// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package xml import ( "bytes" "encoding" "errors" "fmt" "reflect" "strconv" "strings" ) // BUG(rsc): Mapping between XML elements and data structures is inherently flawed: // an XML element is an order-dependent collection of anonymous // values, while a data structure is an order-independent collection // of named values. // See package json for a textual representation more suitable // to data structures. // Unmarshal parses the XML-encoded data and stores the result in // the value pointed to by v, which must be an arbitrary struct, // slice, or string. Well-formed data that does not fit into v is // discarded. // // Because Unmarshal uses the reflect package, it can only assign // to exported (upper case) fields. Unmarshal uses a case-sensitive // comparison to match XML element names to tag values and struct // field names. // // Unmarshal maps an XML element to a struct using the following rules. // In the rules, the tag of a field refers to the value associated with the // key 'xml' in the struct field's tag (see the example above). // // * If the struct has a field of type []byte or string with tag // ",innerxml", Unmarshal accumulates the raw XML nested inside the // element in that field. The rest of the rules still apply. // // * If the struct has a field named XMLName of type Name, // Unmarshal records the element name in that field. // // * If the XMLName field has an associated tag of the form // "name" or "namespace-URL name", the XML element must have // the given name (and, optionally, name space) or else Unmarshal // returns an error. // // * If the XML element has an attribute whose name matches a // struct field name with an associated tag containing ",attr" or // the explicit name in a struct field tag of the form "name,attr", // Unmarshal records the attribute value in that field. // // * If the XML element has an attribute not handled by the previous // rule and the struct has a field with an associated tag containing // ",any,attr", Unmarshal records the attribute value in the first // such field. // // * If the XML element contains character data, that data is // accumulated in the first struct field that has tag ",chardata". // The struct field may have type []byte or string. // If there is no such field, the character data is discarded. // // * If the XML element contains comments, they are accumulated in // the first struct field that has tag ",comment". The struct // field may have type []byte or string. If there is no such // field, the comments are discarded. // // * If the XML element contains a sub-element whose name matches // the prefix of a tag formatted as "a" or "a>b>c", unmarshal // will descend into the XML structure looking for elements with the // given names, and will map the innermost elements to that struct // field. A tag starting with ">" is equivalent to one starting // with the field name followed by ">". // // * If the XML element contains a sub-element whose name matches // a struct field's XMLName tag and the struct field has no // explicit name tag as per the previous rule, unmarshal maps // the sub-element to that struct field. // // * If the XML element contains a sub-element whose name matches a // field without any mode flags (",attr", ",chardata", etc), Unmarshal // maps the sub-element to that struct field. // // * If the XML element contains a sub-element that hasn't matched any // of the above rules and the struct has a field with tag ",any", // unmarshal maps the sub-element to that struct field. // // * An anonymous struct field is handled as if the fields of its // value were part of the outer struct. // // * A struct field with tag "-" is never unmarshaled into. // // Unmarshal maps an XML element to a string or []byte by saving the // concatenation of that element's character data in the string or // []byte. The saved []byte is never nil. // // Unmarshal maps an attribute value to a string or []byte by saving // the value in the string or slice. // // Unmarshal maps an attribute value to an Attr by saving the attribute, // including its name, in the Attr. // // Unmarshal maps an XML element or attribute value to a slice by // extending the length of the slice and mapping the element or attribute // to the newly created value. // // Unmarshal maps an XML element or attribute value to a bool by // setting it to the boolean value represented by the string. // // Unmarshal maps an XML element or attribute value to an integer or // floating-point field by setting the field to the result of // interpreting the string value in decimal. There is no check for // overflow. // // Unmarshal maps an XML element to a Name by recording the element // name. // // Unmarshal maps an XML element to a pointer by setting the pointer // to a freshly allocated value and then mapping the element to that value. // func Unmarshal(data []byte, v interface{}) error { return NewDecoder(bytes.NewReader(data)).Decode(v) } // Decode works like Unmarshal, except it reads the decoder // stream to find the start element. func (d *Decoder) Decode(v interface{}) error { return d.DecodeElement(v, nil) } // DecodeElement works like Unmarshal except that it takes // a pointer to the start XML element to decode into v. // It is useful when a client reads some raw XML tokens itself // but also wants to defer to Unmarshal for some elements. func (d *Decoder) DecodeElement(v interface{}, start *StartElement) error { val := reflect.ValueOf(v) if val.Kind() != reflect.Ptr { return errors.New("non-pointer passed to Unmarshal") } return d.unmarshal(val.Elem(), start) } // An UnmarshalError represents an error in the unmarshaling process. type UnmarshalError string func (e UnmarshalError) Error() string { return string(e) } // Unmarshaler is the interface implemented by objects that can unmarshal // an XML element description of themselves. // // UnmarshalXML decodes a single XML element // beginning with the given start element. // If it returns an error, the outer call to Unmarshal stops and // returns that error. // UnmarshalXML must consume exactly one XML element. // One common implementation strategy is to unmarshal into // a separate value with a layout matching the expected XML // using d.DecodeElement, and then to copy the data from // that value into the receiver. // Another common strategy is to use d.Token to process the // XML object one token at a time. // UnmarshalXML may not use d.RawToken. type Unmarshaler interface { UnmarshalXML(d *Decoder, start StartElement) error } // UnmarshalerAttr is the interface implemented by objects that can unmarshal // an XML attribute description of themselves. // // UnmarshalXMLAttr decodes a single XML attribute. // If it returns an error, the outer call to Unmarshal stops and // returns that error. // UnmarshalXMLAttr is used only for struct fields with the // "attr" option in the field tag. type UnmarshalerAttr interface { UnmarshalXMLAttr(attr Attr) error } // receiverType returns the receiver type to use in an expression like "%s.MethodName". func receiverType(val interface{}) string { t := reflect.TypeOf(val) if t.Name() != "" { return t.String() } return "(" + t.String() + ")" } // unmarshalInterface unmarshals a single XML element into val. // start is the opening tag of the element. func (p *Decoder) unmarshalInterface(val Unmarshaler, start *StartElement) error { // Record that decoder must stop at end tag corresponding to start. p.pushEOF() p.unmarshalDepth++ err := val.UnmarshalXML(p, *start) p.unmarshalDepth-- if err != nil { p.popEOF() return err } if !p.popEOF() { return fmt.Errorf("xml: %s.UnmarshalXML did not consume entire <%s> element", receiverType(val), start.Name.Local) } return nil } // unmarshalTextInterface unmarshals a single XML element into val. // The chardata contained in the element (but not its children) // is passed to the text unmarshaler. func (p *Decoder) unmarshalTextInterface(val encoding.TextUnmarshaler, start *StartElement) error { var buf []byte depth := 1 for depth > 0 { t, err := p.Token() if err != nil { return err } switch t := t.(type) { case CharData: if depth == 1 { buf = append(buf, t...) } case StartElement: depth++ case EndElement: depth-- } } return val.UnmarshalText(buf) } // unmarshalAttr unmarshals a single XML attribute into val. func (p *Decoder) unmarshalAttr(val reflect.Value, attr Attr) error { if val.Kind() == reflect.Ptr { if val.IsNil() { val.Set(reflect.New(val.Type().Elem())) } val = val.Elem() } if val.CanInterface() && val.Type().Implements(unmarshalerAttrType) { // This is an unmarshaler with a non-pointer receiver, // so it's likely to be incorrect, but we do what we're told. return val.Interface().(UnmarshalerAttr).UnmarshalXMLAttr(attr) } if val.CanAddr() { pv := val.Addr() if pv.CanInterface() && pv.Type().Implements(unmarshalerAttrType) { return pv.Interface().(UnmarshalerAttr).UnmarshalXMLAttr(attr) } } // Not an UnmarshalerAttr; try encoding.TextUnmarshaler. if val.CanInterface() && val.Type().Implements(textUnmarshalerType) { // This is an unmarshaler with a non-pointer receiver, // so it's likely to be incorrect, but we do what we're told. return val.Interface().(encoding.TextUnmarshaler).UnmarshalText([]byte(attr.Value)) } if val.CanAddr() { pv := val.Addr() if pv.CanInterface() && pv.Type().Implements(textUnmarshalerType) { return pv.Interface().(encoding.TextUnmarshaler).UnmarshalText([]byte(attr.Value)) } } if val.Type().Kind() == reflect.Slice && val.Type().Elem().Kind() != reflect.Uint8 { // Slice of element values. // Grow slice. n := val.Len() val.Set(reflect.Append(val, reflect.Zero(val.Type().Elem()))) // Recur to read element into slice. if err := p.unmarshalAttr(val.Index(n), attr); err != nil { val.SetLen(n) return err } return nil } if val.Type() == attrType { val.Set(reflect.ValueOf(attr)) return nil } return copyValue(val, []byte(attr.Value)) } var ( attrType = reflect.TypeOf(Attr{}) unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem() unmarshalerAttrType = reflect.TypeOf((*UnmarshalerAttr)(nil)).Elem() textUnmarshalerType = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem() ) // Unmarshal a single XML element into val. func (p *Decoder) unmarshal(val reflect.Value, start *StartElement) error { // Find start element if we need it. if start == nil { for { tok, err := p.Token() if err != nil { return err } if t, ok := tok.(StartElement); ok { start = &t break } } } // Load value from interface, but only if the result will be // usefully addressable. if val.Kind() == reflect.Interface && !val.IsNil() { e := val.Elem() if e.Kind() == reflect.Ptr && !e.IsNil() { val = e } } if val.Kind() == reflect.Ptr { if val.IsNil() { val.Set(reflect.New(val.Type().Elem())) } val = val.Elem() } if val.CanInterface() && val.Type().Implements(unmarshalerType) { // This is an unmarshaler with a non-pointer receiver, // so it's likely to be incorrect, but we do what we're told. return p.unmarshalInterface(val.Interface().(Unmarshaler), start) } if val.CanAddr() { pv := val.Addr() if pv.CanInterface() && pv.Type().Implements(unmarshalerType) { return p.unmarshalInterface(pv.Interface().(Unmarshaler), start) } } if val.CanInterface() && val.Type().Implements(textUnmarshalerType) { return p.unmarshalTextInterface(val.Interface().(encoding.TextUnmarshaler), start) } if val.CanAddr() { pv := val.Addr() if pv.CanInterface() && pv.Type().Implements(textUnmarshalerType) { return p.unmarshalTextInterface(pv.Interface().(encoding.TextUnmarshaler), start) } } var ( data []byte saveData reflect.Value comment []byte saveComment reflect.Value saveXML reflect.Value saveXMLIndex int saveXMLData []byte saveAny reflect.Value sv reflect.Value tinfo *typeInfo err error ) switch v := val; v.Kind() { default: return errors.New("unknown type " + v.Type().String()) case reflect.Interface: // TODO: For now, simply ignore the field. In the near // future we may choose to unmarshal the start // element on it, if not nil. return p.Skip() case reflect.Slice: typ := v.Type() if typ.Elem().Kind() == reflect.Uint8 { // []byte saveData = v break } // Slice of element values. // Grow slice. n := v.Len() v.Set(reflect.Append(val, reflect.Zero(v.Type().Elem()))) // Recur to read element into slice. if err := p.unmarshal(v.Index(n), start); err != nil { v.SetLen(n) return err } return nil case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, reflect.String: saveData = v case reflect.Struct: typ := v.Type() if typ == nameType { v.Set(reflect.ValueOf(start.Name)) break } sv = v tinfo, err = getTypeInfo(typ) if err != nil { return err } // Validate and assign element name. if tinfo.xmlname != nil { finfo := tinfo.xmlname if finfo.name != "" && finfo.name != start.Name.Local { return UnmarshalError("expected element type <" + finfo.name + "> but have <" + start.Name.Local + ">") } if finfo.xmlns != "" && finfo.xmlns != start.Name.Space { e := "expected element <" + finfo.name + "> in name space " + finfo.xmlns + " but have " if start.Name.Space == "" { e += "no name space" } else { e += start.Name.Space } return UnmarshalError(e) } fv := finfo.value(sv) if _, ok := fv.Interface().(Name); ok { fv.Set(reflect.ValueOf(start.Name)) } } // Assign attributes. for _, a := range start.Attr { handled := false any := -1 for i := range tinfo.fields { finfo := &tinfo.fields[i] switch finfo.flags & fMode { case fAttr: strv := finfo.value(sv) if a.Name.Local == finfo.name && (finfo.xmlns == "" || finfo.xmlns == a.Name.Space) { if err := p.unmarshalAttr(strv, a); err != nil { return err } handled = true } case fAny | fAttr: if any == -1 { any = i } } } if !handled && any >= 0 { finfo := &tinfo.fields[any] strv := finfo.value(sv) if err := p.unmarshalAttr(strv, a); err != nil { return err } } } // Determine whether we need to save character data or comments. for i := range tinfo.fields { finfo := &tinfo.fields[i] switch finfo.flags & fMode { case fCDATA, fCharData: if !saveData.IsValid() { saveData = finfo.value(sv) } case fComment: if !saveComment.IsValid() { saveComment = finfo.value(sv) } case fAny, fAny | fElement: if !saveAny.IsValid() { saveAny = finfo.value(sv) } case fInnerXml: if !saveXML.IsValid() { saveXML = finfo.value(sv) if p.saved == nil { saveXMLIndex = 0 p.saved = new(bytes.Buffer) } else { saveXMLIndex = p.savedOffset() } } } } } // Find end element. // Process sub-elements along the way. Loop: for { var savedOffset int if saveXML.IsValid() { savedOffset = p.savedOffset() } tok, err := p.Token() if err != nil { return err } switch t := tok.(type) { case StartElement: consumed := false if sv.IsValid() { consumed, err = p.unmarshalPath(tinfo, sv, nil, &t) if err != nil { return err } if !consumed && saveAny.IsValid() { consumed = true if err := p.unmarshal(saveAny, &t); err != nil { return err } } } if !consumed { if err := p.Skip(); err != nil { return err } } case EndElement: if saveXML.IsValid() { saveXMLData = p.saved.Bytes()[saveXMLIndex:savedOffset] if saveXMLIndex == 0 { p.saved = nil } } break Loop case CharData: if saveData.IsValid() { data = append(data, t...) } case Comment: if saveComment.IsValid() { comment = append(comment, t...) } } } if saveData.IsValid() && saveData.CanInterface() && saveData.Type().Implements(textUnmarshalerType) { if err := saveData.Interface().(encoding.TextUnmarshaler).UnmarshalText(data); err != nil { return err } saveData = reflect.Value{} } if saveData.IsValid() && saveData.CanAddr() { pv := saveData.Addr() if pv.CanInterface() && pv.Type().Implements(textUnmarshalerType) { if err := pv.Interface().(encoding.TextUnmarshaler).UnmarshalText(data); err != nil { return err } saveData = reflect.Value{} } } if err := copyValue(saveData, data); err != nil { return err } switch t := saveComment; t.Kind() { case reflect.String: t.SetString(string(comment)) case reflect.Slice: t.Set(reflect.ValueOf(comment)) } switch t := saveXML; t.Kind() { case reflect.String: t.SetString(string(saveXMLData)) case reflect.Slice: if t.Type().Elem().Kind() == reflect.Uint8 { t.Set(reflect.ValueOf(saveXMLData)) } } return nil } func copyValue(dst reflect.Value, src []byte) (err error) { dst0 := dst if dst.Kind() == reflect.Ptr { if dst.IsNil() { dst.Set(reflect.New(dst.Type().Elem())) } dst = dst.Elem() } // Save accumulated data. switch dst.Kind() { case reflect.Invalid: // Probably a comment. default: return errors.New("cannot unmarshal into " + dst0.Type().String()) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: itmp, err := strconv.ParseInt(string(src), 10, dst.Type().Bits()) if err != nil { return err } dst.SetInt(itmp) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: utmp, err := strconv.ParseUint(string(src), 10, dst.Type().Bits()) if err != nil { return err } dst.SetUint(utmp) case reflect.Float32, reflect.Float64: ftmp, err := strconv.ParseFloat(string(src), dst.Type().Bits()) if err != nil { return err } dst.SetFloat(ftmp) case reflect.Bool: value, err := strconv.ParseBool(strings.TrimSpace(string(src))) if err != nil { return err } dst.SetBool(value) case reflect.String: dst.SetString(string(src)) case reflect.Slice: if len(src) == 0 { // non-nil to flag presence src = []byte{} } dst.SetBytes(src) } return nil } // unmarshalPath walks down an XML structure looking for wanted // paths, and calls unmarshal on them. // The consumed result tells whether XML elements have been consumed // from the Decoder until start's matching end element, or if it's // still untouched because start is uninteresting for sv's fields. func (p *Decoder) unmarshalPath(tinfo *typeInfo, sv reflect.Value, parents []string, start *StartElement) (consumed bool, err error) { recurse := false Loop: for i := range tinfo.fields { finfo := &tinfo.fields[i] if finfo.flags&fElement == 0 || len(finfo.parents) < len(parents) || finfo.xmlns != "" && finfo.xmlns != start.Name.Space { continue } for j := range parents { if parents[j] != finfo.parents[j] { continue Loop } } if len(finfo.parents) == len(parents) && finfo.name == start.Name.Local { // It's a perfect match, unmarshal the field. return true, p.unmarshal(finfo.value(sv), start) } if len(finfo.parents) > len(parents) && finfo.parents[len(parents)] == start.Name.Local { // It's a prefix for the field. Break and recurse // since it's not ok for one field path to be itself // the prefix for another field path. recurse = true // We can reuse the same slice as long as we // don't try to append to it. parents = finfo.parents[:len(parents)+1] break } } if !recurse { // We have no business with this element. return false, nil } // The element is not a perfect match for any field, but one // or more fields have the path to this element as a parent // prefix. Recurse and attempt to match these. for { var tok Token tok, err = p.Token() if err != nil { return true, err } switch t := tok.(type) { case StartElement: consumed2, err := p.unmarshalPath(tinfo, sv, parents, &t) if err != nil { return true, err } if !consumed2 { if err := p.Skip(); err != nil { return true, err } } case EndElement: return true, nil } } } // Skip reads tokens until it has consumed the end element // matching the most recent start element already consumed. // It recurs if it encounters a start element, so it can be used to // skip nested structures. // It returns nil if it finds an end element matching the start // element; otherwise it returns an error describing the problem. func (d *Decoder) Skip() error { for { tok, err := d.Token() if err != nil { return err } switch tok.(type) { case StartElement: if err := d.Skip(); err != nil { return err } case EndElement: return nil } } }