/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <mutex> #include <array> #include <sstream> #include <algorithm> #include <gui/Surface.h> #include <gui/BufferItemConsumer.h> #include <ui/GraphicBuffer.h> #include <math/vec4.h> #include <GLES3/gl3.h> #include "Hwc2TestBuffer.h" #include "Hwc2TestLayers.h" using namespace android; /* Returns a fence from egl */ typedef void (*FenceCallback)(int32_t fence, void* callbackArgs); /* Returns fence to fence generator */ static void setFence(int32_t fence, void* fenceGenerator); /* Used to receive the surfaces and fences from egl. The egl buffers are thrown * away. The fences are sent to the requester via a callback */ class Hwc2TestSurfaceManager { public: /* Listens for a new frame, detaches the buffer and returns the fence * through saved callback. */ class BufferListener : public ConsumerBase::FrameAvailableListener { public: BufferListener(sp<IGraphicBufferConsumer> consumer, FenceCallback callback, void* callbackArgs) : mConsumer(consumer), mCallback(callback), mCallbackArgs(callbackArgs) { } void onFrameAvailable(const BufferItem& /*item*/) { BufferItem item; if (mConsumer->acquireBuffer(&item, 0)) return; if (mConsumer->detachBuffer(item.mSlot)) return; mCallback(item.mFence->dup(), mCallbackArgs); } private: sp<IGraphicBufferConsumer> mConsumer; FenceCallback mCallback; void* mCallbackArgs; }; /* Creates a buffer listener that waits on a new frame from the buffer * queue. */ void initialize(const Area& bufferArea, android_pixel_format_t format, FenceCallback callback, void* callbackArgs) { sp<IGraphicBufferProducer> producer; sp<IGraphicBufferConsumer> consumer; BufferQueue::createBufferQueue(&producer, &consumer); consumer->setDefaultBufferSize(bufferArea.width, bufferArea.height); consumer->setDefaultBufferFormat(format); mBufferItemConsumer = new BufferItemConsumer(consumer, 0); mListener = new BufferListener(consumer, callback, callbackArgs); mBufferItemConsumer->setFrameAvailableListener(mListener); mSurface = new Surface(producer, true); } /* Used by Egl manager. The surface is never displayed. */ sp<Surface> getSurface() const { return mSurface; } private: sp<BufferItemConsumer> mBufferItemConsumer; sp<BufferListener> mListener; /* Used by Egl manager. The surface is never displayed */ sp<Surface> mSurface; }; /* Used to generate valid fences. It is not possible to create a dummy sync * fence for testing. Egl can generate buffers along with a valid fence. * The buffer cannot be guaranteed to be the same format across all devices so * a CPU filled buffer is used instead. The Egl fence is used along with the * CPU filled buffer. */ class Hwc2TestEglManager { public: Hwc2TestEglManager() : mEglDisplay(EGL_NO_DISPLAY), mEglSurface(EGL_NO_SURFACE), mEglContext(EGL_NO_CONTEXT) { } ~Hwc2TestEglManager() { cleanup(); } int initialize(sp<Surface> surface) { mSurface = surface; mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (mEglDisplay == EGL_NO_DISPLAY) return false; EGLint major; EGLint minor; if (!eglInitialize(mEglDisplay, &major, &minor)) { ALOGW("Could not initialize EGL"); return false; } /* We're going to use a 1x1 pbuffer surface later on * The configuration distance doesn't really matter for what we're * trying to do */ EGLint configAttrs[] = { EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_ALPHA_SIZE, 0, EGL_DEPTH_SIZE, 24, EGL_STENCIL_SIZE, 0, EGL_NONE }; EGLConfig configs[1]; EGLint configCnt; if (!eglChooseConfig(mEglDisplay, configAttrs, configs, 1, &configCnt)) { ALOGW("Could not select EGL configuration"); eglReleaseThread(); eglTerminate(mEglDisplay); return false; } if (configCnt <= 0) { ALOGW("Could not find EGL configuration"); eglReleaseThread(); eglTerminate(mEglDisplay); return false; } /* These objects are initialized below but the default "null" values are * used to cleanup properly at any point in the initialization sequence */ EGLint attrs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE }; mEglContext = eglCreateContext(mEglDisplay, configs[0], EGL_NO_CONTEXT, attrs); if (mEglContext == EGL_NO_CONTEXT) { ALOGW("Could not create EGL context"); cleanup(); return false; } EGLint surfaceAttrs[] = { EGL_NONE }; mEglSurface = eglCreateWindowSurface(mEglDisplay, configs[0], mSurface.get(), surfaceAttrs); if (mEglSurface == EGL_NO_SURFACE) { ALOGW("Could not create EGL surface"); cleanup(); return false; } if (!eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)) { ALOGW("Could not change current EGL context"); cleanup(); return false; } return true; } void makeCurrent() const { eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext); } void present() const { eglSwapBuffers(mEglDisplay, mEglSurface); } private: void cleanup() { if (mEglDisplay == EGL_NO_DISPLAY) return; if (mEglSurface != EGL_NO_SURFACE) eglDestroySurface(mEglDisplay, mEglSurface); if (mEglContext != EGL_NO_CONTEXT) eglDestroyContext(mEglDisplay, mEglContext); eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); eglReleaseThread(); eglTerminate(mEglDisplay); } sp<Surface> mSurface; EGLDisplay mEglDisplay; EGLSurface mEglSurface; EGLContext mEglContext; }; static const std::array<vec2, 4> triangles = {{ { 1.0f, 1.0f }, { -1.0f, 1.0f }, { 1.0f, -1.0f }, { -1.0f, -1.0f }, }}; class Hwc2TestFenceGenerator { public: Hwc2TestFenceGenerator() { mSurfaceManager.initialize({1, 1}, HAL_PIXEL_FORMAT_RGBA_8888, setFence, this); if (!mEglManager.initialize(mSurfaceManager.getSurface())) return; mEglManager.makeCurrent(); glClearColor(0.0, 0.0, 0.0, 1.0); glEnableVertexAttribArray(0); } ~Hwc2TestFenceGenerator() { if (mFence >= 0) close(mFence); mFence = -1; mEglManager.makeCurrent(); } /* It is not possible to simply generate a fence. The easiest way is to * generate a buffer using egl and use the associated fence. The buffer * cannot be guaranteed to be a certain format across all devices using this * method. Instead the buffer is generated using the CPU */ int32_t get() { if (mFence >= 0) { return dup(mFence); } std::unique_lock<std::mutex> lock(mMutex); /* If the pending is still set to false and times out, we cannot recover. * Set an error and return */ while (mPending != false) { if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout) return -ETIME; } /* Generate a fence. The fence will be returned through the setFence * callback */ mEglManager.makeCurrent(); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, triangles.data()); glClear(GL_COLOR_BUFFER_BIT); mEglManager.present(); /* Wait for the setFence callback */ while (mPending != true) { if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout) return -ETIME; } mPending = false; return dup(mFence); } /* Callback that sets the fence */ void set(int32_t fence) { mFence = fence; mPending = true; mCv.notify_all(); } private: Hwc2TestSurfaceManager mSurfaceManager; Hwc2TestEglManager mEglManager; std::mutex mMutex; std::condition_variable mCv; int32_t mFence = -1; bool mPending = false; }; static void setFence(int32_t fence, void* fenceGenerator) { static_cast<Hwc2TestFenceGenerator*>(fenceGenerator)->set(fence); } /* Sets the pixel of a buffer given the location, format, stride and color. * Currently only supports RGBA_8888 */ static void setColor(int32_t x, int32_t y, android_pixel_format_t format, uint32_t stride, uint8_t* img, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { switch (format) { case HAL_PIXEL_FORMAT_RGBA_8888: img[(y * stride + x) * 4 + 0] = r; img[(y * stride + x) * 4 + 1] = g; img[(y * stride + x) * 4 + 2] = b; img[(y * stride + x) * 4 + 3] = a; break; default: break; } } Hwc2TestBuffer::Hwc2TestBuffer() : mFenceGenerator(new Hwc2TestFenceGenerator()) { } Hwc2TestBuffer::~Hwc2TestBuffer() = default; /* When the buffer changes sizes, save the new size and invalidate the current * buffer */ void Hwc2TestBuffer::updateBufferArea(const Area& bufferArea) { if (mBufferArea.width == bufferArea.width && mBufferArea.height == bufferArea.height) return; mBufferArea.width = bufferArea.width; mBufferArea.height = bufferArea.height; mValidBuffer = false; } /* Returns a valid buffer handle and fence. The handle is filled using the CPU * to ensure the correct format across all devices. The fence is created using * egl. */ int Hwc2TestBuffer::get(buffer_handle_t* outHandle, int32_t* outFence) { if (mBufferArea.width == -1 || mBufferArea.height == -1) return -EINVAL; /* If the current buffer is valid, the previous buffer can be reused. * Otherwise, create new buffer */ if (!mValidBuffer) { int ret = generateBuffer(); if (ret) return ret; } *outFence = mFenceGenerator->get(); *outHandle = mHandle; mValidBuffer = true; return 0; } /* CPU fills a buffer to guarantee the correct buffer format across all * devices */ int Hwc2TestBuffer::generateBuffer() { /* Create new graphic buffer with correct dimensions */ mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height, mFormat, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER, "hwc2_test_buffer"); int ret = mGraphicBuffer->initCheck(); if (ret) { return ret; } if (!mGraphicBuffer->handle) { return -EINVAL; } /* Locks the buffer for writing */ uint8_t* img; mGraphicBuffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); uint32_t stride = mGraphicBuffer->getStride(); /* Iterate from the top row of the buffer to the bottom row */ for (int32_t y = 0; y < mBufferArea.height; y++) { /* Will be used as R, G and B values for pixel colors */ uint8_t max = 255; uint8_t min = 0; /* Divide the rows into 3 sections. The first section will contain * the lighest colors. The last section will contain the darkest * colors. */ if (y < mBufferArea.height * 1.0 / 3.0) { min = 255 / 2; } else if (y >= mBufferArea.height * 2.0 / 3.0) { max = 255 / 2; } /* Divide the columns into 3 sections. The first section is red, * the second is green and the third is blue */ int32_t x = 0; for (; x < mBufferArea.width / 3; x++) { setColor(x, y, mFormat, stride, img, max, min, min, 255); } for (; x < mBufferArea.width * 2 / 3; x++) { setColor(x, y, mFormat, stride, img, min, max, min, 255); } for (; x < mBufferArea.width; x++) { setColor(x, y, mFormat, stride, img, min, min, max, 255); } } /* Unlock the buffer for reading */ mGraphicBuffer->unlock(); mHandle = mGraphicBuffer->handle; return 0; } Hwc2TestClientTargetBuffer::Hwc2TestClientTargetBuffer() : mFenceGenerator(new Hwc2TestFenceGenerator()) { } Hwc2TestClientTargetBuffer::~Hwc2TestClientTargetBuffer() { } /* Generates a client target buffer using the layers assigned for client * composition. Takes into account the individual layer properties such as * transform, blend mode, source crop, etc. */ int Hwc2TestClientTargetBuffer::get(buffer_handle_t* outHandle, int32_t* outFence, const Area& bufferArea, const Hwc2TestLayers* testLayers, const std::set<hwc2_layer_t>* clientLayers, const std::set<hwc2_layer_t>* clearLayers) { /* Create new graphic buffer with correct dimensions */ mGraphicBuffer = new GraphicBuffer(bufferArea.width, bufferArea.height, mFormat, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER, "hwc2_test_buffer"); int ret = mGraphicBuffer->initCheck(); if (ret) { return ret; } if (!mGraphicBuffer->handle) { return -EINVAL; } uint8_t* img; mGraphicBuffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); uint32_t stride = mGraphicBuffer->getStride(); float bWDiv3 = bufferArea.width / 3; float bW2Div3 = bufferArea.width * 2 / 3; float bHDiv3 = bufferArea.height / 3; float bH2Div3 = bufferArea.height * 2 / 3; /* Cycle through every pixel in the buffer and determine what color it * should be. */ for (int32_t y = 0; y < bufferArea.height; y++) { for (int32_t x = 0; x < bufferArea.width; x++) { uint8_t r = 0, g = 0, b = 0; float a = 0.0f; /* Cycle through each client layer from back to front and * update the pixel color. */ for (auto layer = clientLayers->rbegin(); layer != clientLayers->rend(); ++layer) { const hwc_rect_t df = testLayers->getDisplayFrame(*layer); float dfL = df.left; float dfT = df.top; float dfR = df.right; float dfB = df.bottom; /* If the pixel location falls outside of the layer display * frame, skip the layer. */ if (x < dfL || x >= dfR || y < dfT || y >= dfB) continue; /* If the device has requested the layer be clear, clear * the pixel and continue. */ if (clearLayers->count(*layer) != 0) { r = 0; g = 0; b = 0; a = 0.0f; continue; } float planeAlpha = testLayers->getPlaneAlpha(*layer); /* If the layer is a solid color, fill the color and * continue. */ if (testLayers->getComposition(*layer) == HWC2_COMPOSITION_SOLID_COLOR) { const auto color = testLayers->getColor(*layer); r = color.r; g = color.g; b = color.b; a = color.a * planeAlpha; continue; } float xPos = x; float yPos = y; hwc_transform_t transform = testLayers->getTransform(*layer); float dfW = dfR - dfL; float dfH = dfB - dfT; /* If a layer has a transform, find which location on the * layer will end up in the current pixel location. We * can calculate the color of the current pixel using that * location. */ if (transform > 0) { /* Change origin to be the center of the layer. */ xPos = xPos - dfL - dfW / 2.0; yPos = yPos - dfT - dfH / 2.0; /* Flip Horizontal by reflecting across the y axis. */ if (transform & HWC_TRANSFORM_FLIP_H) xPos = -xPos; /* Flip vertical by reflecting across the x axis. */ if (transform & HWC_TRANSFORM_FLIP_V) yPos = -yPos; /* Rotate 90 by using a basic linear algebra rotation * and scaling the result so the display frame remains * the same. For example, a buffer of size 100x50 should * rotate 90 degress but remain the same dimension * (100x50) at the end of the transformation. */ if (transform & HWC_TRANSFORM_ROT_90) { float tmp = xPos; xPos = -yPos * dfW / dfH; yPos = tmp * dfH / dfW; } /* Change origin back to the top left corner of the * layer. */ xPos = xPos + dfL + dfW / 2.0; yPos = yPos + dfT + dfH / 2.0; } hwc_frect_t sc = testLayers->getSourceCrop(*layer); float scL = sc.left, scT = sc.top; float dfWDivScW = dfW / (sc.right - scL); float dfHDivScH = dfH / (sc.bottom - scT); float max = 255, min = 0; /* Choose the pixel color. Similar to generateBuffer, * each layer will be divided into 3x3 colors. Because * both the source crop and display frame must be taken into * account, the formulas are more complicated. * * If the source crop and display frame were not taken into * account, we would simply divide the buffer into three * sections by height. Each section would get one color. * For example the formula for the first section would be: * * if (yPos < bufferArea.height / 3) * //Select first section color * * However the pixel color is chosen based on the source * crop and displayed based on the display frame. * * If the display frame top was 0 and the source crop height * and display frame height were the same. The only factor * would be the source crop top. To calculate the new * section boundary, the section boundary would be moved up * by the height of the source crop top. The formula would * be: * if (yPos < (bufferArea.height / 3 - sourceCrop.top) * //Select first section color * * If the display frame top could also vary but source crop * and display frame heights were the same, the formula * would be: * if (yPos < (bufferArea.height / 3 - sourceCrop.top * + displayFrameTop) * //Select first section color * * If the heights were not the same, the conversion between * the source crop and display frame dimensions must be * taken into account. The formula would be: * if (yPos < ((bufferArea.height / 3) - sourceCrop.top) * * displayFrameHeight / sourceCropHeight * + displayFrameTop) * //Select first section color */ if (yPos < ((bHDiv3) - scT) * dfHDivScH + dfT) { min = 255 / 2; } else if (yPos >= ((bH2Div3) - scT) * dfHDivScH + dfT) { max = 255 / 2; } uint8_t rCur = min, gCur = min, bCur = min; float aCur = 1.0f; /* This further divides the color sections from 3 to 3x3. * The math behind it follows the same logic as the previous * comment */ if (xPos < ((bWDiv3) - scL) * (dfWDivScW) + dfL) { rCur = max; } else if (xPos < ((bW2Div3) - scL) * (dfWDivScW) + dfL) { gCur = max; } else { bCur = max; } /* Blend the pixel color with the previous layers' pixel * colors using the plane alpha and blend mode. The final * pixel color is chosen using the plane alpha and blend * mode formulas found in hwcomposer2.h */ hwc2_blend_mode_t blendMode = testLayers->getBlendMode(*layer); if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) { rCur *= planeAlpha; gCur *= planeAlpha; bCur *= planeAlpha; } aCur *= planeAlpha; if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) { r = rCur + r * (1.0 - aCur); g = gCur + g * (1.0 - aCur); b = bCur + b * (1.0 - aCur); a = aCur + a * (1.0 - aCur); } else if (blendMode == HWC2_BLEND_MODE_COVERAGE) { r = rCur * aCur + r * (1.0 - aCur); g = gCur * aCur + g * (1.0 - aCur); b = bCur * aCur + b * (1.0 - aCur); a = aCur * aCur + a * (1.0 - aCur); } else { r = rCur; g = gCur; b = bCur; a = aCur; } } /* Set the pixel color */ setColor(x, y, mFormat, stride, img, r, g, b, a * 255); } } mGraphicBuffer->unlock(); *outFence = mFenceGenerator->get(); *outHandle = mGraphicBuffer->handle; return 0; }