/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <android-base/logging.h> #include <android-base/properties.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <linux/usb/ch9.h> #include <linux/usb/functionfs.h> #include <mutex> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/endian.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <vector> #include "AsyncIO.h" #include "MtpFfsHandle.h" #include "mtp.h" #define cpu_to_le16(x) htole16(x) #define cpu_to_le32(x) htole32(x) #define FUNCTIONFS_ENDPOINT_ALLOC _IOR('g', 231, __u32) namespace { constexpr char FFS_MTP_EP_IN[] = "/dev/usb-ffs/mtp/ep1"; constexpr char FFS_MTP_EP_OUT[] = "/dev/usb-ffs/mtp/ep2"; constexpr char FFS_MTP_EP_INTR[] = "/dev/usb-ffs/mtp/ep3"; constexpr int MAX_PACKET_SIZE_FS = 64; constexpr int MAX_PACKET_SIZE_HS = 512; constexpr int MAX_PACKET_SIZE_SS = 1024; // Must be divisible by all max packet size values constexpr int MAX_FILE_CHUNK_SIZE = 3145728; // Safe values since some devices cannot handle large DMAs // To get good performance, override these with // higher values per device using the properties // sys.usb.ffs.max_read and sys.usb.ffs.max_write constexpr int USB_FFS_MAX_WRITE = MTP_BUFFER_SIZE; constexpr int USB_FFS_MAX_READ = MTP_BUFFER_SIZE; static_assert(USB_FFS_MAX_WRITE > 0, "Max r/w values must be > 0!"); static_assert(USB_FFS_MAX_READ > 0, "Max r/w values must be > 0!"); constexpr unsigned int MAX_MTP_FILE_SIZE = 0xFFFFFFFF; constexpr size_t ENDPOINT_ALLOC_RETRIES = 10; struct func_desc { struct usb_interface_descriptor intf; struct usb_endpoint_descriptor_no_audio sink; struct usb_endpoint_descriptor_no_audio source; struct usb_endpoint_descriptor_no_audio intr; } __attribute__((packed)); struct ss_func_desc { struct usb_interface_descriptor intf; struct usb_endpoint_descriptor_no_audio sink; struct usb_ss_ep_comp_descriptor sink_comp; struct usb_endpoint_descriptor_no_audio source; struct usb_ss_ep_comp_descriptor source_comp; struct usb_endpoint_descriptor_no_audio intr; struct usb_ss_ep_comp_descriptor intr_comp; } __attribute__((packed)); struct desc_v1 { struct usb_functionfs_descs_head_v1 { __le32 magic; __le32 length; __le32 fs_count; __le32 hs_count; } __attribute__((packed)) header; struct func_desc fs_descs, hs_descs; } __attribute__((packed)); struct desc_v2 { struct usb_functionfs_descs_head_v2 header; // The rest of the structure depends on the flags in the header. __le32 fs_count; __le32 hs_count; __le32 ss_count; struct func_desc fs_descs, hs_descs; struct ss_func_desc ss_descs; } __attribute__((packed)); const struct usb_interface_descriptor mtp_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 3, .bInterfaceClass = USB_CLASS_STILL_IMAGE, .bInterfaceSubClass = 1, .bInterfaceProtocol = 1, .iInterface = 1, }; const struct usb_interface_descriptor ptp_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 3, .bInterfaceClass = USB_CLASS_STILL_IMAGE, .bInterfaceSubClass = 1, .bInterfaceProtocol = 1, }; const struct usb_endpoint_descriptor_no_audio fs_sink = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_FS, }; const struct usb_endpoint_descriptor_no_audio fs_source = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_FS, }; const struct usb_endpoint_descriptor_no_audio fs_intr = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 3 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = MAX_PACKET_SIZE_FS, .bInterval = 6, }; const struct usb_endpoint_descriptor_no_audio hs_sink = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_HS, }; const struct usb_endpoint_descriptor_no_audio hs_source = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_HS, }; const struct usb_endpoint_descriptor_no_audio hs_intr = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 3 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = MAX_PACKET_SIZE_HS, .bInterval = 6, }; const struct usb_endpoint_descriptor_no_audio ss_sink = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_SS, }; const struct usb_endpoint_descriptor_no_audio ss_source = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_SS, }; const struct usb_endpoint_descriptor_no_audio ss_intr = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 3 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = MAX_PACKET_SIZE_SS, .bInterval = 6, }; const struct usb_ss_ep_comp_descriptor ss_sink_comp = { .bLength = sizeof(ss_sink_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 6, }; const struct usb_ss_ep_comp_descriptor ss_source_comp = { .bLength = sizeof(ss_source_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 6, }; const struct usb_ss_ep_comp_descriptor ss_intr_comp = { .bLength = sizeof(ss_intr_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; const struct func_desc mtp_fs_descriptors = { .intf = mtp_interface_desc, .sink = fs_sink, .source = fs_source, .intr = fs_intr, }; const struct func_desc mtp_hs_descriptors = { .intf = mtp_interface_desc, .sink = hs_sink, .source = hs_source, .intr = hs_intr, }; const struct ss_func_desc mtp_ss_descriptors = { .intf = mtp_interface_desc, .sink = ss_sink, .sink_comp = ss_sink_comp, .source = ss_source, .source_comp = ss_source_comp, .intr = ss_intr, .intr_comp = ss_intr_comp, }; const struct func_desc ptp_fs_descriptors = { .intf = ptp_interface_desc, .sink = fs_sink, .source = fs_source, .intr = fs_intr, }; const struct func_desc ptp_hs_descriptors = { .intf = ptp_interface_desc, .sink = hs_sink, .source = hs_source, .intr = hs_intr, }; const struct ss_func_desc ptp_ss_descriptors = { .intf = ptp_interface_desc, .sink = ss_sink, .sink_comp = ss_sink_comp, .source = ss_source, .source_comp = ss_source_comp, .intr = ss_intr, .intr_comp = ss_intr_comp, }; #define STR_INTERFACE "MTP" const struct { struct usb_functionfs_strings_head header; struct { __le16 code; const char str1[sizeof(STR_INTERFACE)]; } __attribute__((packed)) lang0; } __attribute__((packed)) strings = { .header = { .magic = cpu_to_le32(FUNCTIONFS_STRINGS_MAGIC), .length = cpu_to_le32(sizeof(strings)), .str_count = cpu_to_le32(1), .lang_count = cpu_to_le32(1), }, .lang0 = { .code = cpu_to_le16(0x0409), .str1 = STR_INTERFACE, }, }; } // anonymous namespace namespace android { MtpFfsHandle::MtpFfsHandle() : mMaxWrite(USB_FFS_MAX_WRITE), mMaxRead(USB_FFS_MAX_READ) {} MtpFfsHandle::~MtpFfsHandle() {} void MtpFfsHandle::closeEndpoints() { mIntr.reset(); mBulkIn.reset(); mBulkOut.reset(); } bool MtpFfsHandle::initFunctionfs() { ssize_t ret; struct desc_v1 v1_descriptor; struct desc_v2 v2_descriptor; v2_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC_V2); v2_descriptor.header.length = cpu_to_le32(sizeof(v2_descriptor)); v2_descriptor.header.flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC | FUNCTIONFS_HAS_SS_DESC; v2_descriptor.fs_count = 4; v2_descriptor.hs_count = 4; v2_descriptor.ss_count = 7; v2_descriptor.fs_descs = mPtp ? ptp_fs_descriptors : mtp_fs_descriptors; v2_descriptor.hs_descs = mPtp ? ptp_hs_descriptors : mtp_hs_descriptors; v2_descriptor.ss_descs = mPtp ? ptp_ss_descriptors : mtp_ss_descriptors; if (mControl < 0) { // might have already done this before mControl.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP0, O_RDWR))); if (mControl < 0) { PLOG(ERROR) << FFS_MTP_EP0 << ": cannot open control endpoint"; goto err; } ret = TEMP_FAILURE_RETRY(::write(mControl, &v2_descriptor, sizeof(v2_descriptor))); if (ret < 0) { v1_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC); v1_descriptor.header.length = cpu_to_le32(sizeof(v1_descriptor)); v1_descriptor.header.fs_count = 4; v1_descriptor.header.hs_count = 4; v1_descriptor.fs_descs = mPtp ? ptp_fs_descriptors : mtp_fs_descriptors; v1_descriptor.hs_descs = mPtp ? ptp_hs_descriptors : mtp_hs_descriptors; PLOG(ERROR) << FFS_MTP_EP0 << "Switching to V1 descriptor format"; ret = TEMP_FAILURE_RETRY(::write(mControl, &v1_descriptor, sizeof(v1_descriptor))); if (ret < 0) { PLOG(ERROR) << FFS_MTP_EP0 << "Writing descriptors failed"; goto err; } } ret = TEMP_FAILURE_RETRY(::write(mControl, &strings, sizeof(strings))); if (ret < 0) { PLOG(ERROR) << FFS_MTP_EP0 << "Writing strings failed"; goto err; } } if (mBulkIn > -1 || mBulkOut > -1 || mIntr > -1) LOG(WARNING) << "Endpoints were not closed before configure!"; return true; err: closeConfig(); return false; } void MtpFfsHandle::closeConfig() { mControl.reset(); } int MtpFfsHandle::writeHandle(int fd, const void* data, int len) { LOG(VERBOSE) << "MTP about to write fd = " << fd << ", len=" << len; int ret = 0; const char* buf = static_cast<const char*>(data); while (len > 0) { int write_len = std::min(mMaxWrite, len); int n = TEMP_FAILURE_RETRY(::write(fd, buf, write_len)); if (n < 0) { PLOG(ERROR) << "write ERROR: fd = " << fd << ", n = " << n; return -1; } else if (n < write_len) { errno = EIO; PLOG(ERROR) << "less written than expected"; return -1; } buf += n; len -= n; ret += n; } return ret; } int MtpFfsHandle::readHandle(int fd, void* data, int len) { LOG(VERBOSE) << "MTP about to read fd = " << fd << ", len=" << len; int ret = 0; char* buf = static_cast<char*>(data); while (len > 0) { int read_len = std::min(mMaxRead, len); int n = TEMP_FAILURE_RETRY(::read(fd, buf, read_len)); if (n < 0) { PLOG(ERROR) << "read ERROR: fd = " << fd << ", n = " << n; return -1; } ret += n; if (n < read_len) // done reading early break; buf += n; len -= n; } return ret; } int MtpFfsHandle::spliceReadHandle(int fd, int pipe_out, int len) { LOG(VERBOSE) << "MTP about to splice read fd = " << fd << ", len=" << len; int ret = 0; loff_t dummyoff; while (len > 0) { int read_len = std::min(mMaxRead, len); dummyoff = 0; int n = TEMP_FAILURE_RETRY(splice(fd, &dummyoff, pipe_out, nullptr, read_len, 0)); if (n < 0) { PLOG(ERROR) << "splice read ERROR: fd = " << fd << ", n = " << n; return -1; } ret += n; if (n < read_len) // done reading early break; len -= n; } return ret; } int MtpFfsHandle::read(void* data, int len) { return readHandle(mBulkOut, data, len); } int MtpFfsHandle::write(const void* data, int len) { return writeHandle(mBulkIn, data, len); } int MtpFfsHandle::start() { mLock.lock(); mBulkIn.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP_IN, O_RDWR))); if (mBulkIn < 0) { PLOG(ERROR) << FFS_MTP_EP_IN << ": cannot open bulk in ep"; return -1; } mBulkOut.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP_OUT, O_RDWR))); if (mBulkOut < 0) { PLOG(ERROR) << FFS_MTP_EP_OUT << ": cannot open bulk out ep"; return -1; } mIntr.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP_INTR, O_RDWR))); if (mIntr < 0) { PLOG(ERROR) << FFS_MTP_EP0 << ": cannot open intr ep"; return -1; } mBuffer1.resize(MAX_FILE_CHUNK_SIZE); mBuffer2.resize(MAX_FILE_CHUNK_SIZE); posix_madvise(mBuffer1.data(), MAX_FILE_CHUNK_SIZE, POSIX_MADV_SEQUENTIAL | POSIX_MADV_WILLNEED); posix_madvise(mBuffer2.data(), MAX_FILE_CHUNK_SIZE, POSIX_MADV_SEQUENTIAL | POSIX_MADV_WILLNEED); // Get device specific r/w size mMaxWrite = android::base::GetIntProperty("sys.usb.ffs.max_write", USB_FFS_MAX_WRITE); mMaxRead = android::base::GetIntProperty("sys.usb.ffs.max_read", USB_FFS_MAX_READ); size_t attempts = 0; while (mMaxWrite >= USB_FFS_MAX_WRITE && mMaxRead >= USB_FFS_MAX_READ && attempts < ENDPOINT_ALLOC_RETRIES) { // If larger contiguous chunks of memory aren't available, attempt to try // smaller allocations. if (ioctl(mBulkIn, FUNCTIONFS_ENDPOINT_ALLOC, static_cast<__u32>(mMaxWrite)) || ioctl(mBulkOut, FUNCTIONFS_ENDPOINT_ALLOC, static_cast<__u32>(mMaxRead))) { if (errno == ENODEV) { // Driver hasn't enabled endpoints yet. std::this_thread::sleep_for(std::chrono::milliseconds(100)); attempts += 1; continue; } mMaxWrite /= 2; mMaxRead /=2; } else { return 0; } } // Try to start MtpServer anyway, with the smallest max r/w values PLOG(ERROR) << "Functionfs could not allocate any memory!"; return 0; } int MtpFfsHandle::configure(bool usePtp) { // Wait till previous server invocation has closed if (!mLock.try_lock_for(std::chrono::milliseconds(1000))) { LOG(ERROR) << "MtpServer was unable to get configure lock"; return -1; } int ret = 0; // If ptp is changed, the configuration must be rewritten if (mPtp != usePtp) { closeEndpoints(); closeConfig(); } mPtp = usePtp; if (!initFunctionfs()) { ret = -1; } mLock.unlock(); return ret; } void MtpFfsHandle::close() { closeEndpoints(); mLock.unlock(); } /* Read from USB and write to a local file. */ int MtpFfsHandle::receiveFile(mtp_file_range mfr, bool zero_packet) { // When receiving files, the incoming length is given in 32 bits. // A >4G file is given as 0xFFFFFFFF uint32_t file_length = mfr.length; uint64_t offset = mfr.offset; struct usb_endpoint_descriptor mBulkOut_desc; int packet_size; if (ioctl(mBulkOut, FUNCTIONFS_ENDPOINT_DESC, reinterpret_cast<unsigned long>(&mBulkOut_desc))) { PLOG(ERROR) << "Could not get FFS bulk-out descriptor"; packet_size = MAX_PACKET_SIZE_HS; } else { packet_size = mBulkOut_desc.wMaxPacketSize; } char *data = mBuffer1.data(); char *data2 = mBuffer2.data(); struct aiocb aio; aio.aio_fildes = mfr.fd; aio.aio_buf = nullptr; struct aiocb *aiol[] = {&aio}; int ret = -1; size_t length; bool read = false; bool write = false; posix_fadvise(mfr.fd, 0, 0, POSIX_FADV_SEQUENTIAL | POSIX_FADV_NOREUSE); // Break down the file into pieces that fit in buffers while (file_length > 0 || write) { if (file_length > 0) { length = std::min(static_cast<uint32_t>(MAX_FILE_CHUNK_SIZE), file_length); // Read data from USB, handle errors after waiting for write thread. ret = readHandle(mBulkOut, data, length); if (file_length != MAX_MTP_FILE_SIZE && ret < static_cast<int>(length)) { ret = -1; errno = EIO; } read = true; } if (write) { // get the return status of the last write request aio_suspend(aiol, 1, nullptr); int written = aio_return(&aio); if (written == -1) { errno = aio_error(&aio); return -1; } if (static_cast<size_t>(written) < aio.aio_nbytes) { errno = EIO; return -1; } write = false; } // If there was an error reading above if (ret == -1) { return -1; } if (read) { if (file_length == MAX_MTP_FILE_SIZE) { // For larger files, receive until a short packet is received. if (static_cast<size_t>(ret) < length) { file_length = 0; } } else { // Receive an empty packet if size is a multiple of the endpoint size. file_length -= ret; } // Enqueue a new write request aio.aio_buf = data; aio.aio_sink = mfr.fd; aio.aio_offset = offset; aio.aio_nbytes = ret; aio_write(&aio); offset += ret; std::swap(data, data2); write = true; read = false; } } if (ret % packet_size == 0 || zero_packet) { if (TEMP_FAILURE_RETRY(::read(mBulkOut, data, packet_size)) != 0) { return -1; } } return 0; } /* Read from a local file and send over USB. */ int MtpFfsHandle::sendFile(mtp_file_range mfr) { uint64_t file_length = mfr.length; uint32_t given_length = std::min(static_cast<uint64_t>(MAX_MTP_FILE_SIZE), file_length + sizeof(mtp_data_header)); uint64_t offset = mfr.offset; struct usb_endpoint_descriptor mBulkIn_desc; int packet_size; if (ioctl(mBulkIn, FUNCTIONFS_ENDPOINT_DESC, reinterpret_cast<unsigned long>(&mBulkIn_desc))) { PLOG(ERROR) << "Could not get FFS bulk-in descriptor"; packet_size = MAX_PACKET_SIZE_HS; } else { packet_size = mBulkIn_desc.wMaxPacketSize; } // If file_length is larger than a size_t, truncating would produce the wrong comparison. // Instead, promote the left side to 64 bits, then truncate the small result. int init_read_len = std::min( static_cast<uint64_t>(packet_size - sizeof(mtp_data_header)), file_length); char *data = mBuffer1.data(); char *data2 = mBuffer2.data(); posix_fadvise(mfr.fd, 0, 0, POSIX_FADV_SEQUENTIAL | POSIX_FADV_NOREUSE); struct aiocb aio; aio.aio_fildes = mfr.fd; struct aiocb *aiol[] = {&aio}; int ret, length; int error = 0; bool read = false; bool write = false; // Send the header data mtp_data_header *header = reinterpret_cast<mtp_data_header*>(data); header->length = __cpu_to_le32(given_length); header->type = __cpu_to_le16(2); /* data packet */ header->command = __cpu_to_le16(mfr.command); header->transaction_id = __cpu_to_le32(mfr.transaction_id); // Some hosts don't support header/data separation even though MTP allows it // Handle by filling first packet with initial file data if (TEMP_FAILURE_RETRY(pread(mfr.fd, reinterpret_cast<char*>(data) + sizeof(mtp_data_header), init_read_len, offset)) != init_read_len) return -1; if (writeHandle(mBulkIn, data, sizeof(mtp_data_header) + init_read_len) == -1) return -1; file_length -= init_read_len; offset += init_read_len; ret = init_read_len + sizeof(mtp_data_header); // Break down the file into pieces that fit in buffers while(file_length > 0) { if (read) { // Wait for the previous read to finish aio_suspend(aiol, 1, nullptr); ret = aio_return(&aio); if (ret == -1) { errno = aio_error(&aio); return -1; } if (static_cast<size_t>(ret) < aio.aio_nbytes) { errno = EIO; return -1; } file_length -= ret; offset += ret; std::swap(data, data2); read = false; write = true; } if (error == -1) { return -1; } if (file_length > 0) { length = std::min(static_cast<uint64_t>(MAX_FILE_CHUNK_SIZE), file_length); // Queue up another read aio.aio_buf = data; aio.aio_offset = offset; aio.aio_nbytes = length; aio_read(&aio); read = true; } if (write) { if (writeHandle(mBulkIn, data2, ret) == -1) { error = -1; } write = false; } } if (ret % packet_size == 0) { // If the last packet wasn't short, send a final empty packet if (TEMP_FAILURE_RETRY(::write(mBulkIn, data, 0)) != 0) { return -1; } } return 0; } int MtpFfsHandle::sendEvent(mtp_event me) { unsigned length = me.length; int ret = writeHandle(mIntr, me.data, length); return static_cast<unsigned>(ret) == length ? 0 : -1; } } // namespace android IMtpHandle *get_ffs_handle() { return new android::MtpFfsHandle(); }