// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // frame coding and analysis // // Author: Skal (pascal.massimino@gmail.com) #include <string.h> #include <math.h> #include "./cost_enc.h" #include "./vp8i_enc.h" #include "../dsp/dsp.h" #include "../webp/format_constants.h" // RIFF constants #define SEGMENT_VISU 0 #define DEBUG_SEARCH 0 // useful to track search convergence //------------------------------------------------------------------------------ // multi-pass convergence #define HEADER_SIZE_ESTIMATE (RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + \ VP8_FRAME_HEADER_SIZE) #define DQ_LIMIT 0.4 // convergence is considered reached if dq < DQ_LIMIT // we allow 2k of extra head-room in PARTITION0 limit. #define PARTITION0_SIZE_LIMIT ((VP8_MAX_PARTITION0_SIZE - 2048ULL) << 11) typedef struct { // struct for organizing convergence in either size or PSNR int is_first; float dq; float q, last_q; double value, last_value; // PSNR or size double target; int do_size_search; } PassStats; static int InitPassStats(const VP8Encoder* const enc, PassStats* const s) { const uint64_t target_size = (uint64_t)enc->config_->target_size; const int do_size_search = (target_size != 0); const float target_PSNR = enc->config_->target_PSNR; s->is_first = 1; s->dq = 10.f; s->q = s->last_q = enc->config_->quality; s->target = do_size_search ? (double)target_size : (target_PSNR > 0.) ? target_PSNR : 40.; // default, just in case s->value = s->last_value = 0.; s->do_size_search = do_size_search; return do_size_search; } static float Clamp(float v, float min, float max) { return (v < min) ? min : (v > max) ? max : v; } static float ComputeNextQ(PassStats* const s) { float dq; if (s->is_first) { dq = (s->value > s->target) ? -s->dq : s->dq; s->is_first = 0; } else if (s->value != s->last_value) { const double slope = (s->target - s->value) / (s->last_value - s->value); dq = (float)(slope * (s->last_q - s->q)); } else { dq = 0.; // we're done?! } // Limit variable to avoid large swings. s->dq = Clamp(dq, -30.f, 30.f); s->last_q = s->q; s->last_value = s->value; s->q = Clamp(s->q + s->dq, 0.f, 100.f); return s->q; } //------------------------------------------------------------------------------ // Tables for level coding const uint8_t VP8Cat3[] = { 173, 148, 140 }; const uint8_t VP8Cat4[] = { 176, 155, 140, 135 }; const uint8_t VP8Cat5[] = { 180, 157, 141, 134, 130 }; const uint8_t VP8Cat6[] = { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 }; //------------------------------------------------------------------------------ // Reset the statistics about: number of skips, token proba, level cost,... static void ResetStats(VP8Encoder* const enc) { VP8EncProba* const proba = &enc->proba_; VP8CalculateLevelCosts(proba); proba->nb_skip_ = 0; } //------------------------------------------------------------------------------ // Skip decision probability #define SKIP_PROBA_THRESHOLD 250 // value below which using skip_proba is OK. static int CalcSkipProba(uint64_t nb, uint64_t total) { return (int)(total ? (total - nb) * 255 / total : 255); } // Returns the bit-cost for coding the skip probability. static int FinalizeSkipProba(VP8Encoder* const enc) { VP8EncProba* const proba = &enc->proba_; const int nb_mbs = enc->mb_w_ * enc->mb_h_; const int nb_events = proba->nb_skip_; int size; proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs); proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD); size = 256; // 'use_skip_proba' bit if (proba->use_skip_proba_) { size += nb_events * VP8BitCost(1, proba->skip_proba_) + (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_); size += 8 * 256; // cost of signaling the skip_proba_ itself. } return size; } // Collect statistics and deduce probabilities for next coding pass. // Return the total bit-cost for coding the probability updates. static int CalcTokenProba(int nb, int total) { assert(nb <= total); return nb ? (255 - nb * 255 / total) : 255; } // Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability. static int BranchCost(int nb, int total, int proba) { return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba); } static void ResetTokenStats(VP8Encoder* const enc) { VP8EncProba* const proba = &enc->proba_; memset(proba->stats_, 0, sizeof(proba->stats_)); } static int FinalizeTokenProbas(VP8EncProba* const proba) { int has_changed = 0; int size = 0; int t, b, c, p; for (t = 0; t < NUM_TYPES; ++t) { for (b = 0; b < NUM_BANDS; ++b) { for (c = 0; c < NUM_CTX; ++c) { for (p = 0; p < NUM_PROBAS; ++p) { const proba_t stats = proba->stats_[t][b][c][p]; const int nb = (stats >> 0) & 0xffff; const int total = (stats >> 16) & 0xffff; const int update_proba = VP8CoeffsUpdateProba[t][b][c][p]; const int old_p = VP8CoeffsProba0[t][b][c][p]; const int new_p = CalcTokenProba(nb, total); const int old_cost = BranchCost(nb, total, old_p) + VP8BitCost(0, update_proba); const int new_cost = BranchCost(nb, total, new_p) + VP8BitCost(1, update_proba) + 8 * 256; const int use_new_p = (old_cost > new_cost); size += VP8BitCost(use_new_p, update_proba); if (use_new_p) { // only use proba that seem meaningful enough. proba->coeffs_[t][b][c][p] = new_p; has_changed |= (new_p != old_p); size += 8 * 256; } else { proba->coeffs_[t][b][c][p] = old_p; } } } } } proba->dirty_ = has_changed; return size; } //------------------------------------------------------------------------------ // Finalize Segment probability based on the coding tree static int GetProba(int a, int b) { const int total = a + b; return (total == 0) ? 255 // that's the default probability. : (255 * a + total / 2) / total; // rounded proba } static void ResetSegments(VP8Encoder* const enc) { int n; for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { enc->mb_info_[n].segment_ = 0; } } static void SetSegmentProbas(VP8Encoder* const enc) { int p[NUM_MB_SEGMENTS] = { 0 }; int n; for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { const VP8MBInfo* const mb = &enc->mb_info_[n]; p[mb->segment_]++; } if (enc->pic_->stats != NULL) { for (n = 0; n < NUM_MB_SEGMENTS; ++n) { enc->pic_->stats->segment_size[n] = p[n]; } } if (enc->segment_hdr_.num_segments_ > 1) { uint8_t* const probas = enc->proba_.segments_; probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); probas[1] = GetProba(p[0], p[1]); probas[2] = GetProba(p[2], p[3]); enc->segment_hdr_.update_map_ = (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); if (!enc->segment_hdr_.update_map_) ResetSegments(enc); enc->segment_hdr_.size_ = p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); } else { enc->segment_hdr_.update_map_ = 0; enc->segment_hdr_.size_ = 0; } } //------------------------------------------------------------------------------ // Coefficient coding static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) { int n = res->first; // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 const uint8_t* p = res->prob[n][ctx]; if (!VP8PutBit(bw, res->last >= 0, p[0])) { return 0; } while (n < 16) { const int c = res->coeffs[n++]; const int sign = c < 0; int v = sign ? -c : c; if (!VP8PutBit(bw, v != 0, p[1])) { p = res->prob[VP8EncBands[n]][0]; continue; } if (!VP8PutBit(bw, v > 1, p[2])) { p = res->prob[VP8EncBands[n]][1]; } else { if (!VP8PutBit(bw, v > 4, p[3])) { if (VP8PutBit(bw, v != 2, p[4])) { VP8PutBit(bw, v == 4, p[5]); } } else if (!VP8PutBit(bw, v > 10, p[6])) { if (!VP8PutBit(bw, v > 6, p[7])) { VP8PutBit(bw, v == 6, 159); } else { VP8PutBit(bw, v >= 9, 165); VP8PutBit(bw, !(v & 1), 145); } } else { int mask; const uint8_t* tab; if (v < 3 + (8 << 1)) { // VP8Cat3 (3b) VP8PutBit(bw, 0, p[8]); VP8PutBit(bw, 0, p[9]); v -= 3 + (8 << 0); mask = 1 << 2; tab = VP8Cat3; } else if (v < 3 + (8 << 2)) { // VP8Cat4 (4b) VP8PutBit(bw, 0, p[8]); VP8PutBit(bw, 1, p[9]); v -= 3 + (8 << 1); mask = 1 << 3; tab = VP8Cat4; } else if (v < 3 + (8 << 3)) { // VP8Cat5 (5b) VP8PutBit(bw, 1, p[8]); VP8PutBit(bw, 0, p[10]); v -= 3 + (8 << 2); mask = 1 << 4; tab = VP8Cat5; } else { // VP8Cat6 (11b) VP8PutBit(bw, 1, p[8]); VP8PutBit(bw, 1, p[10]); v -= 3 + (8 << 3); mask = 1 << 10; tab = VP8Cat6; } while (mask) { VP8PutBit(bw, !!(v & mask), *tab++); mask >>= 1; } } p = res->prob[VP8EncBands[n]][2]; } VP8PutBitUniform(bw, sign); if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) { return 1; // EOB } } return 1; } static void CodeResiduals(VP8BitWriter* const bw, VP8EncIterator* const it, const VP8ModeScore* const rd) { int x, y, ch; VP8Residual res; uint64_t pos1, pos2, pos3; const int i16 = (it->mb_->type_ == 1); const int segment = it->mb_->segment_; VP8Encoder* const enc = it->enc_; VP8IteratorNzToBytes(it); pos1 = VP8BitWriterPos(bw); if (i16) { VP8InitResidual(0, 1, enc, &res); VP8SetResidualCoeffs(rd->y_dc_levels, &res); it->top_nz_[8] = it->left_nz_[8] = PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res); VP8InitResidual(1, 0, enc, &res); } else { VP8InitResidual(0, 3, enc, &res); } // luma-AC for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res); } } pos2 = VP8BitWriterPos(bw); // U/V VP8InitResidual(0, 2, enc, &res); for (ch = 0; ch <= 2; ch += 2) { for (y = 0; y < 2; ++y) { for (x = 0; x < 2; ++x) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = PutCoeffs(bw, ctx, &res); } } } pos3 = VP8BitWriterPos(bw); it->luma_bits_ = pos2 - pos1; it->uv_bits_ = pos3 - pos2; it->bit_count_[segment][i16] += it->luma_bits_; it->bit_count_[segment][2] += it->uv_bits_; VP8IteratorBytesToNz(it); } // Same as CodeResiduals, but doesn't actually write anything. // Instead, it just records the event distribution. static void RecordResiduals(VP8EncIterator* const it, const VP8ModeScore* const rd) { int x, y, ch; VP8Residual res; VP8Encoder* const enc = it->enc_; VP8IteratorNzToBytes(it); if (it->mb_->type_ == 1) { // i16x16 VP8InitResidual(0, 1, enc, &res); VP8SetResidualCoeffs(rd->y_dc_levels, &res); it->top_nz_[8] = it->left_nz_[8] = VP8RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res); VP8InitResidual(1, 0, enc, &res); } else { VP8InitResidual(0, 3, enc, &res); } // luma-AC for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); it->top_nz_[x] = it->left_nz_[y] = VP8RecordCoeffs(ctx, &res); } } // U/V VP8InitResidual(0, 2, enc, &res); for (ch = 0; ch <= 2; ch += 2) { for (y = 0; y < 2; ++y) { for (x = 0; x < 2; ++x) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = VP8RecordCoeffs(ctx, &res); } } } VP8IteratorBytesToNz(it); } //------------------------------------------------------------------------------ // Token buffer #if !defined(DISABLE_TOKEN_BUFFER) static int RecordTokens(VP8EncIterator* const it, const VP8ModeScore* const rd, VP8TBuffer* const tokens) { int x, y, ch; VP8Residual res; VP8Encoder* const enc = it->enc_; VP8IteratorNzToBytes(it); if (it->mb_->type_ == 1) { // i16x16 const int ctx = it->top_nz_[8] + it->left_nz_[8]; VP8InitResidual(0, 1, enc, &res); VP8SetResidualCoeffs(rd->y_dc_levels, &res); it->top_nz_[8] = it->left_nz_[8] = VP8RecordCoeffTokens(ctx, &res, tokens); VP8InitResidual(1, 0, enc, &res); } else { VP8InitResidual(0, 3, enc, &res); } // luma-AC for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); it->top_nz_[x] = it->left_nz_[y] = VP8RecordCoeffTokens(ctx, &res, tokens); } } // U/V VP8InitResidual(0, 2, enc, &res); for (ch = 0; ch <= 2; ch += 2) { for (y = 0; y < 2; ++y) { for (x = 0; x < 2; ++x) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = VP8RecordCoeffTokens(ctx, &res, tokens); } } } VP8IteratorBytesToNz(it); return !tokens->error_; } #endif // !DISABLE_TOKEN_BUFFER //------------------------------------------------------------------------------ // ExtraInfo map / Debug function #if SEGMENT_VISU static void SetBlock(uint8_t* p, int value, int size) { int y; for (y = 0; y < size; ++y) { memset(p, value, size); p += BPS; } } #endif static void ResetSSE(VP8Encoder* const enc) { enc->sse_[0] = 0; enc->sse_[1] = 0; enc->sse_[2] = 0; // Note: enc->sse_[3] is managed by alpha.c enc->sse_count_ = 0; } static void StoreSSE(const VP8EncIterator* const it) { VP8Encoder* const enc = it->enc_; const uint8_t* const in = it->yuv_in_; const uint8_t* const out = it->yuv_out_; // Note: not totally accurate at boundary. And doesn't include in-loop filter. enc->sse_[0] += VP8SSE16x16(in + Y_OFF_ENC, out + Y_OFF_ENC); enc->sse_[1] += VP8SSE8x8(in + U_OFF_ENC, out + U_OFF_ENC); enc->sse_[2] += VP8SSE8x8(in + V_OFF_ENC, out + V_OFF_ENC); enc->sse_count_ += 16 * 16; } static void StoreSideInfo(const VP8EncIterator* const it) { VP8Encoder* const enc = it->enc_; const VP8MBInfo* const mb = it->mb_; WebPPicture* const pic = enc->pic_; if (pic->stats != NULL) { StoreSSE(it); enc->block_count_[0] += (mb->type_ == 0); enc->block_count_[1] += (mb->type_ == 1); enc->block_count_[2] += (mb->skip_ != 0); } if (pic->extra_info != NULL) { uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_]; switch (pic->extra_info_type) { case 1: *info = mb->type_; break; case 2: *info = mb->segment_; break; case 3: *info = enc->dqm_[mb->segment_].quant_; break; case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break; case 5: *info = mb->uv_mode_; break; case 6: { const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3); *info = (b > 255) ? 255 : b; break; } case 7: *info = mb->alpha_; break; default: *info = 0; break; } } #if SEGMENT_VISU // visualize segments and prediction modes SetBlock(it->yuv_out_ + Y_OFF_ENC, mb->segment_ * 64, 16); SetBlock(it->yuv_out_ + U_OFF_ENC, it->preds_[0] * 64, 8); SetBlock(it->yuv_out_ + V_OFF_ENC, mb->uv_mode_ * 64, 8); #endif } static double GetPSNR(uint64_t mse, uint64_t size) { return (mse > 0 && size > 0) ? 10. * log10(255. * 255. * size / mse) : 99; } //------------------------------------------------------------------------------ // StatLoop(): only collect statistics (number of skips, token usage, ...). // This is used for deciding optimal probabilities. It also modifies the // quantizer value if some target (size, PSNR) was specified. static void SetLoopParams(VP8Encoder* const enc, float q) { // Make sure the quality parameter is inside valid bounds q = Clamp(q, 0.f, 100.f); VP8SetSegmentParams(enc, q); // setup segment quantizations and filters SetSegmentProbas(enc); // compute segment probabilities ResetStats(enc); ResetSSE(enc); } static uint64_t OneStatPass(VP8Encoder* const enc, VP8RDLevel rd_opt, int nb_mbs, int percent_delta, PassStats* const s) { VP8EncIterator it; uint64_t size = 0; uint64_t size_p0 = 0; uint64_t distortion = 0; const uint64_t pixel_count = nb_mbs * 384; VP8IteratorInit(enc, &it); SetLoopParams(enc, s->q); do { VP8ModeScore info; VP8IteratorImport(&it, NULL); if (VP8Decimate(&it, &info, rd_opt)) { // Just record the number of skips and act like skip_proba is not used. enc->proba_.nb_skip_++; } RecordResiduals(&it, &info); size += info.R + info.H; size_p0 += info.H; distortion += info.D; if (percent_delta && !VP8IteratorProgress(&it, percent_delta)) { return 0; } VP8IteratorSaveBoundary(&it); } while (VP8IteratorNext(&it) && --nb_mbs > 0); size_p0 += enc->segment_hdr_.size_; if (s->do_size_search) { size += FinalizeSkipProba(enc); size += FinalizeTokenProbas(&enc->proba_); size = ((size + size_p0 + 1024) >> 11) + HEADER_SIZE_ESTIMATE; s->value = (double)size; } else { s->value = GetPSNR(distortion, pixel_count); } return size_p0; } static int StatLoop(VP8Encoder* const enc) { const int method = enc->method_; const int do_search = enc->do_search_; const int fast_probe = ((method == 0 || method == 3) && !do_search); int num_pass_left = enc->config_->pass; const int task_percent = 20; const int percent_per_pass = (task_percent + num_pass_left / 2) / num_pass_left; const int final_percent = enc->percent_ + task_percent; const VP8RDLevel rd_opt = (method >= 3 || do_search) ? RD_OPT_BASIC : RD_OPT_NONE; int nb_mbs = enc->mb_w_ * enc->mb_h_; PassStats stats; InitPassStats(enc, &stats); ResetTokenStats(enc); // Fast mode: quick analysis pass over few mbs. Better than nothing. if (fast_probe) { if (method == 3) { // we need more stats for method 3 to be reliable. nb_mbs = (nb_mbs > 200) ? nb_mbs >> 1 : 100; } else { nb_mbs = (nb_mbs > 200) ? nb_mbs >> 2 : 50; } } while (num_pass_left-- > 0) { const int is_last_pass = (fabs(stats.dq) <= DQ_LIMIT) || (num_pass_left == 0) || (enc->max_i4_header_bits_ == 0); const uint64_t size_p0 = OneStatPass(enc, rd_opt, nb_mbs, percent_per_pass, &stats); if (size_p0 == 0) return 0; #if (DEBUG_SEARCH > 0) printf("#%d value:%.1lf -> %.1lf q:%.2f -> %.2f\n", num_pass_left, stats.last_value, stats.value, stats.last_q, stats.q); #endif if (enc->max_i4_header_bits_ > 0 && size_p0 > PARTITION0_SIZE_LIMIT) { ++num_pass_left; enc->max_i4_header_bits_ >>= 1; // strengthen header bit limitation... continue; // ...and start over } if (is_last_pass) { break; } // If no target size: just do several pass without changing 'q' if (do_search) { ComputeNextQ(&stats); if (fabs(stats.dq) <= DQ_LIMIT) break; } } if (!do_search || !stats.do_size_search) { // Need to finalize probas now, since it wasn't done during the search. FinalizeSkipProba(enc); FinalizeTokenProbas(&enc->proba_); } VP8CalculateLevelCosts(&enc->proba_); // finalize costs return WebPReportProgress(enc->pic_, final_percent, &enc->percent_); } //------------------------------------------------------------------------------ // Main loops // static const int kAverageBytesPerMB[8] = { 50, 24, 16, 9, 7, 5, 3, 2 }; static int PreLoopInitialize(VP8Encoder* const enc) { int p; int ok = 1; const int average_bytes_per_MB = kAverageBytesPerMB[enc->base_quant_ >> 4]; const int bytes_per_parts = enc->mb_w_ * enc->mb_h_ * average_bytes_per_MB / enc->num_parts_; // Initialize the bit-writers for (p = 0; ok && p < enc->num_parts_; ++p) { ok = VP8BitWriterInit(enc->parts_ + p, bytes_per_parts); } if (!ok) { VP8EncFreeBitWriters(enc); // malloc error occurred WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY); } return ok; } static int PostLoopFinalize(VP8EncIterator* const it, int ok) { VP8Encoder* const enc = it->enc_; if (ok) { // Finalize the partitions, check for extra errors. int p; for (p = 0; p < enc->num_parts_; ++p) { VP8BitWriterFinish(enc->parts_ + p); ok &= !enc->parts_[p].error_; } } if (ok) { // All good. Finish up. if (enc->pic_->stats != NULL) { // finalize byte counters... int i, s; for (i = 0; i <= 2; ++i) { for (s = 0; s < NUM_MB_SEGMENTS; ++s) { enc->residual_bytes_[i][s] = (int)((it->bit_count_[s][i] + 7) >> 3); } } } VP8AdjustFilterStrength(it); // ...and store filter stats. } else { // Something bad happened -> need to do some memory cleanup. VP8EncFreeBitWriters(enc); } return ok; } //------------------------------------------------------------------------------ // VP8EncLoop(): does the final bitstream coding. static void ResetAfterSkip(VP8EncIterator* const it) { if (it->mb_->type_ == 1) { *it->nz_ = 0; // reset all predictors it->left_nz_[8] = 0; } else { *it->nz_ &= (1 << 24); // preserve the dc_nz bit } } int VP8EncLoop(VP8Encoder* const enc) { VP8EncIterator it; int ok = PreLoopInitialize(enc); if (!ok) return 0; StatLoop(enc); // stats-collection loop VP8IteratorInit(enc, &it); VP8InitFilter(&it); do { VP8ModeScore info; const int dont_use_skip = !enc->proba_.use_skip_proba_; const VP8RDLevel rd_opt = enc->rd_opt_level_; VP8IteratorImport(&it, NULL); // Warning! order is important: first call VP8Decimate() and // *then* decide how to code the skip decision if there's one. if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) { CodeResiduals(it.bw_, &it, &info); } else { // reset predictors after a skip ResetAfterSkip(&it); } StoreSideInfo(&it); VP8StoreFilterStats(&it); VP8IteratorExport(&it); ok = VP8IteratorProgress(&it, 20); VP8IteratorSaveBoundary(&it); } while (ok && VP8IteratorNext(&it)); return PostLoopFinalize(&it, ok); } //------------------------------------------------------------------------------ // Single pass using Token Buffer. #if !defined(DISABLE_TOKEN_BUFFER) #define MIN_COUNT 96 // minimum number of macroblocks before updating stats int VP8EncTokenLoop(VP8Encoder* const enc) { // Roughly refresh the proba eight times per pass int max_count = (enc->mb_w_ * enc->mb_h_) >> 3; int num_pass_left = enc->config_->pass; const int do_search = enc->do_search_; VP8EncIterator it; VP8EncProba* const proba = &enc->proba_; const VP8RDLevel rd_opt = enc->rd_opt_level_; const uint64_t pixel_count = enc->mb_w_ * enc->mb_h_ * 384; PassStats stats; int ok; InitPassStats(enc, &stats); ok = PreLoopInitialize(enc); if (!ok) return 0; if (max_count < MIN_COUNT) max_count = MIN_COUNT; assert(enc->num_parts_ == 1); assert(enc->use_tokens_); assert(proba->use_skip_proba_ == 0); assert(rd_opt >= RD_OPT_BASIC); // otherwise, token-buffer won't be useful assert(num_pass_left > 0); while (ok && num_pass_left-- > 0) { const int is_last_pass = (fabs(stats.dq) <= DQ_LIMIT) || (num_pass_left == 0) || (enc->max_i4_header_bits_ == 0); uint64_t size_p0 = 0; uint64_t distortion = 0; int cnt = max_count; VP8IteratorInit(enc, &it); SetLoopParams(enc, stats.q); if (is_last_pass) { ResetTokenStats(enc); VP8InitFilter(&it); // don't collect stats until last pass (too costly) } VP8TBufferClear(&enc->tokens_); do { VP8ModeScore info; VP8IteratorImport(&it, NULL); if (--cnt < 0) { FinalizeTokenProbas(proba); VP8CalculateLevelCosts(proba); // refresh cost tables for rd-opt cnt = max_count; } VP8Decimate(&it, &info, rd_opt); ok = RecordTokens(&it, &info, &enc->tokens_); if (!ok) { WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY); break; } size_p0 += info.H; distortion += info.D; if (is_last_pass) { StoreSideInfo(&it); VP8StoreFilterStats(&it); VP8IteratorExport(&it); ok = VP8IteratorProgress(&it, 20); } VP8IteratorSaveBoundary(&it); } while (ok && VP8IteratorNext(&it)); if (!ok) break; size_p0 += enc->segment_hdr_.size_; if (stats.do_size_search) { uint64_t size = FinalizeTokenProbas(&enc->proba_); size += VP8EstimateTokenSize(&enc->tokens_, (const uint8_t*)proba->coeffs_); size = (size + size_p0 + 1024) >> 11; // -> size in bytes size += HEADER_SIZE_ESTIMATE; stats.value = (double)size; } else { // compute and store PSNR stats.value = GetPSNR(distortion, pixel_count); } #if (DEBUG_SEARCH > 0) printf("#%2d metric:%.1lf -> %.1lf last_q=%.2lf q=%.2lf dq=%.2lf\n", num_pass_left, stats.last_value, stats.value, stats.last_q, stats.q, stats.dq); #endif if (enc->max_i4_header_bits_ > 0 && size_p0 > PARTITION0_SIZE_LIMIT) { ++num_pass_left; enc->max_i4_header_bits_ >>= 1; // strengthen header bit limitation... continue; // ...and start over } if (is_last_pass) { break; // done } if (do_search) { ComputeNextQ(&stats); // Adjust q } } if (ok) { if (!stats.do_size_search) { FinalizeTokenProbas(&enc->proba_); } ok = VP8EmitTokens(&enc->tokens_, enc->parts_ + 0, (const uint8_t*)proba->coeffs_, 1); } ok = ok && WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); return PostLoopFinalize(&it, ok); } #else int VP8EncTokenLoop(VP8Encoder* const enc) { (void)enc; return 0; // we shouldn't be here. } #endif // DISABLE_TOKEN_BUFFER //------------------------------------------------------------------------------