random instance of the type on which it is a // method using the size as a size hint. Generate(rand *rand.Rand, size int) reflect.Value } // randFloat32 generates a random float taking the full range of a float32. func randFloat32(rand *rand.Rand) float32 { f := rand.Float64() * math.MaxFloat32 if rand.Int()&1 == 1 { f = -f } return float32(f) } // randFloat64 generates a random float taking the full range of a float64. func randFloat64(rand *rand.Rand) float64 { f := rand.Float64() * math.MaxFloat64 if rand.Int()&1 == 1 { f = -f } return f } // randInt64 returns a random integer taking half the range of an int64. func randInt64(rand *rand.Rand) int64 { return rand.Int63() - 1<<62 } // complexSize is the maximum length of arbitrary values that contain other // values. const complexSize = 50 // Value returns an arbitrary value of the given type. // If the type implements the Generator interface, that will be used. // Note: To create arbitrary values for structs, all the fields must be exported. func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) { return sizedValue(t, rand, complexSize) } // sizedValue returns an arbitrary value of the given type. The size // hint is used for shrinking as a function of indirection level so // that recursive data structures will terminate. func sizedValue(t reflect.Type, rand *rand.Rand, size int) (value reflect.Value, ok bool) { if m, ok := reflect.Zero(t).Interface().(Generator); ok { return m.Generate(rand, size), true } v := reflect.New(t).Elem() switch concrete := t; concrete.Kind() { case reflect.Bool: v.SetBool(rand.Int()&1 == 0) case reflect.Float32: v.SetFloat(float64(randFloat32(rand))) case reflect.Float64: v.SetFloat(randFloat64(rand)) case reflect.Complex64: v.SetComplex(complex(float64(randFloat32(rand)), float64(randFloat32(rand)))) case reflect.Complex128: v.SetComplex(complex(randFloat64(rand), randFloat64(rand))) case reflect.Int16: v.SetInt(randInt64(rand)) case reflect.Int32: v.SetInt(randInt64(rand)) case reflect.Int64: v.SetInt(randInt64(rand)) case reflect.Int8: v.SetInt(randInt64(rand)) case reflect.Int: v.SetInt(randInt64(rand)) case reflect.Uint16: v.SetUint(uint64(randInt64(rand))) case reflect.Uint32: v.SetUint(uint64(randInt64(rand))) case reflect.Uint64: v.SetUint(uint64(randInt64(rand))) case reflect.Uint8: v.SetUint(uint64(randInt64(rand))) case reflect.Uint: v.SetUint(uint64(randInt64(rand))) case reflect.Uintptr: v.SetUint(uint64(randInt64(rand))) case reflect.Map: numElems := rand.Intn(size) v.Set(reflect.MakeMap(concrete)) for i := 0; i < numElems; i++ { key, ok1 := sizedValue(concrete.Key(), rand, size) value, ok2 := sizedValue(concrete.Elem(), rand, size) if !ok1 || !ok2 { return reflect.Value{}, false } v.SetMapIndex(key, value) } case reflect.Ptr: if rand.Intn(size) == 0 { v.Set(reflect.Zero(concrete)) // Generate nil pointer. } else { elem, ok := sizedValue(concrete.Elem(), rand, size) if !ok { return reflect.Value{}, false } v.Set(reflect.New(concrete.Elem())) v.Elem().Set(elem) } case reflect.Slice: numElems := rand.Intn(size) sizeLeft := size - numElems v.Set(reflect.MakeSlice(concrete, numElems, numElems)) for i := 0; i < numElems; i++ { elem, ok := sizedValue(concrete.Elem(), rand, sizeLeft) if !ok { return reflect.Value{}, false } v.Index(i).Set(elem) } case reflect.Array: for i := 0; i < v.Len(); i++ { elem, ok := sizedValue(concrete.Elem(), rand, size) if !ok { return reflect.Value{}, false } v.Index(i).Set(elem) } case reflect.String: numChars := rand.Intn(complexSize) codePoints := make([]rune, numChars) for i := 0; i < numChars; i++ { codePoints[i] = rune(rand.Intn(0x10ffff)) } v.SetString(string(codePoints)) case reflect.Struct: n := v.NumField() // Divide sizeLeft evenly among the struct fields. sizeLeft := size if n > sizeLeft { sizeLeft = 1 } else if n > 0 { sizeLeft /= n } for i := 0; i < n; i++ { elem, ok := sizedValue(concrete.Field(i).Type, rand, sizeLeft) if !ok { return reflect.Value{}, false } v.Field(i).Set(elem) } default: return reflect.Value{}, false } return v, true } // A Config structure contains options for running a test. type Config struct { // MaxCount sets the maximum number of iterations. If zero, // MaxCountScale is used. MaxCount int // MaxCountScale is a non-negative scale factor applied to the default // maximum. If zero, the default is unchanged. MaxCountScale float64 // If non-nil, rand is a source of random numbers. Otherwise a default // pseudo-random source will be used. Rand *rand.Rand // If non-nil, the Values function generates a slice of arbitrary // reflect.Values that are congruent with the arguments to the function // being tested. Otherwise, the top-level Value function is used // to generate them. Values func([]reflect.Value, *rand.Rand) } var defaultConfig Config // getRand returns the *rand.Rand to use for a given Config. func (c *Config) getRand() *rand.Rand { if c.Rand == nil { return rand.New(rand.NewSource(0)) } return c.Rand } // getMaxCount returns the maximum number of iterations to run for a given // Config. func (c *Config) getMaxCount() (maxCount int) { maxCount = c.MaxCount if maxCount == 0 { if c.MaxCountScale != 0 { maxCount = int(c.MaxCountScale * float64(*defaultMaxCount)) } else { maxCount = *defaultMaxCount } } return } // A SetupError is the result of an error in the way that check is being // used, independent of the functions being tested. type SetupError string func (s SetupError) Error() string { return string(s) } // A CheckError is the result of Check finding an error. type CheckError struct { Count int In []interface{} } func (s *CheckError) Error() string { return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In)) } // A CheckEqualError is the result CheckEqual finding an error. type CheckEqualError struct { CheckError Out1 []interface{} Out2 []interface{} } func (s *CheckEqualError) Error() string { return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2)) } // Check looks for an input to f, any function that returns bool, // such that f returns false. It calls f repeatedly, with arbitrary // values for each argument. If f returns false on a given input, // Check returns that input as a *CheckError. // For example: // // func TestOddMultipleOfThree(t *testing.T) { // f := func(x int) bool { // y := OddMultipleOfThree(x) // return y%2 == 1 && y%3 == 0 // } // if err := quick.Check(f, nil); err != nil { // t.Error(err) // } // } func Check(f interface{}, config *Config) error { if config == nil { config = &defaultConfig } fVal, fType, ok := functionAndType(f) if !ok { return SetupError("argument is not a function") } if fType.NumOut() != 1 { return SetupError("function does not return one value") } if fType.Out(0).Kind() != reflect.Bool { return SetupError("function does not return a bool") } arguments := make([]reflect.Value, fType.NumIn()) rand := config.getRand() maxCount := config.getMaxCount() for i := 0; i < maxCount; i++ { err := arbitraryValues(arguments, fType, config, rand) if err != nil { return err } if !fVal.Call(arguments)[0].Bool() { return &CheckError{i + 1, toInterfaces(arguments)} } } return nil } // CheckEqual looks for an input on which f and g return different results. // It calls f and g repeatedly with arbitrary values for each argument. // If f and g return different answers, CheckEqual returns a *CheckEqualError // describing the input and the outputs. func CheckEqual(f, g interface{}, config *Config) error { if config == nil { config = &defaultConfig } x, xType, ok := functionAndType(f) if !ok { return SetupError("f is not a function") } y, yType, ok := functionAndType(g) if !ok { return SetupError("g is not a function") } if xType != yType { return SetupError("functions have different types") } arguments := make([]reflect.Value, xType.NumIn()) rand := config.getRand() maxCount := config.getMaxCount() for i := 0; i < maxCount; i++ { err := arbitraryValues(arguments, xType, config, rand) if err != nil { return err } xOut := toInterfaces(x.Call(arguments)) yOut := toInterfaces(y.Call(arguments)) if !reflect.DeepEqual(xOut, yOut) { return &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut} } } return nil } // arbitraryValues writes Values to args such that args contains Values // suitable for calling f. func arbitraryValues(args []reflect.Value, f reflect.Type, config *Config, rand *rand.Rand) (err error) { if config.Values != nil { config.Values(args, rand) return } for j := 0; j < len(args); j++ { var ok bool args[j], ok = Value(f.In(j), rand) if !ok { err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j)) return } } return } func functionAndType(f interface{}) (v reflect.Value, t reflect.Type, ok bool) { v = reflect.ValueOf(f) ok = v.Kind() == reflect.Func if !ok { return } t = v.Type() return } func toInterfaces(values []reflect.Value) []interface{} { ret := make([]interface{}, len(values)) for i, v := range values { ret[i] = v.Interface() } return ret } func toString(interfaces []interface{}) string { s := make([]string, len(interfaces)) for i, v := range interfaces { s[i] = fmt.Sprintf("%#v", v) } return strings.Join(s, ", ") }