#define BZ_NO_STDIO /*-------------------------------------------------------------*/ /*--- Private header file for the library. ---*/ /*--- bzlib_private.h ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ #ifndef _BZLIB_PRIVATE_H #define _BZLIB_PRIVATE_H #include <stdlib.h> #ifndef BZ_NO_STDIO #include <stdio.h> #include <ctype.h> #include <string.h> #endif /*-------------------------------------------------------------*/ /*--- Public header file for the library. ---*/ /*--- bzlib.h ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ #ifndef _BZLIB_H #define _BZLIB_H #ifdef __cplusplus extern "C" { #endif #define BZ_RUN 0 #define BZ_FLUSH 1 #define BZ_FINISH 2 #define BZ_OK 0 #define BZ_RUN_OK 1 #define BZ_FLUSH_OK 2 #define BZ_FINISH_OK 3 #define BZ_STREAM_END 4 #define BZ_SEQUENCE_ERROR (-1) #define BZ_PARAM_ERROR (-2) #define BZ_MEM_ERROR (-3) #define BZ_DATA_ERROR (-4) #define BZ_DATA_ERROR_MAGIC (-5) #define BZ_IO_ERROR (-6) #define BZ_UNEXPECTED_EOF (-7) #define BZ_OUTBUFF_FULL (-8) #define BZ_CONFIG_ERROR (-9) typedef struct { char *next_in; unsigned int avail_in; unsigned int total_in_lo32; unsigned int total_in_hi32; char *next_out; unsigned int avail_out; unsigned int total_out_lo32; unsigned int total_out_hi32; void *state; void *(*bzalloc)(void *,int,int); void (*bzfree)(void *,void *); void *opaque; } bz_stream; #ifndef BZ_IMPORT #define BZ_EXPORT #endif #ifndef BZ_NO_STDIO /* Need a definitition for FILE */ #include <stdio.h> #endif #ifdef _WIN32 # include <windows.h> # ifdef small /* windows.h define small to char */ # undef small # endif # ifdef BZ_EXPORT # define BZ_API(func) WINAPI func # define BZ_EXTERN extern # else /* import windows dll dynamically */ # define BZ_API(func) (WINAPI * func) # define BZ_EXTERN # endif #else # define BZ_API(func) func # define BZ_EXTERN extern #endif /*-- Core (low-level) library functions --*/ BZ_EXTERN int BZ_API(BZ2_bzCompressInit) ( bz_stream* strm, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN int BZ_API(BZ2_bzCompress) ( bz_stream* strm, int action ); BZ_EXTERN int BZ_API(BZ2_bzCompressEnd) ( bz_stream* strm ); BZ_EXTERN int BZ_API(BZ2_bzDecompressInit) ( bz_stream *strm, int verbosity, int small ); BZ_EXTERN int BZ_API(BZ2_bzDecompress) ( bz_stream* strm ); BZ_EXTERN int BZ_API(BZ2_bzDecompressEnd) ( bz_stream *strm ); /*-- High(er) level library functions --*/ #ifndef BZ_NO_STDIO #define BZ_MAX_UNUSED 5000 typedef void BZFILE; BZ_EXTERN BZFILE* BZ_API(BZ2_bzReadOpen) ( int* bzerror, FILE* f, int verbosity, int small, void* unused, int nUnused ); BZ_EXTERN void BZ_API(BZ2_bzReadClose) ( int* bzerror, BZFILE* b ); BZ_EXTERN void BZ_API(BZ2_bzReadGetUnused) ( int* bzerror, BZFILE* b, void** unused, int* nUnused ); BZ_EXTERN int BZ_API(BZ2_bzRead) ( int* bzerror, BZFILE* b, void* buf, int len ); BZ_EXTERN BZFILE* BZ_API(BZ2_bzWriteOpen) ( int* bzerror, FILE* f, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN void BZ_API(BZ2_bzWrite) ( int* bzerror, BZFILE* b, void* buf, int len ); BZ_EXTERN void BZ_API(BZ2_bzWriteClose) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in, unsigned int* nbytes_out ); BZ_EXTERN void BZ_API(BZ2_bzWriteClose64) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in_lo32, unsigned int* nbytes_in_hi32, unsigned int* nbytes_out_lo32, unsigned int* nbytes_out_hi32 ); #endif /*-- Utility functions --*/ BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffCompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffDecompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int small, int verbosity ); /*-- Code contributed by Yoshioka Tsuneo (QWF00133@niftyserve.or.jp/tsuneo-y@is.aist-nara.ac.jp), to support better zlib compatibility. This code is not _officially_ part of libbzip2 (yet); I haven't tested it, documented it, or considered the threading-safeness of it. If this code breaks, please contact both Yoshioka and me. --*/ BZ_EXTERN const char * BZ_API(BZ2_bzlibVersion) ( void ); #ifndef BZ_NO_STDIO BZ_EXTERN BZFILE * BZ_API(BZ2_bzopen) ( const char *path, const char *mode ); BZ_EXTERN BZFILE * BZ_API(BZ2_bzdopen) ( int fd, const char *mode ); BZ_EXTERN int BZ_API(BZ2_bzread) ( BZFILE* b, void* buf, int len ); BZ_EXTERN int BZ_API(BZ2_bzwrite) ( BZFILE* b, void* buf, int len ); BZ_EXTERN int BZ_API(BZ2_bzflush) ( BZFILE* b ); BZ_EXTERN void BZ_API(BZ2_bzclose) ( BZFILE* b ); BZ_EXTERN const char * BZ_API(BZ2_bzerror) ( BZFILE *b, int *errnum ); #endif #ifdef __cplusplus } #endif #endif /*-------------------------------------------------------------*/ /*--- end bzlib.h ---*/ /*-------------------------------------------------------------*/ /*-- General stuff. --*/ #define BZ_VERSION "1.0.3, 17-Oct-2004" typedef char Char; typedef unsigned char Bool; typedef unsigned char UChar; typedef int Int32; typedef unsigned int UInt32; typedef short Int16; typedef unsigned short UInt16; #define True ((Bool)1) #define False ((Bool)0) #ifndef __GNUC__ #define __inline__ /* */ #endif #ifndef BZ_NO_STDIO extern void BZ2_bz__AssertH__fail ( int errcode ); #define AssertH(cond,errcode) \ { if (!(cond)) BZ2_bz__AssertH__fail ( errcode ); } #if BZ_DEBUG #define AssertD(cond,msg) \ { if (!(cond)) { \ fprintf ( stderr, \ "\n\nlibbzip2(debug build): internal error\n\t%s\n", msg );\ exit(1); \ }} #else #define AssertD(cond,msg) /* */ #endif #define VPrintf0(zf) \ fprintf(stderr,zf) #define VPrintf1(zf,za1) \ fprintf(stderr,zf,za1) #define VPrintf2(zf,za1,za2) \ fprintf(stderr,zf,za1,za2) #define VPrintf3(zf,za1,za2,za3) \ fprintf(stderr,zf,za1,za2,za3) #define VPrintf4(zf,za1,za2,za3,za4) \ fprintf(stderr,zf,za1,za2,za3,za4) #define VPrintf5(zf,za1,za2,za3,za4,za5) \ fprintf(stderr,zf,za1,za2,za3,za4,za5) #else extern void bz_internal_error ( int errcode ); #define AssertH(cond,errcode) \ { if (!(cond)) bz_internal_error ( errcode ); } #define AssertD(cond,msg) /* */ #define VPrintf0(zf) \ vexxx_printf(zf) #define VPrintf1(zf,za1) \ vexxx_printf(zf,za1) #define VPrintf2(zf,za1,za2) \ vexxx_printf(zf,za1,za2) #define VPrintf3(zf,za1,za2,za3) \ vexxx_printf(zf,za1,za2,za3) #define VPrintf4(zf,za1,za2,za3,za4) \ vexxx_printf(zf,za1,za2,za3,za4) #define VPrintf5(zf,za1,za2,za3,za4,za5) \ vexxx_printf(zf,za1,za2,za3,za4,za5) #endif #define BZALLOC(nnn) (strm->bzalloc)(strm->opaque,(nnn),1) #define BZFREE(ppp) (strm->bzfree)(strm->opaque,(ppp)) /*-- Header bytes. --*/ #define BZ_HDR_B 0x42 /* 'B' */ #define BZ_HDR_Z 0x5a /* 'Z' */ #define BZ_HDR_h 0x68 /* 'h' */ #define BZ_HDR_0 0x30 /* '0' */ /*-- Constants for the back end. --*/ #define BZ_MAX_ALPHA_SIZE 258 #define BZ_MAX_CODE_LEN 23 #define BZ_RUNA 0 #define BZ_RUNB 1 #define BZ_N_GROUPS 6 #define BZ_G_SIZE 50 #define BZ_N_ITERS 4 #define BZ_MAX_SELECTORS (2 + (900000 / BZ_G_SIZE)) /*-- Stuff for randomising repetitive blocks. --*/ extern Int32 BZ2_rNums[512]; #define BZ_RAND_DECLS \ Int32 rNToGo; \ Int32 rTPos \ #define BZ_RAND_INIT_MASK \ s->rNToGo = 0; \ s->rTPos = 0 \ #define BZ_RAND_MASK ((s->rNToGo == 1) ? 1 : 0) #define BZ_RAND_UPD_MASK \ if (s->rNToGo == 0) { \ s->rNToGo = BZ2_rNums[s->rTPos]; \ s->rTPos++; \ if (s->rTPos == 512) s->rTPos = 0; \ } \ s->rNToGo--; /*-- Stuff for doing CRCs. --*/ extern UInt32 BZ2_crc32Table[256]; #define BZ_INITIALISE_CRC(crcVar) \ { \ crcVar = 0xffffffffL; \ } #define BZ_FINALISE_CRC(crcVar) \ { \ crcVar = ~(crcVar); \ } #define BZ_UPDATE_CRC(crcVar,cha) \ { \ crcVar = (crcVar << 8) ^ \ BZ2_crc32Table[(crcVar >> 24) ^ \ ((UChar)cha)]; \ } /*-- States and modes for compression. --*/ #define BZ_M_IDLE 1 #define BZ_M_RUNNING 2 #define BZ_M_FLUSHING 3 #define BZ_M_FINISHING 4 #define BZ_S_OUTPUT 1 #define BZ_S_INPUT 2 #define BZ_N_RADIX 2 #define BZ_N_QSORT 12 #define BZ_N_SHELL 18 #define BZ_N_OVERSHOOT (BZ_N_RADIX + BZ_N_QSORT + BZ_N_SHELL + 2) /*-- Structure holding all the compression-side stuff. --*/ typedef struct { /* pointer back to the struct bz_stream */ bz_stream* strm; /* mode this stream is in, and whether inputting */ /* or outputting data */ Int32 mode; Int32 state; /* remembers avail_in when flush/finish requested */ UInt32 avail_in_expect; /* for doing the block sorting */ UInt32* arr1; UInt32* arr2; UInt32* ftab; Int32 origPtr; /* aliases for arr1 and arr2 */ UInt32* ptr; UChar* block; UInt16* mtfv; UChar* zbits; /* for deciding when to use the fallback sorting algorithm */ Int32 workFactor; /* run-length-encoding of the input */ UInt32 state_in_ch; Int32 state_in_len; BZ_RAND_DECLS; /* input and output limits and current posns */ Int32 nblock; Int32 nblockMAX; Int32 numZ; Int32 state_out_pos; /* map of bytes used in block */ Int32 nInUse; Bool inUse[256]; UChar unseqToSeq[256]; /* the buffer for bit stream creation */ UInt32 bsBuff; Int32 bsLive; /* block and combined CRCs */ UInt32 blockCRC; UInt32 combinedCRC; /* misc administratium */ Int32 verbosity; Int32 blockNo; Int32 blockSize100k; /* stuff for coding the MTF values */ Int32 nMTF; Int32 mtfFreq [BZ_MAX_ALPHA_SIZE]; UChar selector [BZ_MAX_SELECTORS]; UChar selectorMtf[BZ_MAX_SELECTORS]; UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 code [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 rfreq [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; /* second dimension: only 3 needed; 4 makes index calculations faster */ UInt32 len_pack[BZ_MAX_ALPHA_SIZE][4]; } EState; /*-- externs for compression. --*/ extern void BZ2_blockSort ( EState* ); extern void BZ2_compressBlock ( EState*, Bool ); extern void BZ2_bsInitWrite ( EState* ); extern void BZ2_hbAssignCodes ( Int32*, UChar*, Int32, Int32, Int32 ); extern void BZ2_hbMakeCodeLengths ( UChar*, Int32*, Int32, Int32 ); /*-- states for decompression. --*/ #define BZ_X_IDLE 1 #define BZ_X_OUTPUT 2 #define BZ_X_MAGIC_1 10 #define BZ_X_MAGIC_2 11 #define BZ_X_MAGIC_3 12 #define BZ_X_MAGIC_4 13 #define BZ_X_BLKHDR_1 14 #define BZ_X_BLKHDR_2 15 #define BZ_X_BLKHDR_3 16 #define BZ_X_BLKHDR_4 17 #define BZ_X_BLKHDR_5 18 #define BZ_X_BLKHDR_6 19 #define BZ_X_BCRC_1 20 #define BZ_X_BCRC_2 21 #define BZ_X_BCRC_3 22 #define BZ_X_BCRC_4 23 #define BZ_X_RANDBIT 24 #define BZ_X_ORIGPTR_1 25 #define BZ_X_ORIGPTR_2 26 #define BZ_X_ORIGPTR_3 27 #define BZ_X_MAPPING_1 28 #define BZ_X_MAPPING_2 29 #define BZ_X_SELECTOR_1 30 #define BZ_X_SELECTOR_2 31 #define BZ_X_SELECTOR_3 32 #define BZ_X_CODING_1 33 #define BZ_X_CODING_2 34 #define BZ_X_CODING_3 35 #define BZ_X_MTF_1 36 #define BZ_X_MTF_2 37 #define BZ_X_MTF_3 38 #define BZ_X_MTF_4 39 #define BZ_X_MTF_5 40 #define BZ_X_MTF_6 41 #define BZ_X_ENDHDR_2 42 #define BZ_X_ENDHDR_3 43 #define BZ_X_ENDHDR_4 44 #define BZ_X_ENDHDR_5 45 #define BZ_X_ENDHDR_6 46 #define BZ_X_CCRC_1 47 #define BZ_X_CCRC_2 48 #define BZ_X_CCRC_3 49 #define BZ_X_CCRC_4 50 /*-- Constants for the fast MTF decoder. --*/ #define MTFA_SIZE 4096 #define MTFL_SIZE 16 /*-- Structure holding all the decompression-side stuff. --*/ typedef struct { /* pointer back to the struct bz_stream */ bz_stream* strm; /* state indicator for this stream */ Int32 state; /* for doing the final run-length decoding */ UChar state_out_ch; Int32 state_out_len; Bool blockRandomised; BZ_RAND_DECLS; /* the buffer for bit stream reading */ UInt32 bsBuff; Int32 bsLive; /* misc administratium */ Int32 blockSize100k; Bool smallDecompress; Int32 currBlockNo; Int32 verbosity; /* for undoing the Burrows-Wheeler transform */ Int32 origPtr; UInt32 tPos; Int32 k0; Int32 unzftab[256]; Int32 nblock_used; Int32 cftab[257]; Int32 cftabCopy[257]; /* for undoing the Burrows-Wheeler transform (FAST) */ UInt32 *tt; /* for undoing the Burrows-Wheeler transform (SMALL) */ UInt16 *ll16; UChar *ll4; /* stored and calculated CRCs */ UInt32 storedBlockCRC; UInt32 storedCombinedCRC; UInt32 calculatedBlockCRC; UInt32 calculatedCombinedCRC; /* map of bytes used in block */ Int32 nInUse; Bool inUse[256]; Bool inUse16[16]; UChar seqToUnseq[256]; /* for decoding the MTF values */ UChar mtfa [MTFA_SIZE]; Int32 mtfbase[256 / MTFL_SIZE]; UChar selector [BZ_MAX_SELECTORS]; UChar selectorMtf[BZ_MAX_SELECTORS]; UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 limit [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 base [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 perm [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 minLens[BZ_N_GROUPS]; /* save area for scalars in the main decompress code */ Int32 save_i; Int32 save_j; Int32 save_t; Int32 save_alphaSize; Int32 save_nGroups; Int32 save_nSelectors; Int32 save_EOB; Int32 save_groupNo; Int32 save_groupPos; Int32 save_nextSym; Int32 save_nblockMAX; Int32 save_nblock; Int32 save_es; Int32 save_N; Int32 save_curr; Int32 save_zt; Int32 save_zn; Int32 save_zvec; Int32 save_zj; Int32 save_gSel; Int32 save_gMinlen; Int32* save_gLimit; Int32* save_gBase; Int32* save_gPerm; } DState; /*-- Macros for decompression. --*/ #define BZ_GET_FAST(cccc) \ s->tPos = s->tt[s->tPos]; \ cccc = (UChar)(s->tPos & 0xff); \ s->tPos >>= 8; #define BZ_GET_FAST_C(cccc) \ c_tPos = c_tt[c_tPos]; \ cccc = (UChar)(c_tPos & 0xff); \ c_tPos >>= 8; #define SET_LL4(i,n) \ { if (((i) & 0x1) == 0) \ s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0xf0) | (n); else \ s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0x0f) | ((n) << 4); \ } #define GET_LL4(i) \ ((((UInt32)(s->ll4[(i) >> 1])) >> (((i) << 2) & 0x4)) & 0xF) #define SET_LL(i,n) \ { s->ll16[i] = (UInt16)(n & 0x0000ffff); \ SET_LL4(i, n >> 16); \ } #define GET_LL(i) \ (((UInt32)s->ll16[i]) | (GET_LL4(i) << 16)) #define BZ_GET_SMALL(cccc) \ cccc = BZ2_indexIntoF ( s->tPos, s->cftab ); \ s->tPos = GET_LL(s->tPos); /*-- externs for decompression. --*/ extern Int32 BZ2_indexIntoF ( Int32, Int32* ); extern Int32 BZ2_decompress ( DState* ); extern void BZ2_hbCreateDecodeTables ( Int32*, Int32*, Int32*, UChar*, Int32, Int32, Int32 ); #endif /*-- BZ_NO_STDIO seems to make NULL disappear on some platforms. --*/ #ifdef BZ_NO_STDIO #ifndef NULL #define NULL 0 #endif #endif /*-------------------------------------------------------------*/ /*--- end bzlib_private.h ---*/ /*-------------------------------------------------------------*/ /* Something which has the same size as void* on the host. That is, it is 32 bits on a 32-bit host and 64 bits on a 64-bit host, and so it can safely be coerced to and from a pointer type on the host machine. */ typedef unsigned long HWord; typedef char HChar; typedef signed int Int; typedef unsigned int UInt; typedef signed long long int Long; typedef unsigned long long int ULong; ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// //#include "/home/sewardj/VEX/trunk/pub/libvex_basictypes.h" static HWord (*serviceFn)(HWord,HWord) = 0; static char* my_strcpy ( char* dest, const char* src ) { char* dest_orig = dest; while (*src) *dest++ = *src++; *dest = 0; return dest_orig; } static void* my_memcpy ( void *dest, const void *src, int sz ) { const char *s = (const char *)src; char *d = (char *)dest; while (sz--) *d++ = *s++; return dest; } static void* my_memmove( void *dst, const void *src, unsigned int len ) { register char *d; register char *s; if ( dst > src ) { d = (char *)dst + len - 1; s = (char *)src + len - 1; while ( len >= 4 ) { *d-- = *s--; *d-- = *s--; *d-- = *s--; *d-- = *s--; len -= 4; } while ( len-- ) { *d-- = *s--; } } else if ( dst < src ) { d = (char *)dst; s = (char *)src; while ( len >= 4 ) { *d++ = *s++; *d++ = *s++; *d++ = *s++; *d++ = *s++; len -= 4; } while ( len-- ) { *d++ = *s++; } } return dst; } char* my_strcat ( char* dest, const char* src ) { char* dest_orig = dest; while (*dest) dest++; while (*src) *dest++ = *src++; *dest = 0; return dest_orig; } ///////////////////////////////////////////////////////////////////// static void vexxx_log_bytes ( char* p, int n ) { int i; for (i = 0; i < n; i++) (*serviceFn)( 1, (int)p[i] ); } /*---------------------------------------------------------*/ /*--- vexxx_printf ---*/ /*---------------------------------------------------------*/ /* This should be the only <...> include in the entire VEX library. New code for vexxx_util.c should go above this point. */ #include <stdarg.h> static HChar vexxx_toupper ( HChar c ) { if (c >= 'a' && c <= 'z') return c + ('A' - 'a'); else return c; } static Int vexxx_strlen ( const HChar* str ) { Int i = 0; while (str[i] != 0) i++; return i; } Bool vexxx_streq ( const HChar* s1, const HChar* s2 ) { while (True) { if (*s1 == 0 && *s2 == 0) return True; if (*s1 != *s2) return False; s1++; s2++; } } /* Some flags. */ #define VG_MSG_SIGNED 1 /* The value is signed. */ #define VG_MSG_ZJUSTIFY 2 /* Must justify with '0'. */ #define VG_MSG_LJUSTIFY 4 /* Must justify on the left. */ #define VG_MSG_PAREN 8 /* Parenthesize if present (for %y) */ #define VG_MSG_COMMA 16 /* Add commas to numbers (for %d, %u) */ /* Copy a string into the buffer. */ static UInt myvprintf_str ( void(*send)(HChar), Int flags, Int width, HChar* str, Bool capitalise ) { # define MAYBE_TOUPPER(ch) (capitalise ? vexxx_toupper(ch) : (ch)) UInt ret = 0; Int i, extra; Int len = vexxx_strlen(str); if (width == 0) { ret += len; for (i = 0; i < len; i++) send(MAYBE_TOUPPER(str[i])); return ret; } if (len > width) { ret += width; for (i = 0; i < width; i++) send(MAYBE_TOUPPER(str[i])); return ret; } extra = width - len; if (flags & VG_MSG_LJUSTIFY) { ret += extra; for (i = 0; i < extra; i++) send(' '); } ret += len; for (i = 0; i < len; i++) send(MAYBE_TOUPPER(str[i])); if (!(flags & VG_MSG_LJUSTIFY)) { ret += extra; for (i = 0; i < extra; i++) send(' '); } # undef MAYBE_TOUPPER return ret; } /* Write P into the buffer according to these args: * If SIGN is true, p is a signed. * BASE is the base. * If WITH_ZERO is true, '0' must be added. * WIDTH is the width of the field. */ static UInt myvprintf_int64 ( void(*send)(HChar), Int flags, Int base, Int width, ULong pL) { HChar buf[40]; Int ind = 0; Int i, nc = 0; Bool neg = False; HChar *digits = "0123456789ABCDEF"; UInt ret = 0; UInt p = (UInt)pL; if (base < 2 || base > 16) return ret; if ((flags & VG_MSG_SIGNED) && (Int)p < 0) { p = - (Int)p; neg = True; } if (p == 0) buf[ind++] = '0'; else { while (p > 0) { if ((flags & VG_MSG_COMMA) && 10 == base && 0 == (ind-nc) % 3 && 0 != ind) { buf[ind++] = ','; nc++; } buf[ind++] = digits[p % base]; p /= base; } } if (neg) buf[ind++] = '-'; if (width > 0 && !(flags & VG_MSG_LJUSTIFY)) { for(; ind < width; ind++) { //vassert(ind < 39); buf[ind] = ((flags & VG_MSG_ZJUSTIFY) ? '0': ' '); } } /* Reverse copy to buffer. */ ret += ind; for (i = ind -1; i >= 0; i--) { send(buf[i]); } if (width > 0 && (flags & VG_MSG_LJUSTIFY)) { for(; ind < width; ind++) { ret++; send(' '); // Never pad with zeroes on RHS -- changes the value! } } return ret; } /* A simple vprintf(). */ static UInt vprintf_wrk ( void(*send)(HChar), const HChar *format, va_list vargs ) { UInt ret = 0; int i; int flags; int width; Bool is_long; /* We assume that vargs has already been initialised by the caller, using va_start, and that the caller will similarly clean up with va_end. */ for (i = 0; format[i] != 0; i++) { if (format[i] != '%') { send(format[i]); ret++; continue; } i++; /* A '%' has been found. Ignore a trailing %. */ if (format[i] == 0) break; if (format[i] == '%') { /* `%%' is replaced by `%'. */ send('%'); ret++; continue; } flags = 0; is_long = False; width = 0; /* length of the field. */ if (format[i] == '(') { flags |= VG_MSG_PAREN; i++; } /* If ',' follows '%', commas will be inserted. */ if (format[i] == ',') { flags |= VG_MSG_COMMA; i++; } /* If '-' follows '%', justify on the left. */ if (format[i] == '-') { flags |= VG_MSG_LJUSTIFY; i++; } /* If '0' follows '%', pads will be inserted. */ if (format[i] == '0') { flags |= VG_MSG_ZJUSTIFY; i++; } /* Compute the field length. */ while (format[i] >= '0' && format[i] <= '9') { width *= 10; width += format[i++] - '0'; } while (format[i] == 'l') { i++; is_long = True; } switch (format[i]) { case 'd': /* %d */ flags |= VG_MSG_SIGNED; if (is_long) ret += myvprintf_int64(send, flags, 10, width, (ULong)(va_arg (vargs, Long))); else ret += myvprintf_int64(send, flags, 10, width, (ULong)(va_arg (vargs, Int))); break; case 'u': /* %u */ if (is_long) ret += myvprintf_int64(send, flags, 10, width, (ULong)(va_arg (vargs, ULong))); else ret += myvprintf_int64(send, flags, 10, width, (ULong)(va_arg (vargs, UInt))); break; case 'p': /* %p */ ret += 2; send('0'); send('x'); ret += myvprintf_int64(send, flags, 16, width, (ULong)((HWord)va_arg (vargs, void *))); break; case 'x': /* %x */ if (is_long) ret += myvprintf_int64(send, flags, 16, width, (ULong)(va_arg (vargs, ULong))); else ret += myvprintf_int64(send, flags, 16, width, (ULong)(va_arg (vargs, UInt))); break; case 'c': /* %c */ ret++; send((va_arg (vargs, int))); break; case 's': case 'S': { /* %s */ char *str = va_arg (vargs, char *); if (str == (char*) 0) str = "(null)"; ret += myvprintf_str(send, flags, width, str, (format[i]=='S')); break; } # if 0 case 'y': { /* %y - print symbol */ Addr a = va_arg(vargs, Addr); HChar *name; if (VG_(get_fnname_w_offset)(a, &name)) { HChar buf[1 + VG_strlen(name) + 1 + 1]; if (flags & VG_MSG_PAREN) { VG_(sprintf)(str, "(%s)", name): } else { VG_(sprintf)(str, "%s", name): } ret += myvprintf_str(send, flags, width, buf, 0); } break; } # endif default: break; } } return ret; } /* A general replacement for printf(). Note that only low-level debugging info should be sent via here. The official route is to to use vg_message(). This interface is deprecated. */ static HChar myprintf_buf[1000]; static Int n_myprintf_buf; static void add_to_myprintf_buf ( HChar c ) { if (c == '\n' || n_myprintf_buf >= 1000-10 /*paranoia*/ ) { (*vexxx_log_bytes)( myprintf_buf, vexxx_strlen(myprintf_buf) ); n_myprintf_buf = 0; myprintf_buf[n_myprintf_buf] = 0; } myprintf_buf[n_myprintf_buf++] = c; myprintf_buf[n_myprintf_buf] = 0; } static UInt vexxx_printf ( const char *format, ... ) { UInt ret; va_list vargs; va_start(vargs,format); n_myprintf_buf = 0; myprintf_buf[n_myprintf_buf] = 0; ret = vprintf_wrk ( add_to_myprintf_buf, format, vargs ); if (n_myprintf_buf > 0) { (*vexxx_log_bytes)( myprintf_buf, n_myprintf_buf ); } va_end(vargs); return ret; } /*---------------------------------------------------------------*/ /*--- end vexxx_util.c ---*/ /*---------------------------------------------------------------*/ ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// /*-------------------------------------------------------------*/ /*--- Decompression machinery ---*/ /*--- decompress.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ /*---------------------------------------------------*/ static void makeMaps_d ( DState* s ) { Int32 i; s->nInUse = 0; for (i = 0; i < 256; i++) if (s->inUse[i]) { s->seqToUnseq[s->nInUse] = i; s->nInUse++; } } /*---------------------------------------------------*/ #define RETURN(rrr) \ { retVal = rrr; goto save_state_and_return; }; #define GET_BITS(lll,vvv,nnn) \ case lll: s->state = lll; \ while (True) { \ if (s->bsLive >= nnn) { \ UInt32 v; \ v = (s->bsBuff >> \ (s->bsLive-nnn)) & ((1 << nnn)-1); \ s->bsLive -= nnn; \ vvv = v; \ break; \ } \ if (s->strm->avail_in == 0) RETURN(BZ_OK); \ s->bsBuff \ = (s->bsBuff << 8) | \ ((UInt32) \ (*((UChar*)(s->strm->next_in)))); \ s->bsLive += 8; \ s->strm->next_in++; \ s->strm->avail_in--; \ s->strm->total_in_lo32++; \ if (s->strm->total_in_lo32 == 0) \ s->strm->total_in_hi32++; \ } #define GET_UCHAR(lll,uuu) \ GET_BITS(lll,uuu,8) #define GET_BIT(lll,uuu) \ GET_BITS(lll,uuu,1) /*---------------------------------------------------*/ #define GET_MTF_VAL(label1,label2,lval) \ { \ if (groupPos == 0) { \ groupNo++; \ if (groupNo >= nSelectors) \ RETURN(BZ_DATA_ERROR); \ groupPos = BZ_G_SIZE; \ gSel = s->selector[groupNo]; \ gMinlen = s->minLens[gSel]; \ gLimit = &(s->limit[gSel][0]); \ gPerm = &(s->perm[gSel][0]); \ gBase = &(s->base[gSel][0]); \ } \ groupPos--; \ zn = gMinlen; \ GET_BITS(label1, zvec, zn); \ while (1) { \ if (zn > 20 /* the longest code */) \ RETURN(BZ_DATA_ERROR); \ if (zvec <= gLimit[zn]) break; \ zn++; \ GET_BIT(label2, zj); \ zvec = (zvec << 1) | zj; \ }; \ if (zvec - gBase[zn] < 0 \ || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \ RETURN(BZ_DATA_ERROR); \ lval = gPerm[zvec - gBase[zn]]; \ } /*---------------------------------------------------*/ __inline__ Int32 BZ2_indexIntoF ( Int32 indx, Int32 *cftab ) { Int32 nb, na, mid; nb = 0; na = 256; do { mid = (nb + na) >> 1; if (indx >= cftab[mid]) nb = mid; else na = mid; } while (na - nb != 1); return nb; } /*---------------------------------------------------*/ Int32 BZ2_decompress ( DState* s ) { UChar uc; Int32 retVal; Int32 minLen, maxLen; bz_stream* strm = s->strm; /* stuff that needs to be saved/restored */ Int32 i; Int32 j; Int32 t; Int32 alphaSize; Int32 nGroups; Int32 nSelectors; Int32 EOB; Int32 groupNo; Int32 groupPos; Int32 nextSym; Int32 nblockMAX; Int32 nblock; Int32 es; Int32 N; Int32 curr; Int32 zt; Int32 zn; Int32 zvec; Int32 zj; Int32 gSel; Int32 gMinlen; Int32* gLimit; Int32* gBase; Int32* gPerm; if (s->state == BZ_X_MAGIC_1) { /*initialise the save area*/ s->save_i = 0; s->save_j = 0; s->save_t = 0; s->save_alphaSize = 0; s->save_nGroups = 0; s->save_nSelectors = 0; s->save_EOB = 0; s->save_groupNo = 0; s->save_groupPos = 0; s->save_nextSym = 0; s->save_nblockMAX = 0; s->save_nblock = 0; s->save_es = 0; s->save_N = 0; s->save_curr = 0; s->save_zt = 0; s->save_zn = 0; s->save_zvec = 0; s->save_zj = 0; s->save_gSel = 0; s->save_gMinlen = 0; s->save_gLimit = NULL; s->save_gBase = NULL; s->save_gPerm = NULL; } /*restore from the save area*/ i = s->save_i; j = s->save_j; t = s->save_t; alphaSize = s->save_alphaSize; nGroups = s->save_nGroups; nSelectors = s->save_nSelectors; EOB = s->save_EOB; groupNo = s->save_groupNo; groupPos = s->save_groupPos; nextSym = s->save_nextSym; nblockMAX = s->save_nblockMAX; nblock = s->save_nblock; es = s->save_es; N = s->save_N; curr = s->save_curr; zt = s->save_zt; zn = s->save_zn; zvec = s->save_zvec; zj = s->save_zj; gSel = s->save_gSel; gMinlen = s->save_gMinlen; gLimit = s->save_gLimit; gBase = s->save_gBase; gPerm = s->save_gPerm; retVal = BZ_OK; switch (s->state) { GET_UCHAR(BZ_X_MAGIC_1, uc); if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC); GET_UCHAR(BZ_X_MAGIC_2, uc); if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC); GET_UCHAR(BZ_X_MAGIC_3, uc) if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC); GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8) if (s->blockSize100k < (BZ_HDR_0 + 1) || s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC); s->blockSize100k -= BZ_HDR_0; if (s->smallDecompress) { s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) ); s->ll4 = BZALLOC( ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar) ); if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR); } else { s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) ); if (s->tt == NULL) RETURN(BZ_MEM_ERROR); } GET_UCHAR(BZ_X_BLKHDR_1, uc); if (uc == 0x17) goto endhdr_2; if (uc != 0x31) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_2, uc); if (uc != 0x41) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_3, uc); if (uc != 0x59) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_4, uc); if (uc != 0x26) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_5, uc); if (uc != 0x53) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_6, uc); if (uc != 0x59) RETURN(BZ_DATA_ERROR); s->currBlockNo++; if (s->verbosity >= 2) VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo ); s->storedBlockCRC = 0; GET_UCHAR(BZ_X_BCRC_1, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_2, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_3, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_4, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1); s->origPtr = 0; GET_UCHAR(BZ_X_ORIGPTR_1, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); GET_UCHAR(BZ_X_ORIGPTR_2, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); GET_UCHAR(BZ_X_ORIGPTR_3, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); if (s->origPtr < 0) RETURN(BZ_DATA_ERROR); if (s->origPtr > 10 + 100000*s->blockSize100k) RETURN(BZ_DATA_ERROR); /*--- Receive the mapping table ---*/ for (i = 0; i < 16; i++) { GET_BIT(BZ_X_MAPPING_1, uc); if (uc == 1) s->inUse16[i] = True; else s->inUse16[i] = False; } for (i = 0; i < 256; i++) s->inUse[i] = False; for (i = 0; i < 16; i++) if (s->inUse16[i]) for (j = 0; j < 16; j++) { GET_BIT(BZ_X_MAPPING_2, uc); if (uc == 1) s->inUse[i * 16 + j] = True; } makeMaps_d ( s ); if (s->nInUse == 0) RETURN(BZ_DATA_ERROR); alphaSize = s->nInUse+2; /*--- Now the selectors ---*/ GET_BITS(BZ_X_SELECTOR_1, nGroups, 3); if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR); GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15); if (nSelectors < 1) RETURN(BZ_DATA_ERROR); for (i = 0; i < nSelectors; i++) { j = 0; while (True) { GET_BIT(BZ_X_SELECTOR_3, uc); if (uc == 0) break; j++; if (j >= nGroups) RETURN(BZ_DATA_ERROR); } s->selectorMtf[i] = j; } /*--- Undo the MTF values for the selectors. ---*/ { UChar pos[BZ_N_GROUPS], tmp, v; for (v = 0; v < nGroups; v++) pos[v] = v; for (i = 0; i < nSelectors; i++) { v = s->selectorMtf[i]; tmp = pos[v]; while (v > 0) { pos[v] = pos[v-1]; v--; } pos[0] = tmp; s->selector[i] = tmp; } } /*--- Now the coding tables ---*/ for (t = 0; t < nGroups; t++) { GET_BITS(BZ_X_CODING_1, curr, 5); for (i = 0; i < alphaSize; i++) { while (True) { if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR); GET_BIT(BZ_X_CODING_2, uc); if (uc == 0) break; GET_BIT(BZ_X_CODING_3, uc); if (uc == 0) curr++; else curr--; } s->len[t][i] = curr; } } /*--- Create the Huffman decoding tables ---*/ for (t = 0; t < nGroups; t++) { minLen = 32; maxLen = 0; for (i = 0; i < alphaSize; i++) { if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; if (s->len[t][i] < minLen) minLen = s->len[t][i]; } BZ2_hbCreateDecodeTables ( &(s->limit[t][0]), &(s->base[t][0]), &(s->perm[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize ); s->minLens[t] = minLen; } /*--- Now the MTF values ---*/ EOB = s->nInUse+1; nblockMAX = 100000 * s->blockSize100k; groupNo = -1; groupPos = 0; for (i = 0; i <= 255; i++) s->unzftab[i] = 0; /*-- MTF init --*/ { Int32 ii, jj, kk; kk = MTFA_SIZE-1; for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) { for (jj = MTFL_SIZE-1; jj >= 0; jj--) { s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj); kk--; } s->mtfbase[ii] = kk + 1; } } /*-- end MTF init --*/ nblock = 0; GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym); while (True) { if (nextSym == EOB) break; if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) { es = -1; N = 1; do { if (nextSym == BZ_RUNA) es = es + (0+1) * N; else if (nextSym == BZ_RUNB) es = es + (1+1) * N; N = N * 2; GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym); } while (nextSym == BZ_RUNA || nextSym == BZ_RUNB); es++; uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ]; s->unzftab[uc] += es; if (s->smallDecompress) while (es > 0) { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); s->ll16[nblock] = (UInt16)uc; nblock++; es--; } else while (es > 0) { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); s->tt[nblock] = (UInt32)uc; nblock++; es--; }; continue; } else { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); /*-- uc = MTF ( nextSym-1 ) --*/ { Int32 ii, jj, kk, pp, lno, off; UInt32 nn; nn = (UInt32)(nextSym - 1); if (nn < MTFL_SIZE) { /* avoid general-case expense */ pp = s->mtfbase[0]; uc = s->mtfa[pp+nn]; while (nn > 3) { Int32 z = pp+nn; s->mtfa[(z) ] = s->mtfa[(z)-1]; s->mtfa[(z)-1] = s->mtfa[(z)-2]; s->mtfa[(z)-2] = s->mtfa[(z)-3]; s->mtfa[(z)-3] = s->mtfa[(z)-4]; nn -= 4; } while (nn > 0) { s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--; }; s->mtfa[pp] = uc; } else { /* general case */ lno = nn / MTFL_SIZE; off = nn % MTFL_SIZE; pp = s->mtfbase[lno] + off; uc = s->mtfa[pp]; while (pp > s->mtfbase[lno]) { s->mtfa[pp] = s->mtfa[pp-1]; pp--; }; s->mtfbase[lno]++; while (lno > 0) { s->mtfbase[lno]--; s->mtfa[s->mtfbase[lno]] = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1]; lno--; } s->mtfbase[0]--; s->mtfa[s->mtfbase[0]] = uc; if (s->mtfbase[0] == 0) { kk = MTFA_SIZE-1; for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) { for (jj = MTFL_SIZE-1; jj >= 0; jj--) { s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj]; kk--; } s->mtfbase[ii] = kk + 1; } } } } /*-- end uc = MTF ( nextSym-1 ) --*/ s->unzftab[s->seqToUnseq[uc]]++; if (s->smallDecompress) s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]); nblock++; GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym); continue; } } /* Now we know what nblock is, we can do a better sanity check on s->origPtr. */ if (s->origPtr < 0 || s->origPtr >= nblock) RETURN(BZ_DATA_ERROR); /*-- Set up cftab to facilitate generation of T^(-1) --*/ s->cftab[0] = 0; for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1]; for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1]; for (i = 0; i <= 256; i++) { if (s->cftab[i] < 0 || s->cftab[i] > nblock) { /* s->cftab[i] can legitimately be == nblock */ RETURN(BZ_DATA_ERROR); } } s->state_out_len = 0; s->state_out_ch = 0; BZ_INITIALISE_CRC ( s->calculatedBlockCRC ); s->state = BZ_X_OUTPUT; if (s->verbosity >= 2) VPrintf0 ( "rt+rld" ); if (s->smallDecompress) { /*-- Make a copy of cftab, used in generation of T --*/ for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i]; /*-- compute the T vector --*/ for (i = 0; i < nblock; i++) { uc = (UChar)(s->ll16[i]); SET_LL(i, s->cftabCopy[uc]); s->cftabCopy[uc]++; } /*-- Compute T^(-1) by pointer reversal on T --*/ i = s->origPtr; j = GET_LL(i); do { Int32 tmp = GET_LL(j); SET_LL(j, i); i = j; j = tmp; } while (i != s->origPtr); s->tPos = s->origPtr; s->nblock_used = 0; if (s->blockRandomised) { BZ_RAND_INIT_MASK; BZ_GET_SMALL(s->k0); s->nblock_used++; BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; } else { BZ_GET_SMALL(s->k0); s->nblock_used++; } } else { /*-- compute the T^(-1) vector --*/ for (i = 0; i < nblock; i++) { uc = (UChar)(s->tt[i] & 0xff); s->tt[s->cftab[uc]] |= (i << 8); s->cftab[uc]++; } s->tPos = s->tt[s->origPtr] >> 8; s->nblock_used = 0; if (s->blockRandomised) { BZ_RAND_INIT_MASK; BZ_GET_FAST(s->k0); s->nblock_used++; BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; } else { BZ_GET_FAST(s->k0); s->nblock_used++; } } RETURN(BZ_OK); endhdr_2: GET_UCHAR(BZ_X_ENDHDR_2, uc); if (uc != 0x72) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_3, uc); if (uc != 0x45) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_4, uc); if (uc != 0x38) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_5, uc); if (uc != 0x50) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_6, uc); if (uc != 0x90) RETURN(BZ_DATA_ERROR); s->storedCombinedCRC = 0; GET_UCHAR(BZ_X_CCRC_1, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_2, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_3, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_4, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); s->state = BZ_X_IDLE; RETURN(BZ_STREAM_END); default: AssertH ( False, 4001 ); } AssertH ( False, 4002 ); save_state_and_return: s->save_i = i; s->save_j = j; s->save_t = t; s->save_alphaSize = alphaSize; s->save_nGroups = nGroups; s->save_nSelectors = nSelectors; s->save_EOB = EOB; s->save_groupNo = groupNo; s->save_groupPos = groupPos; s->save_nextSym = nextSym; s->save_nblockMAX = nblockMAX; s->save_nblock = nblock; s->save_es = es; s->save_N = N; s->save_curr = curr; s->save_zt = zt; s->save_zn = zn; s->save_zvec = zvec; s->save_zj = zj; s->save_gSel = gSel; s->save_gMinlen = gMinlen; s->save_gLimit = gLimit; s->save_gBase = gBase; s->save_gPerm = gPerm; return retVal; } /*-------------------------------------------------------------*/ /*--- end decompress.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Block sorting machinery ---*/ /*--- blocksort.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. To get some idea how the block sorting algorithms in this file work, read my paper On the Performance of BWT Sorting Algorithms in Proceedings of the IEEE Data Compression Conference 2000, Snowbird, Utah, USA, 27-30 March 2000. The main sort in this file implements the algorithm called cache in the paper. --*/ /*---------------------------------------------*/ /*--- Fallback O(N log(N)^2) sorting ---*/ /*--- algorithm, for repetitive blocks ---*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static __inline__ void fallbackSimpleSort ( UInt32* fmap, UInt32* eclass, Int32 lo, Int32 hi ) { Int32 i, j, tmp; UInt32 ec_tmp; if (lo == hi) return; if (hi - lo > 3) { for ( i = hi-4; i >= lo; i-- ) { tmp = fmap[i]; ec_tmp = eclass[tmp]; for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) fmap[j-4] = fmap[j]; fmap[j-4] = tmp; } } for ( i = hi-1; i >= lo; i-- ) { tmp = fmap[i]; ec_tmp = eclass[tmp]; for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) fmap[j-1] = fmap[j]; fmap[j-1] = tmp; } } /*---------------------------------------------*/ #define fswap(zz1, zz2) \ { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } #define fvswap(zzp1, zzp2, zzn) \ { \ Int32 yyp1 = (zzp1); \ Int32 yyp2 = (zzp2); \ Int32 yyn = (zzn); \ while (yyn > 0) { \ fswap(fmap[yyp1], fmap[yyp2]); \ yyp1++; yyp2++; yyn--; \ } \ } #define fmin(a,b) ((a) < (b)) ? (a) : (b) #define fpush(lz,hz) { stackLo[sp] = lz; \ stackHi[sp] = hz; \ sp++; } #define fpop(lz,hz) { sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; } #define FALLBACK_QSORT_SMALL_THRESH 10 #define FALLBACK_QSORT_STACK_SIZE 100 static void fallbackQSort3 ( UInt32* fmap, UInt32* eclass, Int32 loSt, Int32 hiSt ) { Int32 unLo, unHi, ltLo, gtHi, n, m; Int32 sp, lo, hi; UInt32 med, r, r3; Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; r = 0; sp = 0; fpush ( loSt, hiSt ); while (sp > 0) { AssertH ( sp < FALLBACK_QSORT_STACK_SIZE, 1004 ); fpop ( lo, hi ); if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { fallbackSimpleSort ( fmap, eclass, lo, hi ); continue; } /* Random partitioning. Median of 3 sometimes fails to avoid bad cases. Median of 9 seems to help but looks rather expensive. This too seems to work but is cheaper. Guidance for the magic constants 7621 and 32768 is taken from Sedgewick's algorithms book, chapter 35. */ r = ((r * 7621) + 1) % 32768; r3 = r % 3; if (r3 == 0) med = eclass[fmap[lo]]; else if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else med = eclass[fmap[hi]]; unLo = ltLo = lo; unHi = gtHi = hi; while (1) { while (1) { if (unLo > unHi) break; n = (Int32)eclass[fmap[unLo]] - (Int32)med; if (n == 0) { fswap(fmap[unLo], fmap[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (1) { if (unLo > unHi) break; n = (Int32)eclass[fmap[unHi]] - (Int32)med; if (n == 0) { fswap(fmap[unHi], fmap[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; } AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); if (gtHi < ltLo) continue; n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; if (n - lo > hi - m) { fpush ( lo, n ); fpush ( m, hi ); } else { fpush ( m, hi ); fpush ( lo, n ); } } } #undef fmin #undef fpush #undef fpop #undef fswap #undef fvswap #undef FALLBACK_QSORT_SMALL_THRESH #undef FALLBACK_QSORT_STACK_SIZE /*---------------------------------------------*/ /* Pre: nblock > 0 eclass exists for [0 .. nblock-1] ((UChar*)eclass) [0 .. nblock-1] holds block ptr exists for [0 .. nblock-1] Post: ((UChar*)eclass) [0 .. nblock-1] holds block All other areas of eclass destroyed fmap [0 .. nblock-1] holds sorted order bhtab [ 0 .. 2+(nblock/32) ] destroyed */ #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) #define WORD_BH(zz) bhtab[(zz) >> 5] #define UNALIGNED_BH(zz) ((zz) & 0x01f) static void fallbackSort ( UInt32* fmap, UInt32* eclass, UInt32* bhtab, Int32 nblock, Int32 verb ) { Int32 ftab[257]; Int32 ftabCopy[256]; Int32 H, i, j, k, l, r, cc, cc1; Int32 nNotDone; Int32 nBhtab; UChar* eclass8 = (UChar*)eclass; /*-- Initial 1-char radix sort to generate initial fmap and initial BH bits. --*/ if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); for (i = 0; i < 257; i++) ftab[i] = 0; for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; for (i = 0; i < nblock; i++) { j = eclass8[i]; k = ftab[j] - 1; ftab[j] = k; fmap[k] = i; } nBhtab = 2 + (nblock / 32); for (i = 0; i < nBhtab; i++) bhtab[i] = 0; for (i = 0; i < 256; i++) SET_BH(ftab[i]); /*-- Inductively refine the buckets. Kind-of an "exponential radix sort" (!), inspired by the Manber-Myers suffix array construction algorithm. --*/ /*-- set sentinel bits for block-end detection --*/ for (i = 0; i < 32; i++) { SET_BH(nblock + 2*i); CLEAR_BH(nblock + 2*i + 1); } /*-- the log(N) loop --*/ H = 1; while (1) { if (verb >= 4) VPrintf1 ( " depth %6d has ", H ); j = 0; for (i = 0; i < nblock; i++) { if (ISSET_BH(i)) j = i; k = fmap[i] - H; if (k < 0) k += nblock; eclass[k] = j; } nNotDone = 0; r = -1; while (1) { /*-- find the next non-singleton bucket --*/ k = r + 1; while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; if (ISSET_BH(k)) { while (WORD_BH(k) == 0xffffffff) k += 32; while (ISSET_BH(k)) k++; } l = k - 1; if (l >= nblock) break; while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; if (!ISSET_BH(k)) { while (WORD_BH(k) == 0x00000000) k += 32; while (!ISSET_BH(k)) k++; } r = k - 1; if (r >= nblock) break; /*-- now [l, r] bracket current bucket --*/ if (r > l) { nNotDone += (r - l + 1); fallbackQSort3 ( fmap, eclass, l, r ); /*-- scan bucket and generate header bits-- */ cc = -1; for (i = l; i <= r; i++) { cc1 = eclass[fmap[i]]; if (cc != cc1) { SET_BH(i); cc = cc1; }; } } } if (verb >= 4) VPrintf1 ( "%6d unresolved strings\n", nNotDone ); H *= 2; if (H > nblock || nNotDone == 0) break; } /*-- Reconstruct the original block in eclass8 [0 .. nblock-1], since the previous phase destroyed it. --*/ if (verb >= 4) VPrintf0 ( " reconstructing block ...\n" ); j = 0; for (i = 0; i < nblock; i++) { while (ftabCopy[j] == 0) j++; ftabCopy[j]--; eclass8[fmap[i]] = (UChar)j; } AssertH ( j < 256, 1005 ); } #undef SET_BH #undef CLEAR_BH #undef ISSET_BH #undef WORD_BH #undef UNALIGNED_BH /*---------------------------------------------*/ /*--- The main, O(N^2 log(N)) sorting ---*/ /*--- algorithm. Faster for "normal" ---*/ /*--- non-repetitive blocks. ---*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static __inline__ Bool mainGtU ( UInt32 i1, UInt32 i2, UChar* block, UInt16* quadrant, UInt32 nblock, Int32* budget ) { Int32 k; UChar c1, c2; UInt16 s1, s2; AssertD ( i1 != i2, "mainGtU" ); /* 1 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 2 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 3 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 4 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 5 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 6 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 7 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 8 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 9 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 10 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 11 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 12 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; k = nblock + 8; do { /* 1 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 2 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 3 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 4 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 5 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 6 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 7 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 8 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; if (i1 >= nblock) i1 -= nblock; if (i2 >= nblock) i2 -= nblock; k -= 8; (*budget)--; } while (k >= 0); return False; } /*---------------------------------------------*/ /*-- Knuth's increments seem to work better than Incerpi-Sedgewick here. Possibly because the number of elems to sort is usually small, typically <= 20. --*/ static Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484 }; static void mainSimpleSort ( UInt32* ptr, UChar* block, UInt16* quadrant, Int32 nblock, Int32 lo, Int32 hi, Int32 d, Int32* budget ) { Int32 i, j, h, bigN, hp; UInt32 v; bigN = hi - lo + 1; if (bigN < 2) return; hp = 0; while (incs[hp] < bigN) hp++; hp--; for (; hp >= 0; hp--) { h = incs[hp]; i = lo + h; while (True) { /*-- copy 1 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; /*-- copy 2 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; /*-- copy 3 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; if (*budget < 0) return; } } } /*---------------------------------------------*/ /*-- The following is an implementation of an elegant 3-way quicksort for strings, described in a paper "Fast Algorithms for Sorting and Searching Strings", by Robert Sedgewick and Jon L. Bentley. --*/ #define mswap(zz1, zz2) \ { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } #define mvswap(zzp1, zzp2, zzn) \ { \ Int32 yyp1 = (zzp1); \ Int32 yyp2 = (zzp2); \ Int32 yyn = (zzn); \ while (yyn > 0) { \ mswap(ptr[yyp1], ptr[yyp2]); \ yyp1++; yyp2++; yyn--; \ } \ } static __inline__ UChar mmed3 ( UChar a, UChar b, UChar c ) { UChar t; if (a > b) { t = a; a = b; b = t; }; if (b > c) { b = c; if (a > b) b = a; } return b; } #define mmin(a,b) ((a) < (b)) ? (a) : (b) #define mpush(lz,hz,dz) { stackLo[sp] = lz; \ stackHi[sp] = hz; \ stackD [sp] = dz; \ sp++; } #define mpop(lz,hz,dz) { sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; \ dz = stackD [sp]; } #define mnextsize(az) (nextHi[az]-nextLo[az]) #define mnextswap(az,bz) \ { Int32 tz; \ tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } #define MAIN_QSORT_SMALL_THRESH 20 #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) #define MAIN_QSORT_STACK_SIZE 100 static void mainQSort3 ( UInt32* ptr, UChar* block, UInt16* quadrant, Int32 nblock, Int32 loSt, Int32 hiSt, Int32 dSt, Int32* budget ) { Int32 unLo, unHi, ltLo, gtHi, n, m, med; Int32 sp, lo, hi, d; Int32 stackLo[MAIN_QSORT_STACK_SIZE]; Int32 stackHi[MAIN_QSORT_STACK_SIZE]; Int32 stackD [MAIN_QSORT_STACK_SIZE]; Int32 nextLo[3]; Int32 nextHi[3]; Int32 nextD [3]; sp = 0; mpush ( loSt, hiSt, dSt ); while (sp > 0) { AssertH ( sp < MAIN_QSORT_STACK_SIZE, 1001 ); mpop ( lo, hi, d ); if (hi - lo < MAIN_QSORT_SMALL_THRESH || d > MAIN_QSORT_DEPTH_THRESH) { mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); if (*budget < 0) return; continue; } med = (Int32) mmed3 ( block[ptr[ lo ]+d], block[ptr[ hi ]+d], block[ptr[ (lo+hi)>>1 ]+d] ); unLo = ltLo = lo; unHi = gtHi = hi; while (True) { while (True) { if (unLo > unHi) break; n = ((Int32)block[ptr[unLo]+d]) - med; if (n == 0) { mswap(ptr[unLo], ptr[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (True) { if (unLo > unHi) break; n = ((Int32)block[ptr[unHi]+d]) - med; if (n == 0) { mswap(ptr[unHi], ptr[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; } AssertD ( unHi == unLo-1, "mainQSort3(2)" ); if (gtHi < ltLo) { mpush(lo, hi, d+1 ); continue; } n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); mpush (nextLo[0], nextHi[0], nextD[0]); mpush (nextLo[1], nextHi[1], nextD[1]); mpush (nextLo[2], nextHi[2], nextD[2]); } } #undef mswap #undef mvswap #undef mpush #undef mpop #undef mmin #undef mnextsize #undef mnextswap #undef MAIN_QSORT_SMALL_THRESH #undef MAIN_QSORT_DEPTH_THRESH #undef MAIN_QSORT_STACK_SIZE /*---------------------------------------------*/ /* Pre: nblock > N_OVERSHOOT block32 exists for [0 .. nblock-1 +N_OVERSHOOT] ((UChar*)block32) [0 .. nblock-1] holds block ptr exists for [0 .. nblock-1] Post: ((UChar*)block32) [0 .. nblock-1] holds block All other areas of block32 destroyed ftab [0 .. 65536 ] destroyed ptr [0 .. nblock-1] holds sorted order if (*budget < 0), sorting was abandoned */ #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) #define SETMASK (1 << 21) #define CLEARMASK (~(SETMASK)) static void mainSort ( UInt32* ptr, UChar* block, UInt16* quadrant, UInt32* ftab, Int32 nblock, Int32 verb, Int32* budget ) { Int32 i, j, k, ss, sb; Int32 runningOrder[256]; Bool bigDone[256]; Int32 copyStart[256]; Int32 copyEnd [256]; UChar c1; Int32 numQSorted; UInt16 s; if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); /*-- set up the 2-byte frequency table --*/ for (i = 65536; i >= 0; i--) ftab[i] = 0; j = block[0] << 8; i = nblock-1; for (; i >= 3; i -= 4) { quadrant[i] = 0; j = (j >> 8) | ( ((UInt16)block[i]) << 8); ftab[j]++; quadrant[i-1] = 0; j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); ftab[j]++; quadrant[i-2] = 0; j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); ftab[j]++; quadrant[i-3] = 0; j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); ftab[j]++; } for (; i >= 0; i--) { quadrant[i] = 0; j = (j >> 8) | ( ((UInt16)block[i]) << 8); ftab[j]++; } /*-- (emphasises close relationship of block & quadrant) --*/ for (i = 0; i < BZ_N_OVERSHOOT; i++) { block [nblock+i] = block[i]; quadrant[nblock+i] = 0; } if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); /*-- Complete the initial radix sort --*/ for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; s = block[0] << 8; i = nblock-1; for (; i >= 3; i -= 4) { s = (s >> 8) | (block[i] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i; s = (s >> 8) | (block[i-1] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-1; s = (s >> 8) | (block[i-2] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-2; s = (s >> 8) | (block[i-3] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-3; } for (; i >= 0; i--) { s = (s >> 8) | (block[i] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i; } /*-- Now ftab contains the first loc of every small bucket. Calculate the running order, from smallest to largest big bucket. --*/ for (i = 0; i <= 255; i++) { bigDone [i] = False; runningOrder[i] = i; } { Int32 vv; Int32 h = 1; do h = 3 * h + 1; while (h <= 256); do { h = h / 3; for (i = h; i <= 255; i++) { vv = runningOrder[i]; j = i; while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { runningOrder[j] = runningOrder[j-h]; j = j - h; if (j <= (h - 1)) goto zero; } zero: runningOrder[j] = vv; } } while (h != 1); } /*-- The main sorting loop. --*/ numQSorted = 0; for (i = 0; i <= 255; i++) { /*-- Process big buckets, starting with the least full. Basically this is a 3-step process in which we call mainQSort3 to sort the small buckets [ss, j], but also make a big effort to avoid the calls if we can. --*/ ss = runningOrder[i]; /*-- Step 1: Complete the big bucket [ss] by quicksorting any unsorted small buckets [ss, j], for j != ss. Hopefully previous pointer-scanning phases have already completed many of the small buckets [ss, j], so we don't have to sort them at all. --*/ for (j = 0; j <= 255; j++) { if (j != ss) { sb = (ss << 8) + j; if ( ! (ftab[sb] & SETMASK) ) { Int32 lo = ftab[sb] & CLEARMASK; Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; if (hi > lo) { if (verb >= 4) VPrintf4 ( " qsort [0x%x, 0x%x] " "done %d this %d\n", ss, j, numQSorted, hi - lo + 1 ); mainQSort3 ( ptr, block, quadrant, nblock, lo, hi, BZ_N_RADIX, budget ); numQSorted += (hi - lo + 1); if (*budget < 0) return; } } ftab[sb] |= SETMASK; } } AssertH ( !bigDone[ss], 1006 ); /*-- Step 2: Now scan this big bucket [ss] so as to synthesise the sorted order for small buckets [t, ss] for all t, including, magically, the bucket [ss,ss] too. This will avoid doing Real Work in subsequent Step 1's. --*/ { for (j = 0; j <= 255; j++) { copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; } for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[ copyStart[c1]++ ] = k; } for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[ copyEnd[c1]-- ] = k; } } AssertH ( (copyStart[ss]-1 == copyEnd[ss]) || /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. Necessity for this case is demonstrated by compressing a sequence of approximately 48.5 million of character 251; 1.0.0/1.0.1 will then die here. */ (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007 ) for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; /*-- Step 3: The [ss] big bucket is now done. Record this fact, and update the quadrant descriptors. Remember to update quadrants in the overshoot area too, if necessary. The "if (i < 255)" test merely skips this updating for the last bucket processed, since updating for the last bucket is pointless. The quadrant array provides a way to incrementally cache sort orderings, as they appear, so as to make subsequent comparisons in fullGtU() complete faster. For repetitive blocks this makes a big difference (but not big enough to be able to avoid the fallback sorting mechanism, exponential radix sort). The precise meaning is: at all times: for 0 <= i < nblock and 0 <= j <= nblock if block[i] != block[j], then the relative values of quadrant[i] and quadrant[j] are meaningless. else { if quadrant[i] < quadrant[j] then the string starting at i lexicographically precedes the string starting at j else if quadrant[i] > quadrant[j] then the string starting at j lexicographically precedes the string starting at i else the relative ordering of the strings starting at i and j has not yet been determined. } --*/ bigDone[ss] = True; if (i < 255) { Int32 bbStart = ftab[ss << 8] & CLEARMASK; Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; Int32 shifts = 0; while ((bbSize >> shifts) > 65534) shifts++; for (j = bbSize-1; j >= 0; j--) { Int32 a2update = ptr[bbStart + j]; UInt16 qVal = (UInt16)(j >> shifts); quadrant[a2update] = qVal; if (a2update < BZ_N_OVERSHOOT) quadrant[a2update + nblock] = qVal; } AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); } } if (verb >= 4) VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", nblock, numQSorted, nblock - numQSorted ); } #undef BIGFREQ #undef SETMASK #undef CLEARMASK /*---------------------------------------------*/ /* Pre: nblock > 0 arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] ((UChar*)arr2) [0 .. nblock-1] holds block arr1 exists for [0 .. nblock-1] Post: ((UChar*)arr2) [0 .. nblock-1] holds block All other areas of block destroyed ftab [ 0 .. 65536 ] destroyed arr1 [0 .. nblock-1] holds sorted order */ void BZ2_blockSort ( EState* s ) { UInt32* ptr = s->ptr; UChar* block = s->block; UInt32* ftab = s->ftab; Int32 nblock = s->nblock; Int32 verb = s->verbosity; Int32 wfact = s->workFactor; UInt16* quadrant; Int32 budget; Int32 budgetInit; Int32 i; if (nblock < /* 10000 */1000 ) { fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); } else { /* Calculate the location for quadrant, remembering to get the alignment right. Assumes that &(block[0]) is at least 2-byte aligned -- this should be ok since block is really the first section of arr2. */ i = nblock+BZ_N_OVERSHOOT; if (i & 1) i++; quadrant = (UInt16*)(&(block[i])); /* (wfact-1) / 3 puts the default-factor-30 transition point at very roughly the same place as with v0.1 and v0.9.0. Not that it particularly matters any more, since the resulting compressed stream is now the same regardless of whether or not we use the main sort or fallback sort. */ if (wfact < 1 ) wfact = 1; if (wfact > 100) wfact = 100; budgetInit = nblock * ((wfact-1) / 3); budget = budgetInit; mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); if (0 && verb >= 3) VPrintf3 ( " %d work, %d block, ratio %5.2f\n", budgetInit - budget, nblock, (float)(budgetInit - budget) / (float)(nblock==0 ? 1 : nblock) ); if (budget < 0) { if (verb >= 2) VPrintf0 ( " too repetitive; using fallback" " sorting algorithm\n" ); fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); } } s->origPtr = -1; for (i = 0; i < s->nblock; i++) if (ptr[i] == 0) { s->origPtr = i; break; }; AssertH( s->origPtr != -1, 1003 ); } /*-------------------------------------------------------------*/ /*--- end blocksort.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Huffman coding low-level stuff ---*/ /*--- huffman.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ /*---------------------------------------------------*/ #define WEIGHTOF(zz0) ((zz0) & 0xffffff00) #define DEPTHOF(zz1) ((zz1) & 0x000000ff) #define MYMAX(zz2,zz3) ((zz2) > (zz3) ? (zz2) : (zz3)) #define ADDWEIGHTS(zw1,zw2) \ (WEIGHTOF(zw1)+WEIGHTOF(zw2)) | \ (1 + MYMAX(DEPTHOF(zw1),DEPTHOF(zw2))) #define UPHEAP(z) \ { \ Int32 zz, tmp; \ zz = z; tmp = heap[zz]; \ while (weight[tmp] < weight[heap[zz >> 1]]) { \ heap[zz] = heap[zz >> 1]; \ zz >>= 1; \ } \ heap[zz] = tmp; \ } #define DOWNHEAP(z) \ { \ Int32 zz, yy, tmp; \ zz = z; tmp = heap[zz]; \ while (True) { \ yy = zz << 1; \ if (yy > nHeap) break; \ if (yy < nHeap && \ weight[heap[yy+1]] < weight[heap[yy]]) \ yy++; \ if (weight[tmp] < weight[heap[yy]]) break; \ heap[zz] = heap[yy]; \ zz = yy; \ } \ heap[zz] = tmp; \ } /*---------------------------------------------------*/ void BZ2_hbMakeCodeLengths ( UChar *len, Int32 *freq, Int32 alphaSize, Int32 maxLen ) { /*-- Nodes and heap entries run from 1. Entry 0 for both the heap and nodes is a sentinel. --*/ Int32 nNodes, nHeap, n1, n2, i, j, k; Bool tooLong; Int32 heap [ BZ_MAX_ALPHA_SIZE + 2 ]; Int32 weight [ BZ_MAX_ALPHA_SIZE * 2 ]; Int32 parent [ BZ_MAX_ALPHA_SIZE * 2 ]; for (i = 0; i < alphaSize; i++) weight[i+1] = (freq[i] == 0 ? 1 : freq[i]) << 8; while (True) { nNodes = alphaSize; nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; UPHEAP(nHeap); } AssertH( nHeap < (BZ_MAX_ALPHA_SIZE+2), 2001 ); while (nHeap > 1) { n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1); n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1); nNodes++; parent[n1] = parent[n2] = nNodes; weight[nNodes] = ADDWEIGHTS(weight[n1], weight[n2]); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; UPHEAP(nHeap); } AssertH( nNodes < (BZ_MAX_ALPHA_SIZE * 2), 2002 ); tooLong = False; for (i = 1; i <= alphaSize; i++) { j = 0; k = i; while (parent[k] >= 0) { k = parent[k]; j++; } len[i-1] = j; if (j > maxLen) tooLong = True; } if (! tooLong) break; /* 17 Oct 04: keep-going condition for the following loop used to be 'i < alphaSize', which missed the last element, theoretically leading to the possibility of the compressor looping. However, this count-scaling step is only needed if one of the generated Huffman code words is longer than maxLen, which up to and including version 1.0.2 was 20 bits, which is extremely unlikely. In version 1.0.3 maxLen was changed to 17 bits, which has minimal effect on compression ratio, but does mean this scaling step is used from time to time, enough to verify that it works. This means that bzip2-1.0.3 and later will only produce Huffman codes with a maximum length of 17 bits. However, in order to preserve backwards compatibility with bitstreams produced by versions pre-1.0.3, the decompressor must still handle lengths of up to 20. */ for (i = 1; i <= alphaSize; i++) { j = weight[i] >> 8; j = 1 + (j / 2); weight[i] = j << 8; } } } /*---------------------------------------------------*/ void BZ2_hbAssignCodes ( Int32 *code, UChar *length, Int32 minLen, Int32 maxLen, Int32 alphaSize ) { Int32 n, vec, i; vec = 0; for (n = minLen; n <= maxLen; n++) { for (i = 0; i < alphaSize; i++) if (length[i] == n) { code[i] = vec; vec++; }; vec <<= 1; } } /*---------------------------------------------------*/ void BZ2_hbCreateDecodeTables ( Int32 *limit, Int32 *base, Int32 *perm, UChar *length, Int32 minLen, Int32 maxLen, Int32 alphaSize ) { Int32 pp, i, j, vec; pp = 0; for (i = minLen; i <= maxLen; i++) for (j = 0; j < alphaSize; j++) if (length[j] == i) { perm[pp] = j; pp++; }; for (i = 0; i < BZ_MAX_CODE_LEN; i++) base[i] = 0; for (i = 0; i < alphaSize; i++) base[length[i]+1]++; for (i = 1; i < BZ_MAX_CODE_LEN; i++) base[i] += base[i-1]; for (i = 0; i < BZ_MAX_CODE_LEN; i++) limit[i] = 0; vec = 0; for (i = minLen; i <= maxLen; i++) { vec += (base[i+1] - base[i]); limit[i] = vec-1; vec <<= 1; } for (i = minLen + 1; i <= maxLen; i++) base[i] = ((limit[i-1] + 1) << 1) - base[i]; } /*-------------------------------------------------------------*/ /*--- end huffman.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Compression machinery (not incl block sorting) ---*/ /*--- compress.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ /*-- CHANGES ~~~~~~~ 0.9.0 -- original version. 0.9.0a/b -- no changes in this file. 0.9.0c * changed setting of nGroups in sendMTFValues() so as to do a bit better on small files --*/ /*---------------------------------------------------*/ /*--- Bit stream I/O ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ void BZ2_bsInitWrite ( EState* s ) { s->bsLive = 0; s->bsBuff = 0; } /*---------------------------------------------------*/ static void bsFinishWrite ( EState* s ) { while (s->bsLive > 0) { s->zbits[s->numZ] = (UChar)(s->bsBuff >> 24); s->numZ++; s->bsBuff <<= 8; s->bsLive -= 8; } } /*---------------------------------------------------*/ #define bsNEEDW(nz) \ { \ while (s->bsLive >= 8) { \ s->zbits[s->numZ] \ = (UChar)(s->bsBuff >> 24); \ s->numZ++; \ s->bsBuff <<= 8; \ s->bsLive -= 8; \ } \ } /*---------------------------------------------------*/ static __inline__ void bsW ( EState* s, Int32 n, UInt32 v ) { bsNEEDW ( n ); s->bsBuff |= (v << (32 - s->bsLive - n)); s->bsLive += n; } /*---------------------------------------------------*/ static void bsPutUInt32 ( EState* s, UInt32 u ) { bsW ( s, 8, (u >> 24) & 0xffL ); bsW ( s, 8, (u >> 16) & 0xffL ); bsW ( s, 8, (u >> 8) & 0xffL ); bsW ( s, 8, u & 0xffL ); } /*---------------------------------------------------*/ static void bsPutUChar ( EState* s, UChar c ) { bsW( s, 8, (UInt32)c ); } /*---------------------------------------------------*/ /*--- The back end proper ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ static void makeMaps_e ( EState* s ) { Int32 i; s->nInUse = 0; for (i = 0; i < 256; i++) if (s->inUse[i]) { s->unseqToSeq[i] = s->nInUse; s->nInUse++; } } /*---------------------------------------------------*/ static void generateMTFValues ( EState* s ) { UChar yy[256]; Int32 i, j; Int32 zPend; Int32 wr; Int32 EOB; /* After sorting (eg, here), s->arr1 [ 0 .. s->nblock-1 ] holds sorted order, and ((UChar*)s->arr2) [ 0 .. s->nblock-1 ] holds the original block data. The first thing to do is generate the MTF values, and put them in ((UInt16*)s->arr1) [ 0 .. s->nblock-1 ]. Because there are strictly fewer or equal MTF values than block values, ptr values in this area are overwritten with MTF values only when they are no longer needed. The final compressed bitstream is generated into the area starting at (UChar*) (&((UChar*)s->arr2)[s->nblock]) These storage aliases are set up in bzCompressInit(), except for the last one, which is arranged in compressBlock(). */ UInt32* ptr = s->ptr; UChar* block = s->block; UInt16* mtfv = s->mtfv; makeMaps_e ( s ); EOB = s->nInUse+1; for (i = 0; i <= EOB; i++) s->mtfFreq[i] = 0; wr = 0; zPend = 0; for (i = 0; i < s->nInUse; i++) yy[i] = (UChar) i; for (i = 0; i < s->nblock; i++) { UChar ll_i; AssertD ( wr <= i, "generateMTFValues(1)" ); j = ptr[i]-1; if (j < 0) j += s->nblock; ll_i = s->unseqToSeq[block[j]]; AssertD ( ll_i < s->nInUse, "generateMTFValues(2a)" ); if (yy[0] == ll_i) { zPend++; } else { if (zPend > 0) { zPend--; while (True) { if (zPend & 1) { mtfv[wr] = BZ_RUNB; wr++; s->mtfFreq[BZ_RUNB]++; } else { mtfv[wr] = BZ_RUNA; wr++; s->mtfFreq[BZ_RUNA]++; } if (zPend < 2) break; zPend = (zPend - 2) / 2; }; zPend = 0; } { register UChar rtmp; register UChar* ryy_j; register UChar rll_i; rtmp = yy[1]; yy[1] = yy[0]; ryy_j = &(yy[1]); rll_i = ll_i; while ( rll_i != rtmp ) { register UChar rtmp2; ryy_j++; rtmp2 = rtmp; rtmp = *ryy_j; *ryy_j = rtmp2; }; yy[0] = rtmp; j = ryy_j - &(yy[0]); mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++; } } } if (zPend > 0) { zPend--; while (True) { if (zPend & 1) { mtfv[wr] = BZ_RUNB; wr++; s->mtfFreq[BZ_RUNB]++; } else { mtfv[wr] = BZ_RUNA; wr++; s->mtfFreq[BZ_RUNA]++; } if (zPend < 2) break; zPend = (zPend - 2) / 2; }; zPend = 0; } mtfv[wr] = EOB; wr++; s->mtfFreq[EOB]++; s->nMTF = wr; } /*---------------------------------------------------*/ #define BZ_LESSER_ICOST 0 #define BZ_GREATER_ICOST 15 static void sendMTFValues ( EState* s ) { Int32 v, t, i, j, gs, ge, totc, bt, bc, iter; Int32 nSelectors, alphaSize, minLen, maxLen, selCtr; Int32 nGroups, nBytes; /*-- UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; is a global since the decoder also needs it. Int32 code[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 rfreq[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; are also globals only used in this proc. Made global to keep stack frame size small. --*/ UInt16 cost[BZ_N_GROUPS]; Int32 fave[BZ_N_GROUPS]; UInt16* mtfv = s->mtfv; if (s->verbosity >= 3) VPrintf3( " %d in block, %d after MTF & 1-2 coding, " "%d+2 syms in use\n", s->nblock, s->nMTF, s->nInUse ); alphaSize = s->nInUse+2; for (t = 0; t < BZ_N_GROUPS; t++) for (v = 0; v < alphaSize; v++) s->len[t][v] = BZ_GREATER_ICOST; /*--- Decide how many coding tables to use ---*/ AssertH ( s->nMTF > 0, 3001 ); if (s->nMTF < 200) nGroups = 2; else if (s->nMTF < 600) nGroups = 3; else if (s->nMTF < 1200) nGroups = 4; else if (s->nMTF < 2400) nGroups = 5; else nGroups = 6; /*--- Generate an initial set of coding tables ---*/ { Int32 nPart, remF, tFreq, aFreq; nPart = nGroups; remF = s->nMTF; gs = 0; while (nPart > 0) { tFreq = remF / nPart; ge = gs-1; aFreq = 0; while (aFreq < tFreq && ge < alphaSize-1) { ge++; aFreq += s->mtfFreq[ge]; } if (ge > gs && nPart != nGroups && nPart != 1 && ((nGroups-nPart) % 2 == 1)) { aFreq -= s->mtfFreq[ge]; ge--; } if (0 && s->verbosity >= 3) VPrintf5( " initial group %d, [%d .. %d], " "has %d syms (%4.1f%%)\n", nPart, gs, ge, aFreq, (100.0 * (float)aFreq) / (float)(s->nMTF) ); for (v = 0; v < alphaSize; v++) if (v >= gs && v <= ge) s->len[nPart-1][v] = BZ_LESSER_ICOST; else s->len[nPart-1][v] = BZ_GREATER_ICOST; nPart--; gs = ge+1; remF -= aFreq; } } /*--- Iterate up to BZ_N_ITERS times to improve the tables. ---*/ for (iter = 0; iter < BZ_N_ITERS; iter++) { for (t = 0; t < nGroups; t++) fave[t] = 0; for (t = 0; t < nGroups; t++) for (v = 0; v < alphaSize; v++) s->rfreq[t][v] = 0; /*--- Set up an auxiliary length table which is used to fast-track the common case (nGroups == 6). ---*/ if (nGroups == 6) { for (v = 0; v < alphaSize; v++) { s->len_pack[v][0] = (s->len[1][v] << 16) | s->len[0][v]; s->len_pack[v][1] = (s->len[3][v] << 16) | s->len[2][v]; s->len_pack[v][2] = (s->len[5][v] << 16) | s->len[4][v]; } } nSelectors = 0; totc = 0; gs = 0; while (True) { /*--- Set group start & end marks. --*/ if (gs >= s->nMTF) break; ge = gs + BZ_G_SIZE - 1; if (ge >= s->nMTF) ge = s->nMTF-1; /*-- Calculate the cost of this group as coded by each of the coding tables. --*/ for (t = 0; t < nGroups; t++) cost[t] = 0; if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ register UInt32 cost01, cost23, cost45; register UInt16 icv; cost01 = cost23 = cost45 = 0; # define BZ_ITER(nn) \ icv = mtfv[gs+(nn)]; \ cost01 += s->len_pack[icv][0]; \ cost23 += s->len_pack[icv][1]; \ cost45 += s->len_pack[icv][2]; \ BZ_ITER(0); BZ_ITER(1); BZ_ITER(2); BZ_ITER(3); BZ_ITER(4); BZ_ITER(5); BZ_ITER(6); BZ_ITER(7); BZ_ITER(8); BZ_ITER(9); BZ_ITER(10); BZ_ITER(11); BZ_ITER(12); BZ_ITER(13); BZ_ITER(14); BZ_ITER(15); BZ_ITER(16); BZ_ITER(17); BZ_ITER(18); BZ_ITER(19); BZ_ITER(20); BZ_ITER(21); BZ_ITER(22); BZ_ITER(23); BZ_ITER(24); BZ_ITER(25); BZ_ITER(26); BZ_ITER(27); BZ_ITER(28); BZ_ITER(29); BZ_ITER(30); BZ_ITER(31); BZ_ITER(32); BZ_ITER(33); BZ_ITER(34); BZ_ITER(35); BZ_ITER(36); BZ_ITER(37); BZ_ITER(38); BZ_ITER(39); BZ_ITER(40); BZ_ITER(41); BZ_ITER(42); BZ_ITER(43); BZ_ITER(44); BZ_ITER(45); BZ_ITER(46); BZ_ITER(47); BZ_ITER(48); BZ_ITER(49); # undef BZ_ITER cost[0] = cost01 & 0xffff; cost[1] = cost01 >> 16; cost[2] = cost23 & 0xffff; cost[3] = cost23 >> 16; cost[4] = cost45 & 0xffff; cost[5] = cost45 >> 16; } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) { UInt16 icv = mtfv[i]; for (t = 0; t < nGroups; t++) cost[t] += s->len[t][icv]; } } /*-- Find the coding table which is best for this group, and record its identity in the selector table. --*/ bc = 999999999; bt = -1; for (t = 0; t < nGroups; t++) if (cost[t] < bc) { bc = cost[t]; bt = t; }; totc += bc; fave[bt]++; s->selector[nSelectors] = bt; nSelectors++; /*-- Increment the symbol frequencies for the selected table. --*/ if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ # define BZ_ITUR(nn) s->rfreq[bt][ mtfv[gs+(nn)] ]++ BZ_ITUR(0); BZ_ITUR(1); BZ_ITUR(2); BZ_ITUR(3); BZ_ITUR(4); BZ_ITUR(5); BZ_ITUR(6); BZ_ITUR(7); BZ_ITUR(8); BZ_ITUR(9); BZ_ITUR(10); BZ_ITUR(11); BZ_ITUR(12); BZ_ITUR(13); BZ_ITUR(14); BZ_ITUR(15); BZ_ITUR(16); BZ_ITUR(17); BZ_ITUR(18); BZ_ITUR(19); BZ_ITUR(20); BZ_ITUR(21); BZ_ITUR(22); BZ_ITUR(23); BZ_ITUR(24); BZ_ITUR(25); BZ_ITUR(26); BZ_ITUR(27); BZ_ITUR(28); BZ_ITUR(29); BZ_ITUR(30); BZ_ITUR(31); BZ_ITUR(32); BZ_ITUR(33); BZ_ITUR(34); BZ_ITUR(35); BZ_ITUR(36); BZ_ITUR(37); BZ_ITUR(38); BZ_ITUR(39); BZ_ITUR(40); BZ_ITUR(41); BZ_ITUR(42); BZ_ITUR(43); BZ_ITUR(44); BZ_ITUR(45); BZ_ITUR(46); BZ_ITUR(47); BZ_ITUR(48); BZ_ITUR(49); # undef BZ_ITUR } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) s->rfreq[bt][ mtfv[i] ]++; } gs = ge+1; } if (s->verbosity >= 3) { VPrintf2 ( " pass %d: size is %d, grp uses are ", iter+1, totc/8 ); for (t = 0; t < nGroups; t++) VPrintf1 ( "%d ", fave[t] ); VPrintf0 ( "\n" ); } /*-- Recompute the tables based on the accumulated frequencies. --*/ /* maxLen was changed from 20 to 17 in bzip2-1.0.3. See comment in huffman.c for details. */ for (t = 0; t < nGroups; t++) BZ2_hbMakeCodeLengths ( &(s->len[t][0]), &(s->rfreq[t][0]), alphaSize, 17 /*20*/ ); } AssertH( nGroups < 8, 3002 ); AssertH( nSelectors < 32768 && nSelectors <= (2 + (900000 / BZ_G_SIZE)), 3003 ); /*--- Compute MTF values for the selectors. ---*/ { UChar pos[BZ_N_GROUPS], ll_i, tmp2, tmp; for (i = 0; i < nGroups; i++) pos[i] = i; for (i = 0; i < nSelectors; i++) { ll_i = s->selector[i]; j = 0; tmp = pos[j]; while ( ll_i != tmp ) { j++; tmp2 = tmp; tmp = pos[j]; pos[j] = tmp2; }; pos[0] = tmp; s->selectorMtf[i] = j; } }; /*--- Assign actual codes for the tables. --*/ for (t = 0; t < nGroups; t++) { minLen = 32; maxLen = 0; for (i = 0; i < alphaSize; i++) { if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; if (s->len[t][i] < minLen) minLen = s->len[t][i]; } AssertH ( !(maxLen > 17 /*20*/ ), 3004 ); AssertH ( !(minLen < 1), 3005 ); BZ2_hbAssignCodes ( &(s->code[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize ); } /*--- Transmit the mapping table. ---*/ { Bool inUse16[16]; for (i = 0; i < 16; i++) { inUse16[i] = False; for (j = 0; j < 16; j++) if (s->inUse[i * 16 + j]) inUse16[i] = True; } nBytes = s->numZ; for (i = 0; i < 16; i++) if (inUse16[i]) bsW(s,1,1); else bsW(s,1,0); for (i = 0; i < 16; i++) if (inUse16[i]) for (j = 0; j < 16; j++) { if (s->inUse[i * 16 + j]) bsW(s,1,1); else bsW(s,1,0); } if (s->verbosity >= 3) VPrintf1( " bytes: mapping %d, ", s->numZ-nBytes ); } /*--- Now the selectors. ---*/ nBytes = s->numZ; bsW ( s, 3, nGroups ); bsW ( s, 15, nSelectors ); for (i = 0; i < nSelectors; i++) { for (j = 0; j < s->selectorMtf[i]; j++) bsW(s,1,1); bsW(s,1,0); } if (s->verbosity >= 3) VPrintf1( "selectors %d, ", s->numZ-nBytes ); /*--- Now the coding tables. ---*/ nBytes = s->numZ; for (t = 0; t < nGroups; t++) { Int32 curr = s->len[t][0]; bsW ( s, 5, curr ); for (i = 0; i < alphaSize; i++) { while (curr < s->len[t][i]) { bsW(s,2,2); curr++; /* 10 */ }; while (curr > s->len[t][i]) { bsW(s,2,3); curr--; /* 11 */ }; bsW ( s, 1, 0 ); } } if (s->verbosity >= 3) VPrintf1 ( "code lengths %d, ", s->numZ-nBytes ); /*--- And finally, the block data proper ---*/ nBytes = s->numZ; selCtr = 0; gs = 0; while (True) { if (gs >= s->nMTF) break; ge = gs + BZ_G_SIZE - 1; if (ge >= s->nMTF) ge = s->nMTF-1; AssertH ( s->selector[selCtr] < nGroups, 3006 ); if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ UInt16 mtfv_i; UChar* s_len_sel_selCtr = &(s->len[s->selector[selCtr]][0]); Int32* s_code_sel_selCtr = &(s->code[s->selector[selCtr]][0]); # define BZ_ITAH(nn) \ mtfv_i = mtfv[gs+(nn)]; \ bsW ( s, \ s_len_sel_selCtr[mtfv_i], \ s_code_sel_selCtr[mtfv_i] ) BZ_ITAH(0); BZ_ITAH(1); BZ_ITAH(2); BZ_ITAH(3); BZ_ITAH(4); BZ_ITAH(5); BZ_ITAH(6); BZ_ITAH(7); BZ_ITAH(8); BZ_ITAH(9); BZ_ITAH(10); BZ_ITAH(11); BZ_ITAH(12); BZ_ITAH(13); BZ_ITAH(14); BZ_ITAH(15); BZ_ITAH(16); BZ_ITAH(17); BZ_ITAH(18); BZ_ITAH(19); BZ_ITAH(20); BZ_ITAH(21); BZ_ITAH(22); BZ_ITAH(23); BZ_ITAH(24); BZ_ITAH(25); BZ_ITAH(26); BZ_ITAH(27); BZ_ITAH(28); BZ_ITAH(29); BZ_ITAH(30); BZ_ITAH(31); BZ_ITAH(32); BZ_ITAH(33); BZ_ITAH(34); BZ_ITAH(35); BZ_ITAH(36); BZ_ITAH(37); BZ_ITAH(38); BZ_ITAH(39); BZ_ITAH(40); BZ_ITAH(41); BZ_ITAH(42); BZ_ITAH(43); BZ_ITAH(44); BZ_ITAH(45); BZ_ITAH(46); BZ_ITAH(47); BZ_ITAH(48); BZ_ITAH(49); # undef BZ_ITAH } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) { bsW ( s, s->len [s->selector[selCtr]] [mtfv[i]], s->code [s->selector[selCtr]] [mtfv[i]] ); } } gs = ge+1; selCtr++; } AssertH( selCtr == nSelectors, 3007 ); if (s->verbosity >= 3) VPrintf1( "codes %d\n", s->numZ-nBytes ); } /*---------------------------------------------------*/ void BZ2_compressBlock ( EState* s, Bool is_last_block ) { if (s->nblock > 0) { BZ_FINALISE_CRC ( s->blockCRC ); s->combinedCRC = (s->combinedCRC << 1) | (s->combinedCRC >> 31); s->combinedCRC ^= s->blockCRC; if (s->blockNo > 1) s->numZ = 0; if (s->verbosity >= 2) VPrintf4( " block %d: crc = 0x%08x, " "combined CRC = 0x%08x, size = %d\n", s->blockNo, s->blockCRC, s->combinedCRC, s->nblock ); BZ2_blockSort ( s ); } s->zbits = (UChar*) (&((UChar*)s->arr2)[s->nblock]); /*-- If this is the first block, create the stream header. --*/ if (s->blockNo == 1) { BZ2_bsInitWrite ( s ); bsPutUChar ( s, BZ_HDR_B ); bsPutUChar ( s, BZ_HDR_Z ); bsPutUChar ( s, BZ_HDR_h ); bsPutUChar ( s, (UChar)(BZ_HDR_0 + s->blockSize100k) ); } if (s->nblock > 0) { bsPutUChar ( s, 0x31 ); bsPutUChar ( s, 0x41 ); bsPutUChar ( s, 0x59 ); bsPutUChar ( s, 0x26 ); bsPutUChar ( s, 0x53 ); bsPutUChar ( s, 0x59 ); /*-- Now the block's CRC, so it is in a known place. --*/ bsPutUInt32 ( s, s->blockCRC ); /*-- Now a single bit indicating (non-)randomisation. As of version 0.9.5, we use a better sorting algorithm which makes randomisation unnecessary. So always set the randomised bit to 'no'. Of course, the decoder still needs to be able to handle randomised blocks so as to maintain backwards compatibility with older versions of bzip2. --*/ bsW(s,1,0); bsW ( s, 24, s->origPtr ); generateMTFValues ( s ); sendMTFValues ( s ); } /*-- If this is the last block, add the stream trailer. --*/ if (is_last_block) { bsPutUChar ( s, 0x17 ); bsPutUChar ( s, 0x72 ); bsPutUChar ( s, 0x45 ); bsPutUChar ( s, 0x38 ); bsPutUChar ( s, 0x50 ); bsPutUChar ( s, 0x90 ); bsPutUInt32 ( s, s->combinedCRC ); if (s->verbosity >= 2) VPrintf1( " final combined CRC = 0x%08x\n ", s->combinedCRC ); bsFinishWrite ( s ); } } /*-------------------------------------------------------------*/ /*--- end compress.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Table for randomising repetitive blocks ---*/ /*--- randtable.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ /*---------------------------------------------*/ Int32 BZ2_rNums[512] = { 619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733, 859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811, 169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684, 877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695, 249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513, 495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911, 276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469, 68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618, 276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318, 353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79, 626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128, 250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669, 112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988, 739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268, 926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392, 760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56, 204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606, 134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206, 73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750, 807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462, 293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979, 792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135, 780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990, 626, 197, 510, 357, 358, 850, 858, 364, 936, 638 }; /*-------------------------------------------------------------*/ /*--- end randtable.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Table for doing CRCs ---*/ /*--- crctable.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ /*-- I think this is an implementation of the AUTODIN-II, Ethernet & FDDI 32-bit CRC standard. Vaguely derived from code by Rob Warnock, in Section 51 of the comp.compression FAQ. --*/ UInt32 BZ2_crc32Table[256] = { /*-- Ugly, innit? --*/ 0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L, 0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L, 0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L, 0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL, 0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL, 0x4152fda9L, 0x5f15adacL, 0x5bd4b01bL, 0x569796c2L, 0x52568b75L, 0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L, 0x675a1011L, 0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL, 0x745e66cdL, 0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL, 0x95609039L, 0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L, 0x8664e6e5L, 0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L, 0xb3687d81L, 0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL, 0xa06c0b5dL, 0xd4326d90L, 0xd0f37027L, 0xddb056feL, 0xd9714b49L, 0xc7361b4cL, 0xc3f706fbL, 0xceb42022L, 0xca753d95L, 0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L, 0xff79a6f1L, 0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL, 0xec7dd02dL, 0x34867077L, 0x30476dc0L, 0x3d044b19L, 0x39c556aeL, 0x278206abL, 0x23431b1cL, 0x2e003dc5L, 0x2ac12072L, 0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L, 0x1fcdbb16L, 0x018aeb13L, 0x054bf6a4L, 0x0808d07dL, 0x0cc9cdcaL, 0x7897ab07L, 0x7c56b6b0L, 0x71159069L, 0x75d48ddeL, 0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L, 0x66d0fb02L, 0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L, 0x53dc6066L, 0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL, 0x40d816baL, 0xaca5c697L, 0xa864db20L, 0xa527fdf9L, 0xa1e6e04eL, 0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L, 0xb2e29692L, 0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L, 0x87ee0df6L, 0x99a95df3L, 0x9d684044L, 0x902b669dL, 0x94ea7b2aL, 0xe0b41de7L, 0xe4750050L, 0xe9362689L, 0xedf73b3eL, 0xf3b06b3bL, 0xf771768cL, 0xfa325055L, 0xfef34de2L, 0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L, 0xcbffd686L, 0xd5b88683L, 0xd1799b34L, 0xdc3abdedL, 0xd8fba05aL, 0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L, 0x644fc637L, 0x7a089632L, 0x7ec98b85L, 0x738aad5cL, 0x774bb0ebL, 0x4f040d56L, 0x4bc510e1L, 0x46863638L, 0x42472b8fL, 0x5c007b8aL, 0x58c1663dL, 0x558240e4L, 0x51435d53L, 0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L, 0x285e1d47L, 0x36194d42L, 0x32d850f5L, 0x3f9b762cL, 0x3b5a6b9bL, 0x0315d626L, 0x07d4cb91L, 0x0a97ed48L, 0x0e56f0ffL, 0x1011a0faL, 0x14d0bd4dL, 0x19939b94L, 0x1d528623L, 0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L, 0xfc6c70d7L, 0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL, 0xef68060bL, 0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L, 0xda649d6fL, 0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L, 0xc960ebb3L, 0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L, 0xb07daba7L, 0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL, 0xa379dd7bL, 0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L, 0x9675461fL, 0x8832161aL, 0x8cf30badL, 0x81b02d74L, 0x857130c3L, 0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L, 0x50c9b640L, 0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL, 0x43cdc09cL, 0x7b827d21L, 0x7f436096L, 0x7200464fL, 0x76c15bf8L, 0x68860bfdL, 0x6c47164aL, 0x61043093L, 0x65c52d24L, 0x119b4be9L, 0x155a565eL, 0x18197087L, 0x1cd86d30L, 0x029f3d35L, 0x065e2082L, 0x0b1d065bL, 0x0fdc1becL, 0x3793a651L, 0x3352bbe6L, 0x3e119d3fL, 0x3ad08088L, 0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L, 0x29d4f654L, 0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L, 0xc8ea00a0L, 0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL, 0xdbee767cL, 0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL, 0xeee2ed18L, 0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L, 0xfde69bc4L, 0x89b8fd09L, 0x8d79e0beL, 0x803ac667L, 0x84fbdbd0L, 0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL, 0x97ffad0cL, 0xafb010b1L, 0xab710d06L, 0xa6322bdfL, 0xa2f33668L, 0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L, 0xb1f740b4L }; /*-------------------------------------------------------------*/ /*--- end crctable.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Library top-level functions. ---*/ /*--- bzlib.c ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2004 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@bzip.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ /*-- CHANGES ~~~~~~~ 0.9.0 -- original version. 0.9.0a/b -- no changes in this file. 0.9.0c * made zero-length BZ_FLUSH work correctly in bzCompress(). * fixed bzWrite/bzRead to ignore zero-length requests. * fixed bzread to correctly handle read requests after EOF. * wrong parameter order in call to bzDecompressInit in bzBuffToBuffDecompress. Fixed. --*/ /*---------------------------------------------------*/ /*--- Compression stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ void BZ2_bz__AssertH__fail ( int errcode ) { vexxx_printf("BZ2_bz__AssertH__fail(%d) called, exiting\n", errcode); (*serviceFn)(0,0); } void bz_internal_error ( int errcode ) { vexxx_printf("bz_internal_error called, exiting\n", errcode); (*serviceFn)(0,0); } /*---------------------------------------------------*/ static int bz_config_ok ( void ) { if (sizeof(int) != 4) return 0; if (sizeof(short) != 2) return 0; if (sizeof(char) != 1) return 0; return 1; } /*---------------------------------------------------*/ static void* default_bzalloc ( void* opaque, Int32 items, Int32 size ) { void* v = (void*) (*serviceFn)(2, items * size ); return v; } static void default_bzfree ( void* opaque, void* addr ) { if (addr != NULL) (*serviceFn)( 3, (HWord)addr ); } /*---------------------------------------------------*/ static void prepare_new_block ( EState* s ) { Int32 i; s->nblock = 0; s->numZ = 0; s->state_out_pos = 0; BZ_INITIALISE_CRC ( s->blockCRC ); for (i = 0; i < 256; i++) s->inUse[i] = False; s->blockNo++; } /*---------------------------------------------------*/ static void init_RL ( EState* s ) { s->state_in_ch = 256; s->state_in_len = 0; } static Bool isempty_RL ( EState* s ) { if (s->state_in_ch < 256 && s->state_in_len > 0) return False; else return True; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompressInit) ( bz_stream* strm, int blockSize100k, int verbosity, int workFactor ) { Int32 n; EState* s; if (!bz_config_ok()) return BZ_CONFIG_ERROR; if (strm == NULL || blockSize100k < 1 || blockSize100k > 9 || workFactor < 0 || workFactor > 250) return BZ_PARAM_ERROR; if (workFactor == 0) workFactor = 30; if (strm->bzalloc == NULL) strm->bzalloc = default_bzalloc; if (strm->bzfree == NULL) strm->bzfree = default_bzfree; s = BZALLOC( sizeof(EState) ); if (s == NULL) return BZ_MEM_ERROR; s->strm = strm; s->arr1 = NULL; s->arr2 = NULL; s->ftab = NULL; n = 100000 * blockSize100k; s->arr1 = BZALLOC( n * sizeof(UInt32) ); s->arr2 = BZALLOC( (n+BZ_N_OVERSHOOT) * sizeof(UInt32) ); s->ftab = BZALLOC( 65537 * sizeof(UInt32) ); if (s->arr1 == NULL || s->arr2 == NULL || s->ftab == NULL) { if (s->arr1 != NULL) BZFREE(s->arr1); if (s->arr2 != NULL) BZFREE(s->arr2); if (s->ftab != NULL) BZFREE(s->ftab); if (s != NULL) BZFREE(s); return BZ_MEM_ERROR; } s->blockNo = 0; s->state = BZ_S_INPUT; s->mode = BZ_M_RUNNING; s->combinedCRC = 0; s->blockSize100k = blockSize100k; s->nblockMAX = 100000 * blockSize100k - 19; s->verbosity = verbosity; s->workFactor = workFactor; s->block = (UChar*)s->arr2; s->mtfv = (UInt16*)s->arr1; s->zbits = NULL; s->ptr = (UInt32*)s->arr1; strm->state = s; strm->total_in_lo32 = 0; strm->total_in_hi32 = 0; strm->total_out_lo32 = 0; strm->total_out_hi32 = 0; init_RL ( s ); prepare_new_block ( s ); return BZ_OK; } /*---------------------------------------------------*/ static void add_pair_to_block ( EState* s ) { Int32 i; UChar ch = (UChar)(s->state_in_ch); for (i = 0; i < s->state_in_len; i++) { BZ_UPDATE_CRC( s->blockCRC, ch ); } s->inUse[s->state_in_ch] = True; switch (s->state_in_len) { case 1: s->block[s->nblock] = (UChar)ch; s->nblock++; break; case 2: s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; break; case 3: s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; break; default: s->inUse[s->state_in_len-4] = True; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = ((UChar)(s->state_in_len-4)); s->nblock++; break; } } /*---------------------------------------------------*/ static void flush_RL ( EState* s ) { if (s->state_in_ch < 256) add_pair_to_block ( s ); init_RL ( s ); } /*---------------------------------------------------*/ #define ADD_CHAR_TO_BLOCK(zs,zchh0) \ { \ UInt32 zchh = (UInt32)(zchh0); \ /*-- fast track the common case --*/ \ if (zchh != zs->state_in_ch && \ zs->state_in_len == 1) { \ UChar ch = (UChar)(zs->state_in_ch); \ BZ_UPDATE_CRC( zs->blockCRC, ch ); \ zs->inUse[zs->state_in_ch] = True; \ zs->block[zs->nblock] = (UChar)ch; \ zs->nblock++; \ zs->state_in_ch = zchh; \ } \ else \ /*-- general, uncommon cases --*/ \ if (zchh != zs->state_in_ch || \ zs->state_in_len == 255) { \ if (zs->state_in_ch < 256) \ add_pair_to_block ( zs ); \ zs->state_in_ch = zchh; \ zs->state_in_len = 1; \ } else { \ zs->state_in_len++; \ } \ } /*---------------------------------------------------*/ static Bool copy_input_until_stop ( EState* s ) { Bool progress_in = False; if (s->mode == BZ_M_RUNNING) { /*-- fast track the common case --*/ while (True) { /*-- block full? --*/ if (s->nblock >= s->nblockMAX) break; /*-- no input? --*/ if (s->strm->avail_in == 0) break; progress_in = True; ADD_CHAR_TO_BLOCK ( s, (UInt32)(*((UChar*)(s->strm->next_in))) ); s->strm->next_in++; s->strm->avail_in--; s->strm->total_in_lo32++; if (s->strm->total_in_lo32 == 0) s->strm->total_in_hi32++; } } else { /*-- general, uncommon case --*/ while (True) { /*-- block full? --*/ if (s->nblock >= s->nblockMAX) break; /*-- no input? --*/ if (s->strm->avail_in == 0) break; /*-- flush/finish end? --*/ if (s->avail_in_expect == 0) break; progress_in = True; ADD_CHAR_TO_BLOCK ( s, (UInt32)(*((UChar*)(s->strm->next_in))) ); s->strm->next_in++; s->strm->avail_in--; s->strm->total_in_lo32++; if (s->strm->total_in_lo32 == 0) s->strm->total_in_hi32++; s->avail_in_expect--; } } return progress_in; } /*---------------------------------------------------*/ static Bool copy_output_until_stop ( EState* s ) { Bool progress_out = False; while (True) { /*-- no output space? --*/ if (s->strm->avail_out == 0) break; /*-- block done? --*/ if (s->state_out_pos >= s->numZ) break; progress_out = True; *(s->strm->next_out) = s->zbits[s->state_out_pos]; s->state_out_pos++; s->strm->avail_out--; s->strm->next_out++; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } return progress_out; } /*---------------------------------------------------*/ static Bool handle_compress ( bz_stream* strm ) { Bool progress_in = False; Bool progress_out = False; EState* s = strm->state; while (True) { if (s->state == BZ_S_OUTPUT) { progress_out |= copy_output_until_stop ( s ); if (s->state_out_pos < s->numZ) break; if (s->mode == BZ_M_FINISHING && s->avail_in_expect == 0 && isempty_RL(s)) break; prepare_new_block ( s ); s->state = BZ_S_INPUT; if (s->mode == BZ_M_FLUSHING && s->avail_in_expect == 0 && isempty_RL(s)) break; } if (s->state == BZ_S_INPUT) { progress_in |= copy_input_until_stop ( s ); if (s->mode != BZ_M_RUNNING && s->avail_in_expect == 0) { flush_RL ( s ); BZ2_compressBlock ( s, (Bool)(s->mode == BZ_M_FINISHING) ); s->state = BZ_S_OUTPUT; } else if (s->nblock >= s->nblockMAX) { BZ2_compressBlock ( s, False ); s->state = BZ_S_OUTPUT; } else if (s->strm->avail_in == 0) { break; } } } return progress_in || progress_out; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompress) ( bz_stream *strm, int action ) { Bool progress; EState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; preswitch: switch (s->mode) { case BZ_M_IDLE: return BZ_SEQUENCE_ERROR; case BZ_M_RUNNING: if (action == BZ_RUN) { progress = handle_compress ( strm ); return progress ? BZ_RUN_OK : BZ_PARAM_ERROR; } else if (action == BZ_FLUSH) { s->avail_in_expect = strm->avail_in; s->mode = BZ_M_FLUSHING; goto preswitch; } else if (action == BZ_FINISH) { s->avail_in_expect = strm->avail_in; s->mode = BZ_M_FINISHING; goto preswitch; } else return BZ_PARAM_ERROR; case BZ_M_FLUSHING: if (action != BZ_FLUSH) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect != s->strm->avail_in) return BZ_SEQUENCE_ERROR; progress = handle_compress ( strm ); if (s->avail_in_expect > 0 || !isempty_RL(s) || s->state_out_pos < s->numZ) return BZ_FLUSH_OK; s->mode = BZ_M_RUNNING; return BZ_RUN_OK; case BZ_M_FINISHING: if (action != BZ_FINISH) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect != s->strm->avail_in) return BZ_SEQUENCE_ERROR; progress = handle_compress ( strm ); if (!progress) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect > 0 || !isempty_RL(s) || s->state_out_pos < s->numZ) return BZ_FINISH_OK; s->mode = BZ_M_IDLE; return BZ_STREAM_END; } return BZ_OK; /*--not reached--*/ } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompressEnd) ( bz_stream *strm ) { EState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; if (s->arr1 != NULL) BZFREE(s->arr1); if (s->arr2 != NULL) BZFREE(s->arr2); if (s->ftab != NULL) BZFREE(s->ftab); BZFREE(strm->state); strm->state = NULL; return BZ_OK; } /*---------------------------------------------------*/ /*--- Decompression stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompressInit) ( bz_stream* strm, int verbosity, int small ) { DState* s; if (!bz_config_ok()) return BZ_CONFIG_ERROR; if (strm == NULL) return BZ_PARAM_ERROR; if (small != 0 && small != 1) return BZ_PARAM_ERROR; if (verbosity < 0 || verbosity > 4) return BZ_PARAM_ERROR; if (strm->bzalloc == NULL) strm->bzalloc = default_bzalloc; if (strm->bzfree == NULL) strm->bzfree = default_bzfree; s = BZALLOC( sizeof(DState) ); if (s == NULL) return BZ_MEM_ERROR; s->strm = strm; strm->state = s; s->state = BZ_X_MAGIC_1; s->bsLive = 0; s->bsBuff = 0; s->calculatedCombinedCRC = 0; strm->total_in_lo32 = 0; strm->total_in_hi32 = 0; strm->total_out_lo32 = 0; strm->total_out_hi32 = 0; s->smallDecompress = (Bool)small; s->ll4 = NULL; s->ll16 = NULL; s->tt = NULL; s->currBlockNo = 0; s->verbosity = verbosity; return BZ_OK; } /*---------------------------------------------------*/ /* Return True iff data corruption is discovered. Returns False if there is no problem. */ static Bool unRLE_obuf_to_output_FAST ( DState* s ) { UChar k1; if (s->blockRandomised) { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return False; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return False; /* Only caused by corrupt data stream? */ if (s->nblock_used > s->save_nblock+1) return True; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_FAST(s->k0); BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; s->nblock_used++; } } else { /* restore */ UInt32 c_calculatedBlockCRC = s->calculatedBlockCRC; UChar c_state_out_ch = s->state_out_ch; Int32 c_state_out_len = s->state_out_len; Int32 c_nblock_used = s->nblock_used; Int32 c_k0 = s->k0; UInt32* c_tt = s->tt; UInt32 c_tPos = s->tPos; char* cs_next_out = s->strm->next_out; unsigned int cs_avail_out = s->strm->avail_out; /* end restore */ UInt32 avail_out_INIT = cs_avail_out; Int32 s_save_nblockPP = s->save_nblock+1; unsigned int total_out_lo32_old; while (True) { /* try to finish existing run */ if (c_state_out_len > 0) { while (True) { if (cs_avail_out == 0) goto return_notr; if (c_state_out_len == 1) break; *( (UChar*)(cs_next_out) ) = c_state_out_ch; BZ_UPDATE_CRC ( c_calculatedBlockCRC, c_state_out_ch ); c_state_out_len--; cs_next_out++; cs_avail_out--; } s_state_out_len_eq_one: { if (cs_avail_out == 0) { c_state_out_len = 1; goto return_notr; }; *( (UChar*)(cs_next_out) ) = c_state_out_ch; BZ_UPDATE_CRC ( c_calculatedBlockCRC, c_state_out_ch ); cs_next_out++; cs_avail_out--; } } /* Only caused by corrupt data stream? */ if (c_nblock_used > s_save_nblockPP) return True; /* can a new run be started? */ if (c_nblock_used == s_save_nblockPP) { c_state_out_len = 0; goto return_notr; }; c_state_out_ch = c_k0; BZ_GET_FAST_C(k1); c_nblock_used++; if (k1 != c_k0) { c_k0 = k1; goto s_state_out_len_eq_one; }; if (c_nblock_used == s_save_nblockPP) goto s_state_out_len_eq_one; c_state_out_len = 2; BZ_GET_FAST_C(k1); c_nblock_used++; if (c_nblock_used == s_save_nblockPP) continue; if (k1 != c_k0) { c_k0 = k1; continue; }; c_state_out_len = 3; BZ_GET_FAST_C(k1); c_nblock_used++; if (c_nblock_used == s_save_nblockPP) continue; if (k1 != c_k0) { c_k0 = k1; continue; }; BZ_GET_FAST_C(k1); c_nblock_used++; c_state_out_len = ((Int32)k1) + 4; BZ_GET_FAST_C(c_k0); c_nblock_used++; } return_notr: total_out_lo32_old = s->strm->total_out_lo32; s->strm->total_out_lo32 += (avail_out_INIT - cs_avail_out); if (s->strm->total_out_lo32 < total_out_lo32_old) s->strm->total_out_hi32++; /* save */ s->calculatedBlockCRC = c_calculatedBlockCRC; s->state_out_ch = c_state_out_ch; s->state_out_len = c_state_out_len; s->nblock_used = c_nblock_used; s->k0 = c_k0; s->tt = c_tt; s->tPos = c_tPos; s->strm->next_out = cs_next_out; s->strm->avail_out = cs_avail_out; /* end save */ } return False; } /*---------------------------------------------------*/ /* Return True iff data corruption is discovered. Returns False if there is no problem. */ static Bool unRLE_obuf_to_output_SMALL ( DState* s ) { UChar k1; if (s->blockRandomised) { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return False; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return False; /* Only caused by corrupt data stream? */ if (s->nblock_used > s->save_nblock+1) return True; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_SMALL(s->k0); BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; s->nblock_used++; } } else { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return False; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return False; /* Only caused by corrupt data stream? */ if (s->nblock_used > s->save_nblock+1) return True; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_SMALL(k1); s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_SMALL(s->k0); s->nblock_used++; } } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompress) ( bz_stream *strm ) { Bool corrupt; DState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; while (True) { if (s->state == BZ_X_IDLE) return BZ_SEQUENCE_ERROR; if (s->state == BZ_X_OUTPUT) { if (s->smallDecompress) corrupt = unRLE_obuf_to_output_SMALL ( s ); else corrupt = unRLE_obuf_to_output_FAST ( s ); if (corrupt) return BZ_DATA_ERROR; if (s->nblock_used == s->save_nblock+1 && s->state_out_len == 0) { BZ_FINALISE_CRC ( s->calculatedBlockCRC ); if (s->verbosity >= 3) VPrintf2 ( " {0x%08x, 0x%08x}", s->storedBlockCRC, s->calculatedBlockCRC ); if (s->verbosity >= 2) VPrintf0 ( "]" ); if (s->calculatedBlockCRC != s->storedBlockCRC) return BZ_DATA_ERROR; s->calculatedCombinedCRC = (s->calculatedCombinedCRC << 1) | (s->calculatedCombinedCRC >> 31); s->calculatedCombinedCRC ^= s->calculatedBlockCRC; s->state = BZ_X_BLKHDR_1; } else { return BZ_OK; } } if (s->state >= BZ_X_MAGIC_1) { Int32 r = BZ2_decompress ( s ); if (r == BZ_STREAM_END) { if (s->verbosity >= 3) VPrintf2 ( "\n combined CRCs: stored = 0x%08x, computed = 0x%08x", s->storedCombinedCRC, s->calculatedCombinedCRC ); if (s->calculatedCombinedCRC != s->storedCombinedCRC) return BZ_DATA_ERROR; return r; } if (s->state != BZ_X_OUTPUT) return r; } } AssertH ( 0, 6001 ); return 0; /*NOTREACHED*/ } /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompressEnd) ( bz_stream *strm ) { DState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; if (s->tt != NULL) BZFREE(s->tt); if (s->ll16 != NULL) BZFREE(s->ll16); if (s->ll4 != NULL) BZFREE(s->ll4); BZFREE(strm->state); strm->state = NULL; return BZ_OK; } #ifndef BZ_NO_STDIO /*---------------------------------------------------*/ /*--- File I/O stuff ---*/ /*---------------------------------------------------*/ #define BZ_SETERR(eee) \ { \ if (bzerror != NULL) *bzerror = eee; \ if (bzf != NULL) bzf->lastErr = eee; \ } typedef struct { FILE* handle; Char buf[BZ_MAX_UNUSED]; Int32 bufN; Bool writing; bz_stream strm; Int32 lastErr; Bool initialisedOk; } bzFile; /*---------------------------------------------*/ static Bool myfeof ( FILE* f ) { Int32 c = fgetc ( f ); if (c == EOF) return True; ungetc ( c, f ); return False; } /*---------------------------------------------------*/ BZFILE* BZ_API(BZ2_bzWriteOpen) ( int* bzerror, FILE* f, int blockSize100k, int verbosity, int workFactor ) { Int32 ret; bzFile* bzf = NULL; BZ_SETERR(BZ_OK); if (f == NULL || (blockSize100k < 1 || blockSize100k > 9) || (workFactor < 0 || workFactor > 250) || (verbosity < 0 || verbosity > 4)) { BZ_SETERR(BZ_PARAM_ERROR); return NULL; }; if (ferror(f)) { BZ_SETERR(BZ_IO_ERROR); return NULL; }; bzf = malloc ( sizeof(bzFile) ); if (bzf == NULL) { BZ_SETERR(BZ_MEM_ERROR); return NULL; }; BZ_SETERR(BZ_OK); bzf->initialisedOk = False; bzf->bufN = 0; bzf->handle = f; bzf->writing = True; bzf->strm.bzalloc = NULL; bzf->strm.bzfree = NULL; bzf->strm.opaque = NULL; if (workFactor == 0) workFactor = 30; ret = BZ2_bzCompressInit ( &(bzf->strm), blockSize100k, verbosity, workFactor ); if (ret != BZ_OK) { BZ_SETERR(ret); free(bzf); return NULL; }; bzf->strm.avail_in = 0; bzf->initialisedOk = True; return bzf; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzWrite) ( int* bzerror, BZFILE* b, void* buf, int len ) { Int32 n, n2, ret; bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL || buf == NULL || len < 0) { BZ_SETERR(BZ_PARAM_ERROR); return; }; if (!(bzf->writing)) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; if (len == 0) { BZ_SETERR(BZ_OK); return; }; bzf->strm.avail_in = len; bzf->strm.next_in = buf; while (True) { bzf->strm.avail_out = BZ_MAX_UNUSED; bzf->strm.next_out = bzf->buf; ret = BZ2_bzCompress ( &(bzf->strm), BZ_RUN ); if (ret != BZ_RUN_OK) { BZ_SETERR(ret); return; }; if (bzf->strm.avail_out < BZ_MAX_UNUSED) { n = BZ_MAX_UNUSED - bzf->strm.avail_out; n2 = fwrite ( (void*)(bzf->buf), sizeof(UChar), n, bzf->handle ); if (n != n2 || ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (bzf->strm.avail_in == 0) { BZ_SETERR(BZ_OK); return; }; } } /*---------------------------------------------------*/ void BZ_API(BZ2_bzWriteClose) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in, unsigned int* nbytes_out ) { BZ2_bzWriteClose64 ( bzerror, b, abandon, nbytes_in, NULL, nbytes_out, NULL ); } void BZ_API(BZ2_bzWriteClose64) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in_lo32, unsigned int* nbytes_in_hi32, unsigned int* nbytes_out_lo32, unsigned int* nbytes_out_hi32 ) { Int32 n, n2, ret; bzFile* bzf = (bzFile*)b; if (bzf == NULL) { BZ_SETERR(BZ_OK); return; }; if (!(bzf->writing)) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; if (nbytes_in_lo32 != NULL) *nbytes_in_lo32 = 0; if (nbytes_in_hi32 != NULL) *nbytes_in_hi32 = 0; if (nbytes_out_lo32 != NULL) *nbytes_out_lo32 = 0; if (nbytes_out_hi32 != NULL) *nbytes_out_hi32 = 0; if ((!abandon) && bzf->lastErr == BZ_OK) { while (True) { bzf->strm.avail_out = BZ_MAX_UNUSED; bzf->strm.next_out = bzf->buf; ret = BZ2_bzCompress ( &(bzf->strm), BZ_FINISH ); if (ret != BZ_FINISH_OK && ret != BZ_STREAM_END) { BZ_SETERR(ret); return; }; if (bzf->strm.avail_out < BZ_MAX_UNUSED) { n = BZ_MAX_UNUSED - bzf->strm.avail_out; n2 = fwrite ( (void*)(bzf->buf), sizeof(UChar), n, bzf->handle ); if (n != n2 || ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (ret == BZ_STREAM_END) break; } } if ( !abandon && !ferror ( bzf->handle ) ) { fflush ( bzf->handle ); if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (nbytes_in_lo32 != NULL) *nbytes_in_lo32 = bzf->strm.total_in_lo32; if (nbytes_in_hi32 != NULL) *nbytes_in_hi32 = bzf->strm.total_in_hi32; if (nbytes_out_lo32 != NULL) *nbytes_out_lo32 = bzf->strm.total_out_lo32; if (nbytes_out_hi32 != NULL) *nbytes_out_hi32 = bzf->strm.total_out_hi32; BZ_SETERR(BZ_OK); BZ2_bzCompressEnd ( &(bzf->strm) ); free ( bzf ); } /*---------------------------------------------------*/ BZFILE* BZ_API(BZ2_bzReadOpen) ( int* bzerror, FILE* f, int verbosity, int small, void* unused, int nUnused ) { bzFile* bzf = NULL; int ret; BZ_SETERR(BZ_OK); if (f == NULL || (small != 0 && small != 1) || (verbosity < 0 || verbosity > 4) || (unused == NULL && nUnused != 0) || (unused != NULL && (nUnused < 0 || nUnused > BZ_MAX_UNUSED))) { BZ_SETERR(BZ_PARAM_ERROR); return NULL; }; if (ferror(f)) { BZ_SETERR(BZ_IO_ERROR); return NULL; }; bzf = malloc ( sizeof(bzFile) ); if (bzf == NULL) { BZ_SETERR(BZ_MEM_ERROR); return NULL; }; BZ_SETERR(BZ_OK); bzf->initialisedOk = False; bzf->handle = f; bzf->bufN = 0; bzf->writing = False; bzf->strm.bzalloc = NULL; bzf->strm.bzfree = NULL; bzf->strm.opaque = NULL; while (nUnused > 0) { bzf->buf[bzf->bufN] = *((UChar*)(unused)); bzf->bufN++; unused = ((void*)( 1 + ((UChar*)(unused)) )); nUnused--; } ret = BZ2_bzDecompressInit ( &(bzf->strm), verbosity, small ); if (ret != BZ_OK) { BZ_SETERR(ret); free(bzf); return NULL; }; bzf->strm.avail_in = bzf->bufN; bzf->strm.next_in = bzf->buf; bzf->initialisedOk = True; return bzf; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzReadClose) ( int *bzerror, BZFILE *b ) { bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL) { BZ_SETERR(BZ_OK); return; }; if (bzf->writing) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (bzf->initialisedOk) (void)BZ2_bzDecompressEnd ( &(bzf->strm) ); free ( bzf ); } /*---------------------------------------------------*/ int BZ_API(BZ2_bzRead) ( int* bzerror, BZFILE* b, void* buf, int len ) { Int32 n, ret; bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL || buf == NULL || len < 0) { BZ_SETERR(BZ_PARAM_ERROR); return 0; }; if (bzf->writing) { BZ_SETERR(BZ_SEQUENCE_ERROR); return 0; }; if (len == 0) { BZ_SETERR(BZ_OK); return 0; }; bzf->strm.avail_out = len; bzf->strm.next_out = buf; while (True) { if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return 0; }; if (bzf->strm.avail_in == 0 && !myfeof(bzf->handle)) { n = fread ( bzf->buf, sizeof(UChar), BZ_MAX_UNUSED, bzf->handle ); if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return 0; }; bzf->bufN = n; bzf->strm.avail_in = bzf->bufN; bzf->strm.next_in = bzf->buf; } ret = BZ2_bzDecompress ( &(bzf->strm) ); if (ret != BZ_OK && ret != BZ_STREAM_END) { BZ_SETERR(ret); return 0; }; if (ret == BZ_OK && myfeof(bzf->handle) && bzf->strm.avail_in == 0 && bzf->strm.avail_out > 0) { BZ_SETERR(BZ_UNEXPECTED_EOF); return 0; }; if (ret == BZ_STREAM_END) { BZ_SETERR(BZ_STREAM_END); return len - bzf->strm.avail_out; }; if (bzf->strm.avail_out == 0) { BZ_SETERR(BZ_OK); return len; }; } return 0; /*not reached*/ } /*---------------------------------------------------*/ void BZ_API(BZ2_bzReadGetUnused) ( int* bzerror, BZFILE* b, void** unused, int* nUnused ) { bzFile* bzf = (bzFile*)b; if (bzf == NULL) { BZ_SETERR(BZ_PARAM_ERROR); return; }; if (bzf->lastErr != BZ_STREAM_END) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (unused == NULL || nUnused == NULL) { BZ_SETERR(BZ_PARAM_ERROR); return; }; BZ_SETERR(BZ_OK); *nUnused = bzf->strm.avail_in; *unused = bzf->strm.next_in; } #endif /*---------------------------------------------------*/ /*--- Misc convenience stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ int BZ_API(BZ2_bzBuffToBuffCompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor ) { bz_stream strm; int ret; if (dest == NULL || destLen == NULL || source == NULL || blockSize100k < 1 || blockSize100k > 9 || verbosity < 0 || verbosity > 4 || workFactor < 0 || workFactor > 250) return BZ_PARAM_ERROR; if (workFactor == 0) workFactor = 30; strm.bzalloc = NULL; strm.bzfree = NULL; strm.opaque = NULL; ret = BZ2_bzCompressInit ( &strm, blockSize100k, verbosity, workFactor ); if (ret != BZ_OK) return ret; strm.next_in = source; strm.next_out = dest; strm.avail_in = sourceLen; strm.avail_out = *destLen; ret = BZ2_bzCompress ( &strm, BZ_FINISH ); if (ret == BZ_FINISH_OK) goto output_overflow; if (ret != BZ_STREAM_END) goto errhandler; /* normal termination */ *destLen -= strm.avail_out; BZ2_bzCompressEnd ( &strm ); return BZ_OK; output_overflow: BZ2_bzCompressEnd ( &strm ); return BZ_OUTBUFF_FULL; errhandler: BZ2_bzCompressEnd ( &strm ); return ret; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzBuffToBuffDecompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int small, int verbosity ) { bz_stream strm; int ret; if (dest == NULL || destLen == NULL || source == NULL || (small != 0 && small != 1) || verbosity < 0 || verbosity > 4) return BZ_PARAM_ERROR; strm.bzalloc = NULL; strm.bzfree = NULL; strm.opaque = NULL; ret = BZ2_bzDecompressInit ( &strm, verbosity, small ); if (ret != BZ_OK) return ret; strm.next_in = source; strm.next_out = dest; strm.avail_in = sourceLen; strm.avail_out = *destLen; ret = BZ2_bzDecompress ( &strm ); if (ret == BZ_OK) goto output_overflow_or_eof; if (ret != BZ_STREAM_END) goto errhandler; /* normal termination */ *destLen -= strm.avail_out; BZ2_bzDecompressEnd ( &strm ); return BZ_OK; output_overflow_or_eof: if (strm.avail_out > 0) { BZ2_bzDecompressEnd ( &strm ); return BZ_UNEXPECTED_EOF; } else { BZ2_bzDecompressEnd ( &strm ); return BZ_OUTBUFF_FULL; }; errhandler: BZ2_bzDecompressEnd ( &strm ); return ret; } /*---------------------------------------------------*/ /*-- Code contributed by Yoshioka Tsuneo (QWF00133@niftyserve.or.jp/tsuneo-y@is.aist-nara.ac.jp), to support better zlib compatibility. This code is not _officially_ part of libbzip2 (yet); I haven't tested it, documented it, or considered the threading-safeness of it. If this code breaks, please contact both Yoshioka and me. --*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ /*-- return version like "0.9.0c". --*/ const char * BZ_API(BZ2_bzlibVersion)(void) { return BZ_VERSION; } #ifndef BZ_NO_STDIO /*---------------------------------------------------*/ #if defined(_WIN32) || defined(OS2) || defined(MSDOS) # include <fcntl.h> # include <io.h> # define SET_BINARY_MODE(file) setmode(fileno(file),O_BINARY) #else # define SET_BINARY_MODE(file) #endif static BZFILE * bzopen_or_bzdopen ( const char *path, /* no use when bzdopen */ int fd, /* no use when bzdopen */ const char *mode, int open_mode) /* bzopen: 0, bzdopen:1 */ { int bzerr; char unused[BZ_MAX_UNUSED]; int blockSize100k = 9; int writing = 0; char mode2[10] = ""; FILE *fp = NULL; BZFILE *bzfp = NULL; int verbosity = 0; int workFactor = 30; int smallMode = 0; int nUnused = 0; if (mode == NULL) return NULL; while (*mode) { switch (*mode) { case 'r': writing = 0; break; case 'w': writing = 1; break; case 's': smallMode = 1; break; default: if (isdigit((int)(*mode))) { blockSize100k = *mode-BZ_HDR_0; } } mode++; } strcat(mode2, writing ? "w" : "r" ); strcat(mode2,"b"); /* binary mode */ if (open_mode==0) { if (path==NULL || strcmp(path,"")==0) { fp = (writing ? stdout : stdin); SET_BINARY_MODE(fp); } else { fp = fopen(path,mode2); } } else { #ifdef BZ_STRICT_ANSI fp = NULL; #else fp = fdopen(fd,mode2); #endif } if (fp == NULL) return NULL; if (writing) { /* Guard against total chaos and anarchy -- JRS */ if (blockSize100k < 1) blockSize100k = 1; if (blockSize100k > 9) blockSize100k = 9; bzfp = BZ2_bzWriteOpen(&bzerr,fp,blockSize100k, verbosity,workFactor); } else { bzfp = BZ2_bzReadOpen(&bzerr,fp,verbosity,smallMode, unused,nUnused); } if (bzfp == NULL) { if (fp != stdin && fp != stdout) fclose(fp); return NULL; } return bzfp; } /*---------------------------------------------------*/ /*-- open file for read or write. ex) bzopen("file","w9") case path="" or NULL => use stdin or stdout. --*/ BZFILE * BZ_API(BZ2_bzopen) ( const char *path, const char *mode ) { return bzopen_or_bzdopen(path,-1,mode,/*bzopen*/0); } /*---------------------------------------------------*/ BZFILE * BZ_API(BZ2_bzdopen) ( int fd, const char *mode ) { return bzopen_or_bzdopen(NULL,fd,mode,/*bzdopen*/1); } /*---------------------------------------------------*/ int BZ_API(BZ2_bzread) (BZFILE* b, void* buf, int len ) { int bzerr, nread; if (((bzFile*)b)->lastErr == BZ_STREAM_END) return 0; nread = BZ2_bzRead(&bzerr,b,buf,len); if (bzerr == BZ_OK || bzerr == BZ_STREAM_END) { return nread; } else { return -1; } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzwrite) (BZFILE* b, void* buf, int len ) { int bzerr; BZ2_bzWrite(&bzerr,b,buf,len); if(bzerr == BZ_OK){ return len; }else{ return -1; } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzflush) (BZFILE *b) { /* do nothing now... */ return 0; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzclose) (BZFILE* b) { int bzerr; FILE *fp = ((bzFile *)b)->handle; if (b==NULL) {return;} if(((bzFile*)b)->writing){ BZ2_bzWriteClose(&bzerr,b,0,NULL,NULL); if(bzerr != BZ_OK){ BZ2_bzWriteClose(NULL,b,1,NULL,NULL); } }else{ BZ2_bzReadClose(&bzerr,b); } if(fp!=stdin && fp!=stdout){ fclose(fp); } } /*---------------------------------------------------*/ /*-- return last error code --*/ static char *bzerrorstrings[] = { "OK" ,"SEQUENCE_ERROR" ,"PARAM_ERROR" ,"MEM_ERROR" ,"DATA_ERROR" ,"DATA_ERROR_MAGIC" ,"IO_ERROR" ,"UNEXPECTED_EOF" ,"OUTBUFF_FULL" ,"CONFIG_ERROR" ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ }; const char * BZ_API(BZ2_bzerror) (BZFILE *b, int *errnum) { int err = ((bzFile *)b)->lastErr; if(err>0) err = 0; *errnum = err; return bzerrorstrings[err*-1]; } #endif /*-------------------------------------------------------------*/ /*--- end bzlib.c ---*/ /*-------------------------------------------------------------*/ ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// /* A test program written to test robustness to decompression of corrupted data. Usage is unzcrash filename and the program will read the specified file, compress it (in memory), and then repeatedly decompress it, each time with a different bit of the compressed data inverted, so as to test all possible one-bit errors. This should not cause any invalid memory accesses. If it does, I want to know about it! p.s. As you can see from the above description, the process is incredibly slow. A file of size eg 5KB will cause it to run for many hours. */ //#include <stdio.h> //#include <assert.h> //#include "bzlib.h" #define M_BLOCK 1000000 typedef unsigned char uchar; #define M_BLOCK_OUT (M_BLOCK + 1000000) uchar inbuf[M_BLOCK]; uchar outbuf[M_BLOCK_OUT]; uchar zbuf[M_BLOCK + 600 + (M_BLOCK / 100)]; int nIn, nOut, nZ; static char *bzerrorstrings[] = { "OK" ,"SEQUENCE_ERROR" ,"PARAM_ERROR" ,"MEM_ERROR" ,"DATA_ERROR" ,"DATA_ERROR_MAGIC" ,"IO_ERROR" ,"UNEXPECTED_EOF" ,"OUTBUFF_FULL" ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ }; void flip_bit ( int bit ) { int byteno = bit / 8; int bitno = bit % 8; uchar mask = 1 << bitno; //fprintf ( stderr, "(byte %d bit %d mask %d)", // byteno, bitno, (int)mask ); zbuf[byteno] ^= mask; } void set_inbuf ( void ) { inbuf[0] = 0; my_strcat(inbuf, "At her sixtieth birthday party, Margaret Thatcher "); my_strcat(inbuf, "blew on the cake to light the candles.\n"); my_strcat(inbuf, "This program, bzip2, the associated library libbzip2, and all\n"); my_strcat(inbuf, "documentation, are copyright (C) 1996-2004 Julian R Seward. All\n"); my_strcat(inbuf, "rights reserved.\n"); my_strcat(inbuf, "\n"); my_strcat(inbuf, "Redistribution and use in source and binary forms, with or without\n"); my_strcat(inbuf, "modification, are permitted provided that the following conditions\n"); my_strcat(inbuf, "are met:\n"); my_strcat(inbuf, "\n"); my_strcat(inbuf, "1. Redistributions of source code must retain the above copyright\n"); my_strcat(inbuf, " notice, this list of conditions and the following disclaimer.\n"); my_strcat(inbuf, "\n"); my_strcat(inbuf, "2. The origin of this software must not be misrepresented; you must\n"); my_strcat(inbuf, " not claim that you wrote the original software. If you use this\n"); my_strcat(inbuf, " software in a product, an acknowledgment in the product\n"); my_strcat(inbuf, " documentation would be appreciated but is not required.\n"); my_strcat(inbuf, "\n"); my_strcat(inbuf, "3. Altered source versions must be plainly marked as such, and must\n"); my_strcat(inbuf, " not be misrepresented as being the original software.\n"); my_strcat(inbuf, "\n"); my_strcat(inbuf, "4. The name of the author may not be used to endorse or promote\n"); my_strcat(inbuf, " products derived from this software without specific prior written\n"); my_strcat(inbuf, " permission.\n"); my_strcat(inbuf, "\n"); my_strcat(inbuf, "THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS\n"); my_strcat(inbuf, "OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n"); my_strcat(inbuf, "WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n"); my_strcat(inbuf, "ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY\n"); my_strcat(inbuf, "DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n"); my_strcat(inbuf, "DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE\n"); my_strcat(inbuf, "GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n"); my_strcat(inbuf, "INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,\n"); my_strcat(inbuf, "WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING\n"); my_strcat(inbuf, "NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n"); my_strcat(inbuf, "SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "ababababababababababababababababababababababababababababababab"); my_strcat(inbuf, "\n"); } void entry ( HWord(*service)(HWord,HWord) ) { int r; int bit; int i; serviceFn = service; set_inbuf(); nIn = vexxx_strlen(inbuf)+1; vexxx_printf( "%d bytes read\n", nIn ); nZ = M_BLOCK; r = BZ2_bzBuffToBuffCompress ( zbuf, &nZ, inbuf, nIn, 9, 4/*verb*/, 30 ); if (r != BZ_OK) { vexxx_printf("initial compress failed!\n"); (*serviceFn)(0,0); } vexxx_printf( "%d after compression\n", nZ ); for (bit = 0; bit < nZ*8; bit += (bit < 35 ? 1 : 377)) { vexxx_printf( "bit %d ", bit ); flip_bit ( bit ); nOut = M_BLOCK_OUT; r = BZ2_bzBuffToBuffDecompress ( outbuf, &nOut, zbuf, nZ, 1/*small*/, 0 ); vexxx_printf( " %d %s ", r, bzerrorstrings[-r] ); if (r != BZ_OK) { vexxx_printf( "\n" ); } else { if (nOut != nIn) { vexxx_printf( "nIn/nOut mismatch %d %d\n", nIn, nOut ); (*serviceFn)(0,0); } else { for (i = 0; i < nOut; i++) if (inbuf[i] != outbuf[i]) { vexxx_printf( "mismatch at %d\n", i ); (*serviceFn)(0,0); } if (i == nOut) vexxx_printf( "really ok!\n" ); } } flip_bit ( bit ); } #if 0 assert (nOut == nIn); for (i = 0; i < nOut; i++) { if (inbuf[i] != outbuf[i]) { vexxx_printf( "difference at %d !\n", i ); return 1; } } #endif vexxx_printf( "all ok\n" ); (*serviceFn)(0,0); }