/* * Copyright 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "MatTest" #include <stdlib.h> #include <limits> #include <random> #include <functional> #include <gtest/gtest.h> #include <math/mat2.h> #include <math/mat4.h> namespace android { class MatTest : public testing::Test { protected: }; TEST_F(MatTest, Basics) { mat4 m0; EXPECT_EQ(sizeof(mat4), sizeof(float)*16); } TEST_F(MatTest, ComparisonOps) { mat4 m0; mat4 m1(2); EXPECT_TRUE(m0 == m0); EXPECT_TRUE(m0 != m1); EXPECT_FALSE(m0 != m0); EXPECT_FALSE(m0 == m1); } TEST_F(MatTest, Constructors) { mat4 m0; ASSERT_EQ(m0[0].x, 1); ASSERT_EQ(m0[0].y, 0); ASSERT_EQ(m0[0].z, 0); ASSERT_EQ(m0[0].w, 0); ASSERT_EQ(m0[1].x, 0); ASSERT_EQ(m0[1].y, 1); ASSERT_EQ(m0[1].z, 0); ASSERT_EQ(m0[1].w, 0); ASSERT_EQ(m0[2].x, 0); ASSERT_EQ(m0[2].y, 0); ASSERT_EQ(m0[2].z, 1); ASSERT_EQ(m0[2].w, 0); ASSERT_EQ(m0[3].x, 0); ASSERT_EQ(m0[3].y, 0); ASSERT_EQ(m0[3].z, 0); ASSERT_EQ(m0[3].w, 1); mat4 m1(2); mat4 m2(vec4(2)); mat4 m3(m2); EXPECT_EQ(m1, m2); EXPECT_EQ(m2, m3); EXPECT_EQ(m3, m1); mat4 m4(vec4(1), vec4(2), vec4(3), vec4(4)); } TEST_F(MatTest, ArithmeticOps) { mat4 m0; mat4 m1(2); mat4 m2(vec4(2)); m1 += m2; EXPECT_EQ(mat4(4), m1); m2 -= m1; EXPECT_EQ(mat4(-2), m2); m1 *= 2; EXPECT_EQ(mat4(8), m1); m1 /= 2; EXPECT_EQ(mat4(4), m1); m0 = -m0; EXPECT_EQ(mat4(-1), m0); } TEST_F(MatTest, UnaryOps) { const mat4 identity; mat4 m0; m0 = -m0; EXPECT_EQ(mat4(vec4(-1, 0, 0, 0), vec4(0, -1, 0, 0), vec4(0, 0, -1, 0), vec4(0, 0, 0, -1)), m0); m0 = -m0; EXPECT_EQ(identity, m0); } TEST_F(MatTest, MiscOps) { const mat4 identity; mat4 m0; EXPECT_EQ(4, trace(m0)); mat4 m1(vec4(1, 2, 3, 4), vec4(5, 6, 7, 8), vec4(9, 10, 11, 12), vec4(13, 14, 15, 16)); mat4 m2(vec4(1, 5, 9, 13), vec4(2, 6, 10, 14), vec4(3, 7, 11, 15), vec4(4, 8, 12, 16)); EXPECT_EQ(m1, transpose(m2)); EXPECT_EQ(m2, transpose(m1)); EXPECT_EQ(vec4(1, 6, 11, 16), diag(m1)); EXPECT_EQ(identity, inverse(identity)); mat4 m3(vec4(4, 3, 0, 0), vec4(3, 2, 0, 0), vec4(0, 0, 1, 0), vec4(0, 0, 0, 1)); mat4 m3i(inverse(m3)); EXPECT_FLOAT_EQ(-2, m3i[0][0]); EXPECT_FLOAT_EQ(3, m3i[0][1]); EXPECT_FLOAT_EQ(3, m3i[1][0]); EXPECT_FLOAT_EQ(-4, m3i[1][1]); mat4 m3ii(inverse(m3i)); EXPECT_FLOAT_EQ(m3[0][0], m3ii[0][0]); EXPECT_FLOAT_EQ(m3[0][1], m3ii[0][1]); EXPECT_FLOAT_EQ(m3[1][0], m3ii[1][0]); EXPECT_FLOAT_EQ(m3[1][1], m3ii[1][1]); EXPECT_EQ(m1, m1*identity); for (size_t c=0 ; c<4 ; c++) { for (size_t r=0 ; r<4 ; r++) { EXPECT_FLOAT_EQ(m1[c][r], m1(r, c)); } } } TEST_F(MatTest, ElementAccess) { mat4 m(vec4(1, 2, 3, 4), vec4(5, 6, 7, 8), vec4(9, 10, 11, 12), vec4(13, 14, 15, 16)); for (size_t c=0 ; c<4 ; c++) { for (size_t r=0 ; r<4 ; r++) { EXPECT_FLOAT_EQ(m[c][r], m(r, c)); } } m(3,2) = 100; EXPECT_FLOAT_EQ(m[2][3], 100); EXPECT_FLOAT_EQ(m(3, 2), 100); } //------------------------------------------------------------------------------ // MAT 3 //------------------------------------------------------------------------------ class Mat3Test : public testing::Test { protected: }; TEST_F(Mat3Test, Basics) { mat3 m0; EXPECT_EQ(sizeof(mat3), sizeof(float)*9); } TEST_F(Mat3Test, ComparisonOps) { mat3 m0; mat3 m1(2); EXPECT_TRUE(m0 == m0); EXPECT_TRUE(m0 != m1); EXPECT_FALSE(m0 != m0); EXPECT_FALSE(m0 == m1); } TEST_F(Mat3Test, Constructors) { mat3 m0; ASSERT_EQ(m0[0].x, 1); ASSERT_EQ(m0[0].y, 0); ASSERT_EQ(m0[0].z, 0); ASSERT_EQ(m0[1].x, 0); ASSERT_EQ(m0[1].y, 1); ASSERT_EQ(m0[1].z, 0); ASSERT_EQ(m0[2].x, 0); ASSERT_EQ(m0[2].y, 0); ASSERT_EQ(m0[2].z, 1); mat3 m1(2); mat3 m2(vec3(2)); mat3 m3(m2); EXPECT_EQ(m1, m2); EXPECT_EQ(m2, m3); EXPECT_EQ(m3, m1); } TEST_F(Mat3Test, ArithmeticOps) { mat3 m0; mat3 m1(2); mat3 m2(vec3(2)); m1 += m2; EXPECT_EQ(mat3(4), m1); m2 -= m1; EXPECT_EQ(mat3(-2), m2); m1 *= 2; EXPECT_EQ(mat3(8), m1); m1 /= 2; EXPECT_EQ(mat3(4), m1); m0 = -m0; EXPECT_EQ(mat3(-1), m0); } TEST_F(Mat3Test, UnaryOps) { const mat3 identity; mat3 m0; m0 = -m0; EXPECT_EQ(mat3(vec3(-1, 0, 0), vec3(0, -1, 0), vec3(0, 0, -1)), m0); m0 = -m0; EXPECT_EQ(identity, m0); } TEST_F(Mat3Test, MiscOps) { const mat3 identity; mat3 m0; EXPECT_EQ(3, trace(m0)); mat3 m1(vec3(1, 2, 3), vec3(4, 5, 6), vec3(7, 8, 9)); mat3 m2(vec3(1, 4, 7), vec3(2, 5, 8), vec3(3, 6, 9)); EXPECT_EQ(m1, transpose(m2)); EXPECT_EQ(m2, transpose(m1)); EXPECT_EQ(vec3(1, 5, 9), diag(m1)); EXPECT_EQ(identity, inverse(identity)); mat3 m3(vec3(4, 3, 0), vec3(3, 2, 0), vec3(0, 0, 1)); mat3 m3i(inverse(m3)); EXPECT_FLOAT_EQ(-2, m3i[0][0]); EXPECT_FLOAT_EQ(3, m3i[0][1]); EXPECT_FLOAT_EQ(3, m3i[1][0]); EXPECT_FLOAT_EQ(-4, m3i[1][1]); mat3 m3ii(inverse(m3i)); EXPECT_FLOAT_EQ(m3[0][0], m3ii[0][0]); EXPECT_FLOAT_EQ(m3[0][1], m3ii[0][1]); EXPECT_FLOAT_EQ(m3[1][0], m3ii[1][0]); EXPECT_FLOAT_EQ(m3[1][1], m3ii[1][1]); EXPECT_EQ(m1, m1*identity); } //------------------------------------------------------------------------------ // MAT 2 //------------------------------------------------------------------------------ class Mat2Test : public testing::Test { protected: }; TEST_F(Mat2Test, Basics) { mat2 m0; EXPECT_EQ(sizeof(mat2), sizeof(float)*4); } TEST_F(Mat2Test, ComparisonOps) { mat2 m0; mat2 m1(2); EXPECT_TRUE(m0 == m0); EXPECT_TRUE(m0 != m1); EXPECT_FALSE(m0 != m0); EXPECT_FALSE(m0 == m1); } TEST_F(Mat2Test, Constructors) { mat2 m0; ASSERT_EQ(m0[0].x, 1); ASSERT_EQ(m0[0].y, 0); ASSERT_EQ(m0[1].x, 0); ASSERT_EQ(m0[1].y, 1); mat2 m1(2); mat2 m2(vec2(2)); mat2 m3(m2); EXPECT_EQ(m1, m2); EXPECT_EQ(m2, m3); EXPECT_EQ(m3, m1); } TEST_F(Mat2Test, ArithmeticOps) { mat2 m0; mat2 m1(2); mat2 m2(vec2(2)); m1 += m2; EXPECT_EQ(mat2(4), m1); m2 -= m1; EXPECT_EQ(mat2(-2), m2); m1 *= 2; EXPECT_EQ(mat2(8), m1); m1 /= 2; EXPECT_EQ(mat2(4), m1); m0 = -m0; EXPECT_EQ(mat2(-1), m0); } TEST_F(Mat2Test, UnaryOps) { const mat2 identity; mat2 m0; m0 = -m0; EXPECT_EQ(mat2(vec2(-1, 0), vec2(0, -1)), m0); m0 = -m0; EXPECT_EQ(identity, m0); } TEST_F(Mat2Test, MiscOps) { const mat2 identity; mat2 m0; EXPECT_EQ(2, trace(m0)); mat2 m1(vec2(1, 2), vec2(3, 4)); mat2 m2(vec2(1, 3), vec2(2, 4)); EXPECT_EQ(m1, transpose(m2)); EXPECT_EQ(m2, transpose(m1)); EXPECT_EQ(vec2(1, 4), diag(m1)); EXPECT_EQ(identity, inverse(identity)); EXPECT_EQ(m1, m1*identity); } //------------------------------------------------------------------------------ // MORE MATRIX TESTS //------------------------------------------------------------------------------ template <typename T> class MatTestT : public ::testing::Test { public: }; typedef ::testing::Types<float,float> TestMatrixValueTypes; TYPED_TEST_CASE(MatTestT, TestMatrixValueTypes); #define TEST_MATRIX_INVERSE(MATRIX, EPSILON) \ { \ typedef decltype(MATRIX) MatrixType; \ MatrixType inv1 = inverse(MATRIX); \ MatrixType ident1 = MATRIX * inv1; \ static const MatrixType IDENTITY; \ for (size_t row = 0; row < MatrixType::ROW_SIZE; ++row) { \ for (size_t col = 0; col < MatrixType::COL_SIZE; ++col) { \ EXPECT_NEAR(ident1[row][col], IDENTITY[row][col], EPSILON); \ } \ } \ } TYPED_TEST(MatTestT, Inverse4) { typedef ::android::details::TMat44<TypeParam> M44T; M44T m1(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); M44T m2(0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); M44T m3(1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0); M44T m4( 4.683281e-01, 1.251189e-02, -8.834660e-01, -4.726541e+00, -8.749647e-01, 1.456563e-01, -4.617587e-01, 3.044795e+00, 1.229049e-01, 9.892561e-01, 7.916244e-02, -6.737138e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00); M44T m5( 4.683281e-01, 1.251189e-02, -8.834660e-01, -4.726541e+00, -8.749647e-01, 1.456563e-01, -4.617587e-01, 3.044795e+00, 1.229049e-01, 9.892561e-01, 7.916244e-02, -6.737138e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00); TEST_MATRIX_INVERSE(m1, 0); TEST_MATRIX_INVERSE(m2, 0); TEST_MATRIX_INVERSE(m3, 0); TEST_MATRIX_INVERSE(m4, 20.0 * std::numeric_limits<TypeParam>::epsilon()); TEST_MATRIX_INVERSE(m5, 20.0 * std::numeric_limits<TypeParam>::epsilon()); } //------------------------------------------------------------------------------ TYPED_TEST(MatTestT, Inverse3) { typedef ::android::details::TMat33<TypeParam> M33T; M33T m1(1, 0, 0, 0, 1, 0, 0, 0, 1); M33T m2(0, -1, 0, 1, 0, 0, 0, 0, 1); M33T m3(2, 0, 0, 0, 0, 1, 0, -1, 0); M33T m4( 4.683281e-01, 1.251189e-02, 0.000000e+00, -8.749647e-01, 1.456563e-01, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00); M33T m5( 4.683281e-01, 1.251189e-02, -8.834660e-01, -8.749647e-01, 1.456563e-01, -4.617587e-01, 1.229049e-01, 9.892561e-01, 7.916244e-02); TEST_MATRIX_INVERSE(m1, 0); TEST_MATRIX_INVERSE(m2, 0); TEST_MATRIX_INVERSE(m3, 0); TEST_MATRIX_INVERSE(m4, 20.0 * std::numeric_limits<TypeParam>::epsilon()); TEST_MATRIX_INVERSE(m5, 20.0 * std::numeric_limits<TypeParam>::epsilon()); } //------------------------------------------------------------------------------ TYPED_TEST(MatTestT, Inverse2) { typedef ::android::details::TMat22<TypeParam> M22T; M22T m1(1, 0, 0, 1); M22T m2(0, -1, 1, 0); M22T m3( 4.683281e-01, 1.251189e-02, -8.749647e-01, 1.456563e-01); M22T m4( 4.683281e-01, 1.251189e-02, -8.749647e-01, 1.456563e-01); TEST_MATRIX_INVERSE(m1, 0); TEST_MATRIX_INVERSE(m2, 0); TEST_MATRIX_INVERSE(m3, 20.0 * std::numeric_limits<TypeParam>::epsilon()); TEST_MATRIX_INVERSE(m4, 20.0 * std::numeric_limits<TypeParam>::epsilon()); } //------------------------------------------------------------------------------ // A macro to help with vector comparisons within floating point range. #define EXPECT_VEC_EQ(VEC1, VEC2) \ do { \ const decltype(VEC1) v1 = VEC1; \ const decltype(VEC2) v2 = VEC2; \ if (std::is_same<TypeParam,float>::value) { \ for (size_t i = 0; i < v1.size(); ++i) { \ EXPECT_FLOAT_EQ(v1[i], v2[i]); \ } \ } else if (std::is_same<TypeParam,float>::value) { \ for (size_t i = 0; i < v1.size(); ++i) { \ EXPECT_DOUBLE_EQ(v1[i], v2[i]); \ } \ } else { \ for (size_t i = 0; i < v1.size(); ++i) { \ EXPECT_EQ(v1[i], v2[i]); \ } \ } \ } while(0) //------------------------------------------------------------------------------ // A macro to help with type comparisons within floating point range. #define ASSERT_TYPE_EQ(T1, T2) \ do { \ const decltype(T1) t1 = T1; \ const decltype(T2) t2 = T2; \ if (std::is_same<TypeParam,float>::value) { \ ASSERT_FLOAT_EQ(t1, t2); \ } else if (std::is_same<TypeParam,float>::value) { \ ASSERT_DOUBLE_EQ(t1, t2); \ } else { \ ASSERT_EQ(t1, t2); \ } \ } while(0) //------------------------------------------------------------------------------ // Test some translation stuff. TYPED_TEST(MatTestT, Translation4) { typedef ::android::details::TMat44<TypeParam> M44T; typedef ::android::details::TVec4<TypeParam> V4T; V4T translateBy(-7.3, 1.1, 14.4, 0.0); V4T translation(translateBy[0], translateBy[1], translateBy[2], 1.0); M44T translation_matrix = M44T::translate(translation); V4T p1(9.9, 3.1, 41.1, 1.0); V4T p2(-18.0, 0.0, 1.77, 1.0); V4T p3(0, 0, 0, 1); V4T p4(-1000, -1000, 1000, 1.0); EXPECT_VEC_EQ(translation_matrix * p1, translateBy + p1); EXPECT_VEC_EQ(translation_matrix * p2, translateBy + p2); EXPECT_VEC_EQ(translation_matrix * p3, translateBy + p3); EXPECT_VEC_EQ(translation_matrix * p4, translateBy + p4); } //------------------------------------------------------------------------------ template <typename MATRIX> static void verifyOrthonormal(const MATRIX& A) { typedef typename MATRIX::value_type T; static constexpr T value_eps = T(100) * std::numeric_limits<T>::epsilon(); const MATRIX prod = A * transpose(A); for (size_t i = 0; i < MATRIX::NUM_COLS; ++i) { for (size_t j = 0; j < MATRIX::NUM_ROWS; ++j) { if (i == j) { ASSERT_NEAR(prod[i][j], T(1), value_eps); } else { ASSERT_NEAR(prod[i][j], T(0), value_eps); } } } } //------------------------------------------------------------------------------ // Test euler code. TYPED_TEST(MatTestT, EulerZYX_44) { typedef ::android::details::TMat44<TypeParam> M44T; std::default_random_engine generator(82828); std::uniform_real_distribution<float> distribution(-6.0 * 2.0*M_PI, 6.0 * 2.0*M_PI); auto rand_gen = std::bind(distribution, generator); for (size_t i = 0; i < 100; ++i) { M44T m = M44T::eulerZYX(rand_gen(), rand_gen(), rand_gen()); verifyOrthonormal(m); } M44T m = M44T::eulerZYX(1, 2, 3); verifyOrthonormal(m); } //------------------------------------------------------------------------------ // Test euler code. TYPED_TEST(MatTestT, EulerZYX_33) { typedef ::android::details::TMat33<TypeParam> M33T; std::default_random_engine generator(112233); std::uniform_real_distribution<float> distribution(-6.0 * 2.0*M_PI, 6.0 * 2.0*M_PI); auto rand_gen = std::bind(distribution, generator); for (size_t i = 0; i < 100; ++i) { M33T m = M33T::eulerZYX(rand_gen(), rand_gen(), rand_gen()); verifyOrthonormal(m); } M33T m = M33T::eulerZYX(1, 2, 3); verifyOrthonormal(m); } //------------------------------------------------------------------------------ // Test to quaternion with post translation. TYPED_TEST(MatTestT, ToQuaternionPostTranslation) { typedef ::android::details::TMat44<TypeParam> M44T; typedef ::android::details::TVec4<TypeParam> V4T; typedef ::android::details::TQuaternion<TypeParam> QuatT; std::default_random_engine generator(112233); std::uniform_real_distribution<float> distribution(-6.0 * 2.0*M_PI, 6.0 * 2.0*M_PI); auto rand_gen = std::bind(distribution, generator); for (size_t i = 0; i < 100; ++i) { M44T r = M44T::eulerZYX(rand_gen(), rand_gen(), rand_gen()); M44T t = M44T::translate(V4T(rand_gen(), rand_gen(), rand_gen(), 1)); QuatT qr = r.toQuaternion(); M44T tr = t * r; QuatT qtr = tr.toQuaternion(); ASSERT_TYPE_EQ(qr.x, qtr.x); ASSERT_TYPE_EQ(qr.y, qtr.y); ASSERT_TYPE_EQ(qr.z, qtr.z); ASSERT_TYPE_EQ(qr.w, qtr.w); } M44T r = M44T::eulerZYX(1, 2, 3); M44T t = M44T::translate(V4T(20, -15, 2, 1)); QuatT qr = r.toQuaternion(); M44T tr = t * r; QuatT qtr = tr.toQuaternion(); ASSERT_TYPE_EQ(qr.x, qtr.x); ASSERT_TYPE_EQ(qr.y, qtr.y); ASSERT_TYPE_EQ(qr.z, qtr.z); ASSERT_TYPE_EQ(qr.w, qtr.w); } //------------------------------------------------------------------------------ // Test to quaternion with post translation. TYPED_TEST(MatTestT, ToQuaternionPointTransformation33) { static constexpr TypeParam value_eps = TypeParam(1000) * std::numeric_limits<TypeParam>::epsilon(); typedef ::android::details::TMat33<TypeParam> M33T; typedef ::android::details::TVec3<TypeParam> V3T; typedef ::android::details::TQuaternion<TypeParam> QuatT; std::default_random_engine generator(112233); std::uniform_real_distribution<float> distribution(-100.0, 100.0); auto rand_gen = std::bind(distribution, generator); for (size_t i = 0; i < 100; ++i) { M33T r = M33T::eulerZYX(rand_gen(), rand_gen(), rand_gen()); QuatT qr = r.toQuaternion(); V3T p(rand_gen(), rand_gen(), rand_gen()); V3T pr = r * p; V3T pq = qr * p; ASSERT_NEAR(pr.x, pq.x, value_eps); ASSERT_NEAR(pr.y, pq.y, value_eps); ASSERT_NEAR(pr.z, pq.z, value_eps); } } //------------------------------------------------------------------------------ // Test to quaternion with post translation. TYPED_TEST(MatTestT, ToQuaternionPointTransformation44) { static constexpr TypeParam value_eps = TypeParam(1000) * std::numeric_limits<TypeParam>::epsilon(); typedef ::android::details::TMat44<TypeParam> M44T; typedef ::android::details::TVec4<TypeParam> V4T; typedef ::android::details::TVec3<TypeParam> V3T; typedef ::android::details::TQuaternion<TypeParam> QuatT; std::default_random_engine generator(992626); std::uniform_real_distribution<float> distribution(-100.0, 100.0); auto rand_gen = std::bind(distribution, generator); for (size_t i = 0; i < 100; ++i) { M44T r = M44T::eulerZYX(rand_gen(), rand_gen(), rand_gen()); QuatT qr = r.toQuaternion(); V3T p(rand_gen(), rand_gen(), rand_gen()); V4T pr = r * V4T(p.x, p.y, p.z, 1); pr.x /= pr.w; pr.y /= pr.w; pr.z /= pr.w; V3T pq = qr * p; ASSERT_NEAR(pr.x, pq.x, value_eps); ASSERT_NEAR(pr.y, pq.y, value_eps); ASSERT_NEAR(pr.z, pq.z, value_eps); } } #undef TEST_MATRIX_INVERSE }; // namespace android