// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <assert.h> // For assert #include <limits.h> // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_S390 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/register-configuration.h" #include "src/runtime/runtime.h" #include "src/s390/macro-assembler-s390.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size, CodeObjectRequired create_code_object) : Assembler(arg_isolate, buffer, size), generating_stub_(false), has_frame_(false) { if (create_code_object == CodeObjectRequired::kYes) { code_object_ = Handle<Object>::New(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::Jump(Register target) { b(target); } void MacroAssembler::JumpToJSEntry(Register target) { Move(ip, target); Jump(ip); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, CRegister) { Label skip; if (cond != al) b(NegateCondition(cond), &skip); DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY); mov(ip, Operand(target, rmode)); b(ip); bind(&skip); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, CRegister cr) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr); } void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); jump(code, rmode, cond); } int MacroAssembler::CallSize(Register target) { return 2; } // BASR void MacroAssembler::Call(Register target) { Label start; bind(&start); // Branch to target via indirect branch basr(r14, target); DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::CallJSEntry(Register target) { DCHECK(target.is(ip)); Call(target); } int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode, Condition cond) { // S390 Assembler::move sequence is IILF / IIHF int size; #if V8_TARGET_ARCH_S390X size = 14; // IILF + IIHF + BASR #else size = 8; // IILF + BASR #endif return size; } int MacroAssembler::CallSizeNotPredictableCodeSize(Address target, RelocInfo::Mode rmode, Condition cond) { // S390 Assembler::move sequence is IILF / IIHF int size; #if V8_TARGET_ARCH_S390X size = 14; // IILF + IIHF + BASR #else size = 8; // IILF + BASR #endif return size; } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond) { DCHECK(cond == al); #ifdef DEBUG // Check the expected size before generating code to ensure we assume the same // constant pool availability (e.g., whether constant pool is full or not). int expected_size = CallSize(target, rmode, cond); Label start; bind(&start); #endif mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode)); basr(r14, ip); DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond) { return 6; // BRASL } void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode) && cond == al); #ifdef DEBUG // Check the expected size before generating code to ensure we assume the same // constant pool availability (e.g., whether constant pool is full or not). int expected_size = CallSize(code, rmode, ast_id, cond); Label start; bind(&start); #endif call(code, rmode, ast_id); DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::Drop(int count) { if (count > 0) { int total = count * kPointerSize; if (is_uint12(total)) { la(sp, MemOperand(sp, total)); } else if (is_int20(total)) { lay(sp, MemOperand(sp, total)); } else { AddP(sp, Operand(total)); } } } void MacroAssembler::Drop(Register count, Register scratch) { ShiftLeftP(scratch, count, Operand(kPointerSizeLog2)); AddP(sp, sp, scratch); } void MacroAssembler::Call(Label* target) { b(r14, target); } void MacroAssembler::Push(Handle<Object> handle) { mov(r0, Operand(handle)); push(r0); } void MacroAssembler::Move(Register dst, Handle<Object> value) { mov(dst, Operand(value)); } void MacroAssembler::Move(Register dst, Register src, Condition cond) { if (!dst.is(src)) { LoadRR(dst, src); } } void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) { if (!dst.is(src)) { ldr(dst, src); } } void MacroAssembler::MultiPush(RegList regs, Register location) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kPointerSize; SubP(location, location, Operand(stack_offset)); for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; StoreP(ToRegister(i), MemOperand(location, stack_offset)); } } } void MacroAssembler::MultiPop(RegList regs, Register location) { int16_t stack_offset = 0; for (int16_t i = 0; i < Register::kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { LoadP(ToRegister(i), MemOperand(location, stack_offset)); stack_offset += kPointerSize; } } AddP(location, location, Operand(stack_offset)); } void MacroAssembler::MultiPushDoubles(RegList dregs, Register location) { int16_t num_to_push = NumberOfBitsSet(dregs); int16_t stack_offset = num_to_push * kDoubleSize; SubP(location, location, Operand(stack_offset)); for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) { if ((dregs & (1 << i)) != 0) { DoubleRegister dreg = DoubleRegister::from_code(i); stack_offset -= kDoubleSize; StoreDouble(dreg, MemOperand(location, stack_offset)); } } } void MacroAssembler::MultiPopDoubles(RegList dregs, Register location) { int16_t stack_offset = 0; for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) { if ((dregs & (1 << i)) != 0) { DoubleRegister dreg = DoubleRegister::from_code(i); LoadDouble(dreg, MemOperand(location, stack_offset)); stack_offset += kDoubleSize; } } AddP(location, location, Operand(stack_offset)); } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition) { LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, Condition) { DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2)); } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cond, Label* branch) { DCHECK(cond == eq || cond == ne); CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cond, branch); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); lay(dst, MemOperand(object, offset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; AndP(r0, dst, Operand((1 << kPointerSizeLog2) - 1)); beq(&ok, Label::kNear); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4))); mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8))); } } // Will clobber 4 registers: object, map, dst, ip. The // register 'object' contains a heap object pointer. void MacroAssembler::RecordWriteForMap(Register object, Register map, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode) { if (emit_debug_code()) { LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset)); CmpP(dst, Operand(isolate()->factory()->meta_map())); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (!FLAG_incremental_marking) { return; } if (emit_debug_code()) { CmpP(map, FieldMemOperand(object, HeapObject::kMapOffset)); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } Label done; // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. CheckPageFlag(map, map, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); lay(dst, MemOperand(object, HeapObject::kMapOffset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; AndP(r0, dst, Operand((1 << kPointerSizeLog2) - 1)); beq(&ok, Label::kNear); stop("Unaligned cell in write barrier"); bind(&ok); } // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { push(r14); } RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(r14); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12))); mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16))); } } // Will clobber 4 registers: object, address, scratch, ip. The // register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite( Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(!object.is(value)); if (emit_debug_code()) { CmpP(value, MemOperand(address)); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); } CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { push(r14); } RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(r14); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, value); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12))); mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16))); } } void MacroAssembler::RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch) { const int offset = JSFunction::kCodeEntryOffset; // Since a code entry (value) is always in old space, we don't need to update // remembered set. If incremental marking is off, there is nothing for us to // do. if (!FLAG_incremental_marking) return; DCHECK(js_function.is(r3)); DCHECK(code_entry.is(r6)); DCHECK(scratch.is(r7)); AssertNotSmi(js_function); if (emit_debug_code()) { AddP(scratch, js_function, Operand(offset - kHeapObjectTag)); LoadP(ip, MemOperand(scratch)); CmpP(ip, code_entry); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; CheckPageFlag(code_entry, scratch, MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(js_function, scratch, MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); const Register dst = scratch; AddP(dst, js_function, Operand(offset - kHeapObjectTag)); // Save caller-saved registers. js_function and code_entry are in the // caller-saved register list. DCHECK(kJSCallerSaved & js_function.bit()); // DCHECK(kJSCallerSaved & code_entry.bit()); MultiPush(kJSCallerSaved | code_entry.bit() | r14.bit()); int argument_count = 3; PrepareCallCFunction(argument_count, code_entry); LoadRR(r2, js_function); LoadRR(r3, dst); mov(r4, Operand(ExternalReference::isolate_address(isolate()))); { AllowExternalCallThatCantCauseGC scope(this); CallCFunction( ExternalReference::incremental_marking_record_write_code_entry_function( isolate()), argument_count); } // Restore caller-saved registers (including js_function and code_entry). MultiPop(kJSCallerSaved | code_entry.bit() | r14.bit()); bind(&done); } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok); stop("Remembered set pointer is in new space"); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); mov(ip, Operand(store_buffer)); LoadP(scratch, MemOperand(ip)); // Store pointer to buffer and increment buffer top. StoreP(address, MemOperand(scratch)); AddP(scratch, Operand(kPointerSize)); // Write back new top of buffer. StoreP(scratch, MemOperand(ip)); // Call stub on end of buffer. // Check for end of buffer. AndP(scratch, Operand(StoreBuffer::kStoreBufferMask)); if (and_then == kFallThroughAtEnd) { bne(&done, Label::kNear); } else { DCHECK(and_then == kReturnAtEnd); bne(&done, Label::kNear); } push(r14); StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); CallStub(&store_buffer_overflow); pop(r14); bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } void MacroAssembler::PushCommonFrame(Register marker_reg) { int fp_delta = 0; CleanseP(r14); if (marker_reg.is_valid()) { Push(r14, fp, marker_reg); fp_delta = 1; } else { Push(r14, fp); fp_delta = 0; } la(fp, MemOperand(sp, fp_delta * kPointerSize)); } void MacroAssembler::PopCommonFrame(Register marker_reg) { if (marker_reg.is_valid()) { Pop(r14, fp, marker_reg); } else { Pop(r14, fp); } } void MacroAssembler::PushStandardFrame(Register function_reg) { int fp_delta = 0; CleanseP(r14); if (function_reg.is_valid()) { Push(r14, fp, cp, function_reg); fp_delta = 2; } else { Push(r14, fp, cp); fp_delta = 1; } la(fp, MemOperand(sp, fp_delta * kPointerSize)); } void MacroAssembler::RestoreFrameStateForTailCall() { // if (FLAG_enable_embedded_constant_pool) { // LoadP(kConstantPoolRegister, // MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); // set_constant_pool_available(false); // } DCHECK(!FLAG_enable_embedded_constant_pool); LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); } const RegList MacroAssembler::kSafepointSavedRegisters = Register::kAllocatable; const int MacroAssembler::kNumSafepointSavedRegisters = Register::kNumAllocatable; // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK(num_unsaved >= 0); if (num_unsaved > 0) { lay(sp, MemOperand(sp, -(num_unsaved * kPointerSize))); } MultiPush(kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; MultiPop(kSafepointSavedRegisters); if (num_unsaved > 0) { la(sp, MemOperand(sp, num_unsaved * kPointerSize)); } } void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { StoreP(src, SafepointRegisterSlot(dst)); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { LoadP(dst, SafepointRegisterSlot(src)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. RegList regs = kSafepointSavedRegisters; int index = 0; DCHECK(reg_code >= 0 && reg_code < kNumRegisters); for (int16_t i = 0; i < reg_code; i++) { if ((regs & (1 << i)) != 0) { index++; } } return index; } MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { // General purpose registers are pushed last on the stack. const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); int doubles_size = config->num_allocatable_double_registers() * kDoubleSize; int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; return MemOperand(sp, doubles_size + register_offset); } void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src) { // Turn potential sNaN into qNaN if (!dst.is(src)) ldr(dst, src); lzdr(kDoubleRegZero); sdbr(dst, kDoubleRegZero); } void MacroAssembler::ConvertIntToDouble(Register src, DoubleRegister dst) { cdfbr(dst, src); } void MacroAssembler::ConvertUnsignedIntToDouble(Register src, DoubleRegister dst) { if (CpuFeatures::IsSupported(FLOATING_POINT_EXT)) { cdlfbr(Condition(5), Condition(0), dst, src); } else { // zero-extend src llgfr(src, src); // convert to double cdgbr(dst, src); } } void MacroAssembler::ConvertIntToFloat(Register src, DoubleRegister dst) { cefbr(Condition(4), dst, src); } void MacroAssembler::ConvertUnsignedIntToFloat(Register src, DoubleRegister dst) { celfbr(Condition(4), Condition(0), dst, src); } #if V8_TARGET_ARCH_S390X void MacroAssembler::ConvertInt64ToDouble(Register src, DoubleRegister double_dst) { cdgbr(double_dst, src); } void MacroAssembler::ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst) { celgbr(Condition(0), Condition(0), double_dst, src); } void MacroAssembler::ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst) { cdlgbr(Condition(0), Condition(0), double_dst, src); } void MacroAssembler::ConvertInt64ToFloat(Register src, DoubleRegister double_dst) { cegbr(double_dst, src); } #endif void MacroAssembler::ConvertFloat32ToInt64(const DoubleRegister double_input, #if !V8_TARGET_ARCH_S390X const Register dst_hi, #endif const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { Condition m = Condition(0); switch (rounding_mode) { case kRoundToZero: m = Condition(5); break; case kRoundToNearest: UNIMPLEMENTED(); break; case kRoundToPlusInf: m = Condition(6); break; case kRoundToMinusInf: m = Condition(7); break; default: UNIMPLEMENTED(); break; } cgebr(m, dst, double_input); ldgr(double_dst, dst); #if !V8_TARGET_ARCH_S390X srlg(dst_hi, dst, Operand(32)); #endif } void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input, #if !V8_TARGET_ARCH_S390X const Register dst_hi, #endif const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { Condition m = Condition(0); switch (rounding_mode) { case kRoundToZero: m = Condition(5); break; case kRoundToNearest: UNIMPLEMENTED(); break; case kRoundToPlusInf: m = Condition(6); break; case kRoundToMinusInf: m = Condition(7); break; default: UNIMPLEMENTED(); break; } cgdbr(m, dst, double_input); ldgr(double_dst, dst); #if !V8_TARGET_ARCH_S390X srlg(dst_hi, dst, Operand(32)); #endif } void MacroAssembler::ConvertFloat32ToInt32(const DoubleRegister double_input, const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { Condition m = Condition(0); switch (rounding_mode) { case kRoundToZero: m = Condition(5); break; case kRoundToNearest: m = Condition(4); break; case kRoundToPlusInf: m = Condition(6); break; case kRoundToMinusInf: m = Condition(7); break; default: UNIMPLEMENTED(); break; } cfebr(m, dst, double_input); Label done; b(Condition(0xe), &done, Label::kNear); // special case LoadImmP(dst, Operand::Zero()); bind(&done); ldgr(double_dst, dst); } void MacroAssembler::ConvertFloat32ToUnsignedInt32( const DoubleRegister double_input, const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { Condition m = Condition(0); switch (rounding_mode) { case kRoundToZero: m = Condition(5); break; case kRoundToNearest: UNIMPLEMENTED(); break; case kRoundToPlusInf: m = Condition(6); break; case kRoundToMinusInf: m = Condition(7); break; default: UNIMPLEMENTED(); break; } clfebr(m, Condition(0), dst, double_input); Label done; b(Condition(0xe), &done, Label::kNear); // special case LoadImmP(dst, Operand::Zero()); bind(&done); ldgr(double_dst, dst); } #if V8_TARGET_ARCH_S390X void MacroAssembler::ConvertFloat32ToUnsignedInt64( const DoubleRegister double_input, const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { Condition m = Condition(0); switch (rounding_mode) { case kRoundToZero: m = Condition(5); break; case kRoundToNearest: UNIMPLEMENTED(); break; case kRoundToPlusInf: m = Condition(6); break; case kRoundToMinusInf: m = Condition(7); break; default: UNIMPLEMENTED(); break; } clgebr(m, Condition(0), dst, double_input); ldgr(double_dst, dst); } void MacroAssembler::ConvertDoubleToUnsignedInt64( const DoubleRegister double_input, const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { Condition m = Condition(0); switch (rounding_mode) { case kRoundToZero: m = Condition(5); break; case kRoundToNearest: UNIMPLEMENTED(); break; case kRoundToPlusInf: m = Condition(6); break; case kRoundToMinusInf: m = Condition(7); break; default: UNIMPLEMENTED(); break; } clgdbr(m, Condition(0), dst, double_input); ldgr(double_dst, dst); } #endif #if !V8_TARGET_ARCH_S390X void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { LoadRR(r0, src_high); LoadRR(r1, src_low); sldl(r0, shift, Operand::Zero()); LoadRR(dst_high, r0); LoadRR(dst_low, r1); } void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { LoadRR(r0, src_high); LoadRR(r1, src_low); sldl(r0, r0, Operand(shift)); LoadRR(dst_high, r0); LoadRR(dst_low, r1); } void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { LoadRR(r0, src_high); LoadRR(r1, src_low); srdl(r0, shift, Operand::Zero()); LoadRR(dst_high, r0); LoadRR(dst_low, r1); } void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { LoadRR(r0, src_high); LoadRR(r1, src_low); srdl(r0, r0, Operand(shift)); LoadRR(dst_high, r0); LoadRR(dst_low, r1); } void MacroAssembler::ShiftRightArithPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { LoadRR(r0, src_high); LoadRR(r1, src_low); srda(r0, shift, Operand::Zero()); LoadRR(dst_high, r0); LoadRR(dst_low, r1); } void MacroAssembler::ShiftRightArithPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { LoadRR(r0, src_high); LoadRR(r1, src_low); srda(r0, r0, Operand(shift)); LoadRR(dst_high, r0); LoadRR(dst_low, r1); } #endif void MacroAssembler::MovDoubleToInt64(Register dst, DoubleRegister src) { lgdr(dst, src); } void MacroAssembler::MovInt64ToDouble(DoubleRegister dst, Register src) { ldgr(dst, src); } void MacroAssembler::StubPrologue(StackFrame::Type type, Register base, int prologue_offset) { { ConstantPoolUnavailableScope constant_pool_unavailable(this); LoadSmiLiteral(r1, Smi::FromInt(type)); PushCommonFrame(r1); } } void MacroAssembler::Prologue(bool code_pre_aging, Register base, int prologue_offset) { DCHECK(!base.is(no_reg)); { PredictableCodeSizeScope predictible_code_size_scope( this, kNoCodeAgeSequenceLength); // The following instructions must remain together and unmodified // for code aging to work properly. if (code_pre_aging) { // Pre-age the code. // This matches the code found in PatchPlatformCodeAge() Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); nop(); CleanseP(r14); Push(r14); mov(r2, Operand(target)); Call(r2); for (int i = 0; i < kNoCodeAgeSequenceLength - kCodeAgingSequenceLength; i += 2) { // TODO(joransiu): Create nop function to pad // (kNoCodeAgeSequenceLength - kCodeAgingSequenceLength) bytes. nop(); // 2-byte nops(). } } else { // This matches the code found in GetNoCodeAgeSequence() PushStandardFrame(r3); } } } void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) { LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); LoadP(vector, FieldMemOperand(vector, JSFunction::kLiteralsOffset)); LoadP(vector, FieldMemOperand(vector, LiteralsArray::kFeedbackVectorOffset)); } void MacroAssembler::EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // We create a stack frame with: // Return Addr <-- old sp // Old FP <-- new fp // CP // type // CodeObject <-- new sp LoadSmiLiteral(ip, Smi::FromInt(type)); PushCommonFrame(ip); if (type == StackFrame::INTERNAL) { mov(r0, Operand(CodeObject())); push(r0); } } int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) { // Drop the execution stack down to the frame pointer and restore // the caller frame pointer, return address and constant pool pointer. LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); lay(r1, MemOperand( fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment)); LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); LoadRR(sp, r1); int frame_ends = pc_offset(); return frame_ends; } void MacroAssembler::EnterBuiltinFrame(Register context, Register target, Register argc) { CleanseP(r14); Push(r14, fp, context, target); la(fp, MemOperand(sp, 2 * kPointerSize)); Push(argc); } void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, Register argc) { Pop(argc); Pop(r14, fp, context, target); } // ExitFrame layout (probably wrongish.. needs updating) // // SP -> previousSP // LK reserved // code // sp_on_exit (for debug?) // oldSP->prev SP // LK // <parameters on stack> // Prior to calling EnterExitFrame, we've got a bunch of parameters // on the stack that we need to wrap a real frame around.. so first // we reserve a slot for LK and push the previous SP which is captured // in the fp register (r11) // Then - we buy a new frame // r14 // oldFP <- newFP // SP // Code // Floats // gaps // Args // ABIRes <- newSP void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); DCHECK(stack_space > 0); // This is an opportunity to build a frame to wrap // all of the pushes that have happened inside of V8 // since we were called from C code CleanseP(r14); LoadSmiLiteral(r1, Smi::FromInt(frame_type)); PushCommonFrame(r1); // Reserve room for saved entry sp and code object. lay(sp, MemOperand(fp, -ExitFrameConstants::kFixedFrameSizeFromFp)); if (emit_debug_code()) { StoreP(MemOperand(fp, ExitFrameConstants::kSPOffset), Operand::Zero(), r1); } mov(r1, Operand(CodeObject())); StoreP(r1, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. mov(r1, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); StoreP(fp, MemOperand(r1)); mov(r1, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); StoreP(cp, MemOperand(r1)); // Optionally save all volatile double registers. if (save_doubles) { MultiPushDoubles(kCallerSavedDoubles); // Note that d0 will be accessible at // fp - ExitFrameConstants::kFrameSize - // kNumCallerSavedDoubles * kDoubleSize, // since the sp slot and code slot were pushed after the fp. } lay(sp, MemOperand(sp, -stack_space * kPointerSize)); // Allocate and align the frame preparing for calling the runtime // function. const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); if (frame_alignment > 0) { DCHECK(frame_alignment == 8); ClearRightImm(sp, sp, Operand(3)); // equivalent to &= -8 } lay(sp, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); StoreP(MemOperand(sp), Operand::Zero(), r0); // Set the exit frame sp value to point just before the return address // location. lay(r1, MemOperand(sp, kStackFrameSPSlot * kPointerSize)); StoreP(r1, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { SmiTag(scratch1, length); LoadRoot(scratch2, map_index); StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset)); StoreP(FieldMemOperand(string, String::kHashFieldSlot), Operand(String::kEmptyHashField), scratch1); StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); } int MacroAssembler::ActivationFrameAlignment() { #if !defined(USE_SIMULATOR) // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one S390 // platform for another S390 platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // Simulated // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool restore_context, bool argument_count_is_length) { // Optionally restore all double registers. if (save_doubles) { // Calculate the stack location of the saved doubles and restore them. const int kNumRegs = kNumCallerSavedDoubles; lay(r5, MemOperand(fp, -(ExitFrameConstants::kFixedFrameSizeFromFp + kNumRegs * kDoubleSize))); MultiPopDoubles(kCallerSavedDoubles, r5); } // Clear top frame. mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); StoreP(MemOperand(ip), Operand(0, kRelocInfo_NONEPTR), r0); // Restore current context from top and clear it in debug mode. if (restore_context) { mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); LoadP(cp, MemOperand(ip)); } #ifdef DEBUG mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); StoreP(MemOperand(ip), Operand(0, kRelocInfo_NONEPTR), r0); #endif // Tear down the exit frame, pop the arguments, and return. LeaveFrame(StackFrame::EXIT); if (argument_count.is_valid()) { if (!argument_count_is_length) { ShiftLeftP(argument_count, argument_count, Operand(kPointerSizeLog2)); } la(sp, MemOperand(sp, argument_count)); } } void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) { Move(dst, d0); } void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) { Move(dst, d0); } void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } #endif // Calculate the end of destination area where we will put the arguments // after we drop current frame. We AddP kPointerSize to count the receiver // argument which is not included into formal parameters count. Register dst_reg = scratch0; ShiftLeftP(dst_reg, caller_args_count_reg, Operand(kPointerSizeLog2)); AddP(dst_reg, fp, dst_reg); AddP(dst_reg, dst_reg, Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); Register src_reg = caller_args_count_reg; // Calculate the end of source area. +kPointerSize is for the receiver. if (callee_args_count.is_reg()) { ShiftLeftP(src_reg, callee_args_count.reg(), Operand(kPointerSizeLog2)); AddP(src_reg, sp, src_reg); AddP(src_reg, src_reg, Operand(kPointerSize)); } else { mov(src_reg, Operand((callee_args_count.immediate() + 1) * kPointerSize)); AddP(src_reg, src_reg, sp); } if (FLAG_debug_code) { CmpLogicalP(src_reg, dst_reg); Check(lt, kStackAccessBelowStackPointer); } // Restore caller's frame pointer and return address now as they will be // overwritten by the copying loop. RestoreFrameStateForTailCall(); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). // Both src_reg and dst_reg are pointing to the word after the one to copy, // so they must be pre-decremented in the loop. Register tmp_reg = scratch1; Label loop; if (callee_args_count.is_reg()) { AddP(tmp_reg, callee_args_count.reg(), Operand(1)); // +1 for receiver } else { mov(tmp_reg, Operand(callee_args_count.immediate() + 1)); } LoadRR(r1, tmp_reg); bind(&loop); LoadP(tmp_reg, MemOperand(src_reg, -kPointerSize)); StoreP(tmp_reg, MemOperand(dst_reg, -kPointerSize)); lay(src_reg, MemOperand(src_reg, -kPointerSize)); lay(dst_reg, MemOperand(dst_reg, -kPointerSize)); BranchOnCount(r1, &loop); // Leave current frame. LoadRR(sp, dst_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // r2: actual arguments count // r3: function (passed through to callee) // r4: expected arguments count // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. // ARM has some sanity checks as per below, considering add them for S390 // DCHECK(actual.is_immediate() || actual.reg().is(r2)); // DCHECK(expected.is_immediate() || expected.reg().is(r4)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); mov(r2, Operand(actual.immediate())); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(r4, Operand(expected.immediate())); } } } else { if (actual.is_immediate()) { mov(r2, Operand(actual.immediate())); CmpPH(expected.reg(), Operand(actual.immediate())); beq(®ular_invoke); } else { CmpP(expected.reg(), actual.reg()); beq(®ular_invoke); } } if (!definitely_matches) { Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { b(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_flooding; ExternalReference last_step_action = ExternalReference::debug_last_step_action_address(isolate()); STATIC_ASSERT(StepFrame > StepIn); mov(r6, Operand(last_step_action)); LoadB(r6, MemOperand(r6)); CmpP(r6, Operand(StepIn)); blt(&skip_flooding); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun, fun); CallRuntime(Runtime::kDebugPrepareStepInIfStepping); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_flooding); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(r3)); DCHECK_IMPLIES(new_target.is_valid(), new_target.is(r5)); if (call_wrapper.NeedsDebugStepCheck()) { FloodFunctionIfStepping(function, new_target, expected, actual); } // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(r5, Heap::kUndefinedValueRootIndex); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, call_wrapper); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = ip; LoadP(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); CallJSEntry(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); JumpToJSEntry(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r3. DCHECK(fun.is(r3)); Register expected_reg = r4; Register temp_reg = r6; LoadP(temp_reg, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); LoadW(expected_reg, FieldMemOperand(temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); #if !defined(V8_TARGET_ARCH_S390X) SmiUntag(expected_reg); #endif ParameterCount expected(expected_reg); InvokeFunctionCode(fun, new_target, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r3. DCHECK(function.is(r3)); // Get the function and setup the context. LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); InvokeFunctionCode(r3, no_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { Move(r3, function); InvokeFunction(r3, expected, actual, flag, call_wrapper); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { DCHECK(kNotStringTag != 0); LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); mov(r0, Operand(kIsNotStringMask)); AndP(r0, scratch); bne(fail); } void MacroAssembler::IsObjectNameType(Register object, Register scratch, Label* fail) { LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); CmpP(scratch, Operand(LAST_NAME_TYPE)); bgt(fail); } void MacroAssembler::DebugBreak() { LoadImmP(r2, Operand::Zero()); mov(r3, Operand(ExternalReference(Runtime::kHandleDebuggerStatement, isolate()))); CEntryStub ces(isolate(), 1); DCHECK(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT); } void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); // Link the current handler as the next handler. mov(r7, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); // Buy the full stack frame for 5 slots. lay(sp, MemOperand(sp, -StackHandlerConstants::kSize)); // Copy the old handler into the next handler slot. mvc(MemOperand(sp, StackHandlerConstants::kNextOffset), MemOperand(r7), kPointerSize); // Set this new handler as the current one. StoreP(sp, MemOperand(r7)); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); // Pop the Next Handler into r3 and store it into Handler Address reference. Pop(r3); mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); StoreP(r3, MemOperand(ip)); } // Compute the hash code from the untagged key. This must be kept in sync with // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in // code-stub-hydrogen.cc void MacroAssembler::GetNumberHash(Register t0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiUntag(scratch); // Xor original key with a seed. XorP(t0, scratch); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); LoadRR(scratch, t0); NotP(scratch); sll(t0, Operand(15)); AddP(t0, scratch, t0); // hash = hash ^ (hash >> 12); ShiftRight(scratch, t0, Operand(12)); XorP(t0, scratch); // hash = hash + (hash << 2); ShiftLeft(scratch, t0, Operand(2)); AddP(t0, t0, scratch); // hash = hash ^ (hash >> 4); ShiftRight(scratch, t0, Operand(4)); XorP(t0, scratch); // hash = hash * 2057; LoadRR(r0, t0); ShiftLeft(scratch, t0, Operand(3)); AddP(t0, t0, scratch); ShiftLeft(scratch, r0, Operand(11)); AddP(t0, t0, scratch); // hash = hash ^ (hash >> 16); ShiftRight(scratch, t0, Operand(16)); XorP(t0, scratch); // hash & 0x3fffffff ExtractBitRange(t0, t0, 29, 0); } void MacroAssembler::Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. LoadImmP(result, Operand(0x7091)); LoadImmP(scratch1, Operand(0x7191)); LoadImmP(scratch2, Operand(0x7291)); } b(gc_required); return; } DCHECK(!AreAliased(result, scratch1, scratch2, ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask)); // Check relative positions of allocation top and limit addresses. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address register. Register top_address = scratch1; // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. Register alloc_limit = ip; Register result_end = scratch2; mov(top_address, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into ip. LoadP(result, MemOperand(top_address)); LoadP(alloc_limit, MemOperand(top_address, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. LoadP(alloc_limit, MemOperand(top_address)); CmpP(result, alloc_limit); Check(eq, kUnexpectedAllocationTop); } // Load allocation limit. Result already contains allocation top. LoadP(alloc_limit, MemOperand(top_address, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_S390X STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); AndP(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned, Label::kNear); if ((flags & PRETENURE) != 0) { CmpLogicalP(result, alloc_limit); bge(gc_required); } mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); StoreW(result_end, MemOperand(result)); AddP(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. SubP(r0, alloc_limit, result); if (is_int16(object_size)) { CmpP(r0, Operand(object_size)); blt(gc_required); AddP(result_end, result, Operand(object_size)); } else { mov(result_end, Operand(object_size)); CmpP(r0, result_end); blt(gc_required); AddP(result_end, result, result_end); } if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. StoreP(result_end, MemOperand(top_address)); } // Tag object. AddP(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. LoadImmP(result, Operand(0x7091)); LoadImmP(scratch, Operand(0x7191)); LoadImmP(result_end, Operand(0x7291)); } b(gc_required); return; } // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag // is not specified. Other registers must not overlap. DCHECK(!AreAliased(object_size, result, scratch, ip)); DCHECK(!AreAliased(result_end, result, scratch, ip)); DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end)); // Check relative positions of allocation top and limit addresses. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address and allocation limit registers. Register top_address = scratch; // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. Register alloc_limit = ip; mov(top_address, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into alloc_limit.. LoadP(result, MemOperand(top_address)); LoadP(alloc_limit, MemOperand(top_address, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. LoadP(alloc_limit, MemOperand(top_address)); CmpP(result, alloc_limit); Check(eq, kUnexpectedAllocationTop); } // Load allocation limit. Result already contains allocation top. LoadP(alloc_limit, MemOperand(top_address, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_S390X STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); AndP(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned, Label::kNear); if ((flags & PRETENURE) != 0) { CmpLogicalP(result, alloc_limit); bge(gc_required); } mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); StoreW(result_end, MemOperand(result)); AddP(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size may be in words so a shift is // required to get the number of bytes. SubP(r0, alloc_limit, result); if ((flags & SIZE_IN_WORDS) != 0) { ShiftLeftP(result_end, object_size, Operand(kPointerSizeLog2)); CmpP(r0, result_end); blt(gc_required); AddP(result_end, result, result_end); } else { CmpP(r0, object_size); blt(gc_required); AddP(result_end, result, object_size); } // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { AndP(r0, result_end, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace, cr0); } if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. StoreP(result_end, MemOperand(top_address)); } // Tag object. AddP(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::FastAllocate(Register object_size, Register result, Register result_end, Register scratch, AllocationFlags flags) { // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag // is not specified. Other registers must not overlap. DCHECK(!AreAliased(object_size, result, scratch, ip)); DCHECK(!AreAliased(result_end, result, scratch, ip)); DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end)); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); Register top_address = scratch; mov(top_address, Operand(allocation_top)); LoadP(result, MemOperand(top_address)); if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_S390X STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else DCHECK(kPointerAlignment * 2 == kDoubleAlignment); AndP(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned, Label::kNear); mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); StoreW(result_end, MemOperand(result)); AddP(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top using result. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { ShiftLeftP(result_end, object_size, Operand(kPointerSizeLog2)); AddP(result_end, result, result_end); } else { AddP(result_end, result, object_size); } // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { AndP(r0, result_end, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace, cr0); } StoreP(result_end, MemOperand(top_address)); // Tag object. AddP(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::FastAllocate(int object_size, Register result, Register scratch1, Register scratch2, AllocationFlags flags) { DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK(!AreAliased(result, scratch1, scratch2, ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, object_size & kObjectAlignmentMask); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Set up allocation top address register. Register top_address = scratch1; Register result_end = scratch2; mov(top_address, Operand(allocation_top)); LoadP(result, MemOperand(top_address)); if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_S390X STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else DCHECK(kPointerAlignment * 2 == kDoubleAlignment); AndP(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned, Label::kNear); mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); StoreW(result_end, MemOperand(result)); AddP(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top using result. AddP(result_end, result, Operand(object_size)); // The top pointer is not updated for allocation folding dominators. StoreP(result_end, MemOperand(top_address)); // Tag object. AddP(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); ShiftLeftP(scratch1, length, Operand(1)); // Length in bytes, not chars. AddP(scratch1, Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); AndP(scratch1, Operand(~kObjectAlignmentMask)); // Allocate two-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); DCHECK(kCharSize == 1); AddP(scratch1, length, Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize)); AndP(scratch1, Operand(~kObjectAlignmentMask)); // Allocate one-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { const Register temp = type_reg.is(no_reg) ? r0 : type_reg; LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, temp, type); } void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); STATIC_ASSERT(LAST_TYPE < 256); LoadlB(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); CmpP(type_reg, Operand(type)); } void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { CmpP(obj, MemOperand(kRootRegister, index << kPointerSizeLog2)); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); CmpLogicalByte(FieldMemOperand(map, Map::kBitField2Offset), Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); ble(fail); CmpLogicalByte(FieldMemOperand(map, Map::kBitField2Offset), Operand(Map::kMaximumBitField2FastHoleyElementValue)); bgt(fail); } void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); CmpLogicalByte(FieldMemOperand(map, Map::kBitField2Offset), Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); bgt(fail); } void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) { SmiUntag(ip, smi); ConvertIntToDouble(ip, value); } void MacroAssembler::StoreNumberToDoubleElements( Register value_reg, Register key_reg, Register elements_reg, Register scratch1, DoubleRegister double_scratch, Label* fail, int elements_offset) { DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1)); Label smi_value, store; // Handle smi values specially. JumpIfSmi(value_reg, &smi_value); // Ensure that the object is a heap number CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail, DONT_DO_SMI_CHECK); LoadDouble(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); // Force a canonical NaN. CanonicalizeNaN(double_scratch); b(&store); bind(&smi_value); SmiToDouble(double_scratch, value_reg); bind(&store); SmiToDoubleArrayOffset(scratch1, key_reg); StoreDouble(double_scratch, FieldMemOperand(elements_reg, scratch1, FixedDoubleArray::kHeaderSize - elements_offset)); } void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map, Label* early_success) { LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMap(obj, map, early_success); } void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map, Label* early_success) { mov(r0, Operand(map)); CmpP(r0, FieldMemOperand(obj_map, HeapObject::kMapOffset)); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMap(obj, scratch, map, &success); bne(fail); bind(&success); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareRoot(scratch, index); bne(fail); } void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } LoadP(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset)); CmpWeakValue(scratch1, cell, scratch2); Jump(success, RelocInfo::CODE_TARGET, eq); bind(&fail); } void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch, CRegister) { mov(scratch, Operand(cell)); CmpP(value, FieldMemOperand(scratch, WeakCell::kValueOffset)); } void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) { mov(value, Operand(cell)); LoadP(value, FieldMemOperand(value, WeakCell::kValueOffset)); } void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss) { GetWeakValue(value, cell); JumpIfSmi(value, miss); } void MacroAssembler::GetMapConstructor(Register result, Register map, Register temp, Register temp2) { Label done, loop; LoadP(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset)); bind(&loop); JumpIfSmi(result, &done); CompareObjectType(result, temp, temp2, MAP_TYPE); bne(&done); LoadP(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset)); b(&loop); bind(&done); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss) { // Get the prototype or initial map from the function. LoadP(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. CompareRoot(result, Heap::kTheHoleValueRootIndex); beq(miss); // If the function does not have an initial map, we're done. Label done; CompareObjectType(result, scratch, scratch, MAP_TYPE); bne(&done, Label::kNear); // Get the prototype from the initial map. LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id, Condition cond) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input, Register scratch1, Register scratch2, DoubleRegister double_scratch) { TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch); } void MacroAssembler::TestDoubleIsMinusZero(DoubleRegister input, Register scratch1, Register scratch2) { lgdr(scratch1, input); #if V8_TARGET_ARCH_S390X llihf(scratch2, Operand(0x80000000)); // scratch2 = 0x80000000_00000000 CmpP(scratch1, scratch2); #else Label done; CmpP(scratch1, Operand::Zero()); bne(&done, Label::kNear); srlg(scratch1, scratch1, Operand(32)); CmpP(scratch1, Operand(HeapNumber::kSignMask)); bind(&done); #endif } void MacroAssembler::TestDoubleSign(DoubleRegister input, Register scratch) { lgdr(scratch, input); cgfi(scratch, Operand::Zero()); } void MacroAssembler::TestHeapNumberSign(Register input, Register scratch) { LoadlW(scratch, FieldMemOperand(input, HeapNumber::kValueOffset + Register::kExponentOffset)); Cmp32(scratch, Operand::Zero()); } void MacroAssembler::TryDoubleToInt32Exact(Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch) { Label done; DCHECK(!double_input.is(double_scratch)); ConvertDoubleToInt64(double_input, #if !V8_TARGET_ARCH_S390X scratch, #endif result, double_scratch); #if V8_TARGET_ARCH_S390X TestIfInt32(result, r0); #else TestIfInt32(scratch, result, r0); #endif bne(&done); // convert back and compare lgdr(scratch, double_scratch); cdfbr(double_scratch, scratch); cdbr(double_scratch, double_input); bind(&done); } void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input, Register input_high, Register scratch, DoubleRegister double_scratch, Label* done, Label* exact) { DCHECK(!result.is(input_high)); DCHECK(!double_input.is(double_scratch)); Label exception; // Move high word into input_high lay(sp, MemOperand(sp, -kDoubleSize)); StoreDouble(double_input, MemOperand(sp)); LoadlW(input_high, MemOperand(sp, Register::kExponentOffset)); la(sp, MemOperand(sp, kDoubleSize)); // Test for NaN/Inf ExtractBitMask(result, input_high, HeapNumber::kExponentMask); CmpLogicalP(result, Operand(0x7ff)); beq(&exception); // Convert (rounding to -Inf) ConvertDoubleToInt64(double_input, #if !V8_TARGET_ARCH_S390X scratch, #endif result, double_scratch, kRoundToMinusInf); // Test for overflow #if V8_TARGET_ARCH_S390X TestIfInt32(result, r0); #else TestIfInt32(scratch, result, r0); #endif bne(&exception); // Test for exactness lgdr(scratch, double_scratch); cdfbr(double_scratch, scratch); cdbr(double_scratch, double_input); beq(exact); b(done); bind(&exception); } void MacroAssembler::TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done) { DoubleRegister double_scratch = kScratchDoubleReg; #if !V8_TARGET_ARCH_S390X Register scratch = ip; #endif ConvertDoubleToInt64(double_input, #if !V8_TARGET_ARCH_S390X scratch, #endif result, double_scratch); // Test for overflow #if V8_TARGET_ARCH_S390X TestIfInt32(result, r0); #else TestIfInt32(scratch, result, r0); #endif beq(done); } void MacroAssembler::TruncateDoubleToI(Register result, DoubleRegister double_input) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. push(r14); // Put input on stack. lay(sp, MemOperand(sp, -kDoubleSize)); StoreDouble(double_input, MemOperand(sp)); DoubleToIStub stub(isolate(), sp, result, 0, true, true); CallStub(&stub); la(sp, MemOperand(sp, kDoubleSize)); pop(r14); bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { Label done; DoubleRegister double_scratch = kScratchDoubleReg; DCHECK(!result.is(object)); LoadDouble(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); TryInlineTruncateDoubleToI(result, double_scratch, &done); // If we fell through then inline version didn't succeed - call stub instead. push(r14); DoubleToIStub stub(isolate(), object, result, HeapNumber::kValueOffset - kHeapObjectTag, true, true); CallStub(&stub); pop(r14); bind(&done); } void MacroAssembler::TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch1, Label* not_number) { Label done; DCHECK(!result.is(object)); UntagAndJumpIfSmi(result, object, &done); JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); TruncateHeapNumberToI(result, object); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { // We rotate by kSmiShift amount, and extract the num_least_bits risbg(dst, src, Operand(64 - num_least_bits), Operand(63), Operand(64 - kSmiShift), true); } else { SmiUntag(dst, src); AndP(dst, Operand((1 << num_least_bits) - 1)); } } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { AndP(dst, src, Operand((1 << num_least_bits) - 1)); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All parameters are on the stack. r2 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r2, Operand(num_arguments)); mov(r3, Operand(ExternalReference(f, isolate()))); CEntryStub stub(isolate(), #if V8_TARGET_ARCH_S390X f->result_size, #else 1, #endif save_doubles); CallStub(&stub); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { mov(r2, Operand(num_arguments)); mov(r3, Operand(ext)); CEntryStub stub(isolate(), 1); CallStub(&stub); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { mov(r2, Operand(function->nargs)); } JumpToExternalReference(ExternalReference(fid, isolate())); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { mov(r3, Operand(builtin)); CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(value)); mov(scratch2, Operand(ExternalReference(counter))); StoreW(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0 && is_int8(value)); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(ExternalReference(counter))); // @TODO(john.yan): can be optimized by asi() LoadW(scratch2, MemOperand(scratch1)); AddP(scratch2, Operand(value)); StoreW(scratch2, MemOperand(scratch1)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0 && is_int8(value)); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(ExternalReference(counter))); // @TODO(john.yan): can be optimized by asi() LoadW(scratch2, MemOperand(scratch1)); AddP(scratch2, Operand(-value)); StoreW(scratch2, MemOperand(scratch1)); } } void MacroAssembler::Assert(Condition cond, BailoutReason reason, CRegister cr) { if (emit_debug_code()) Check(cond, reason, cr); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { DCHECK(!elements.is(r0)); Label ok; push(elements); LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); CompareRoot(elements, Heap::kFixedArrayMapRootIndex); beq(&ok, Label::kNear); CompareRoot(elements, Heap::kFixedDoubleArrayMapRootIndex); beq(&ok, Label::kNear); CompareRoot(elements, Heap::kFixedCOWArrayMapRootIndex); beq(&ok, Label::kNear); Abort(kJSObjectWithFastElementsMapHasSlowElements); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) { Label L; b(cond, &L); Abort(reason); // will not return here bind(&L); } void MacroAssembler::Abort(BailoutReason reason) { Label abort_start; bind(&abort_start); #ifdef DEBUG const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } if (FLAG_trap_on_abort) { stop(msg); return; } #endif // Check if Abort() has already been initialized. DCHECK(isolate()->builtins()->Abort()->IsHeapObject()); LoadSmiLiteral(r3, Smi::FromInt(static_cast<int>(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } else { Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } // will not return here } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). LoadRR(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { DCHECK(IsFastElementsKind(expected_kind)); DCHECK(IsFastElementsKind(transitioned_kind)); // Check that the function's map is the same as the expected cached map. LoadP(scratch, NativeContextMemOperand()); LoadP(ip, ContextMemOperand(scratch, Context::ArrayMapIndex(expected_kind))); CmpP(map_in_out, ip); bne(no_map_match); // Use the transitioned cached map. LoadP(map_in_out, ContextMemOperand(scratch, Context::ArrayMapIndex(transitioned_kind))); } void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { LoadP(dst, NativeContextMemOperand()); LoadP(dst, ContextMemOperand(dst, index)); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. LoadP(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); b(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { SubP(scratch, reg, Operand(1)); CmpP(scratch, Operand::Zero()); blt(not_power_of_two_or_zero); AndP(r0, reg, scratch /*, SetRC*/); // Should be okay to remove rc bne(not_power_of_two_or_zero /*, cr0*/); } void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch, Label* zero_and_neg, Label* not_power_of_two) { SubP(scratch, reg, Operand(1)); CmpP(scratch, Operand::Zero()); blt(zero_and_neg); AndP(r0, reg, scratch /*, SetRC*/); // Should be okay to remove rc bne(not_power_of_two /*, cr0*/); } #if !V8_TARGET_ARCH_S390X void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { DCHECK(!reg.is(overflow)); LoadRR(overflow, reg); // Save original value. SmiTag(reg); XorP(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0. LoadAndTestRR(overflow, overflow); } void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src, Register overflow) { if (dst.is(src)) { // Fall back to slower case. SmiTagCheckOverflow(dst, overflow); } else { DCHECK(!dst.is(src)); DCHECK(!dst.is(overflow)); DCHECK(!src.is(overflow)); SmiTag(dst, src); XorP(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0. LoadAndTestRR(overflow, overflow); } } #endif void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); OrP(r0, reg1, reg2 /*, LeaveRC*/); // should be okay to remove LeaveRC JumpIfNotSmi(r0, on_not_both_smi); } void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case) { STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // this won't work if src == dst DCHECK(src.code() != dst.code()); SmiUntag(dst, src); TestIfSmi(src); beq(smi_case); } void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case) { STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // We can more optimally use TestIfSmi if dst != src // otherwise, the UnTag operation will kill the CC and we cannot // test the Tag bit. if (src.code() != dst.code()) { SmiUntag(dst, src); TestIfSmi(src); } else { TestBit(src, 0, r0); SmiUntag(dst, src); LoadAndTestRR(r0, r0); } bne(non_smi_case); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); JumpIfSmi(reg1, on_either_smi); JumpIfSmi(reg2, on_either_smi); } void MacroAssembler::AssertNotNumber(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsANumber, cr0); push(object); CompareObjectType(object, object, object, HEAP_NUMBER_TYPE); pop(object); Check(ne, kOperandIsANumber); } } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmi, cr0); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(eq, kOperandIsNotSmi, cr0); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmiAndNotAString, cr0); push(object); LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, FIRST_NONSTRING_TYPE); pop(object); Check(lt, kOperandIsNotAString); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmiAndNotAName, cr0); push(object); LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, LAST_NAME_TYPE); pop(object); Check(le, kOperandIsNotAName); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmiAndNotAFunction, cr0); push(object); CompareObjectType(object, object, object, JS_FUNCTION_TYPE); pop(object); Check(eq, kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmiAndNotABoundFunction, cr0); push(object); CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); pop(object); Check(eq, kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmiAndNotAGeneratorObject, cr0); push(object); CompareObjectType(object, object, object, JS_GENERATOR_OBJECT_TYPE); pop(object); Check(eq, kOperandIsNotAGeneratorObject); } } void MacroAssembler::AssertReceiver(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object); Check(ne, kOperandIsASmiAndNotAReceiver, cr0); push(object); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); CompareObjectType(object, object, object, FIRST_JS_RECEIVER_TYPE); pop(object); Check(ge, kOperandIsNotAReceiver); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); CompareRoot(object, Heap::kUndefinedValueRootIndex); beq(&done_checking, Label::kNear); LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); Assert(eq, kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { CompareRoot(reg, index); Check(eq, kHeapNumberMapRegisterClobbered); } } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); CmpP(scratch, heap_number_map); bne(on_not_heap_number); } void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential one-byte strings. // Assume that they are non-smis. LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); LoadlB(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); LoadlB(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. AndP(scratch1, first, second); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; AndP(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); beq(&succeed, Label::kNear); CmpP(reg, Operand(SYMBOL_TYPE)); bne(not_unique_name); bind(&succeed); } // Allocates a heap number or jumps to the need_gc label if the young space // is full and a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required, MutableMode mode) { // Allocate an object in the heap for the heap number and tag it as a heap // object. Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); Heap::RootListIndex map_index = mode == MUTABLE ? Heap::kMutableHeapNumberMapRootIndex : Heap::kHeapNumberMapRootIndex; AssertIsRoot(heap_number_map, map_index); // Store heap number map in the allocated object. StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); } void MacroAssembler::AllocateHeapNumberWithValue( Register result, DoubleRegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required) { AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required); StoreDouble(value, FieldMemOperand(result, HeapNumber::kValueOffset)); } void MacroAssembler::AllocateJSValue(Register result, Register constructor, Register value, Register scratch1, Register scratch2, Label* gc_required) { DCHECK(!result.is(constructor)); DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!result.is(value)); // Allocate JSValue in new space. Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Initialize the JSValue. LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2); StoreP(scratch1, FieldMemOperand(result, HeapObject::kMapOffset), r0); LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); StoreP(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset), r0); StoreP(scratch1, FieldMemOperand(result, JSObject::kElementsOffset), r0); StoreP(value, FieldMemOperand(result, JSValue::kValueOffset), r0); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); } void MacroAssembler::InitializeNFieldsWithFiller(Register current_address, Register count, Register filler) { Label loop; bind(&loop); StoreP(filler, MemOperand(current_address)); AddP(current_address, current_address, Operand(kPointerSize)); BranchOnCount(r1, &loop); } void MacroAssembler::InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler) { Label done; DCHECK(!filler.is(r1)); DCHECK(!current_address.is(r1)); DCHECK(!end_address.is(r1)); SubP(r1, end_address, current_address /*, LeaveOE, SetRC*/); beq(&done, Label::kNear); ShiftRightP(r1, r1, Operand(kPointerSizeLog2)); InitializeNFieldsWithFiller(current_address, r1, filler); bind(&done); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; if (!scratch1.is(first)) LoadRR(scratch1, first); if (!scratch2.is(second)) LoadRR(scratch2, second); nilf(scratch1, Operand(kFlatOneByteStringMask)); CmpP(scratch1, Operand(kFlatOneByteStringTag)); bne(failure); nilf(scratch2, Operand(kFlatOneByteStringMask)); CmpP(scratch2, Operand(kFlatOneByteStringTag)); bne(failure); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; if (!scratch.is(type)) LoadRR(scratch, type); nilf(scratch, Operand(kFlatOneByteStringMask)); CmpP(scratch, Operand(kFlatOneByteStringTag)); bne(failure); } static const int kRegisterPassedArguments = 5; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; if (num_double_arguments > DoubleRegister::kNumRegisters) { stack_passed_words += 2 * (num_double_arguments - DoubleRegister::kNumRegisters); } // Up to five simple arguments are passed in registers r2..r6 if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } return stack_passed_words; } void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask) { Label is_object; TestIfSmi(string); Check(ne, kNonObject, cr0); LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset)); LoadlB(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset)); AndP(ip, Operand(kStringRepresentationMask | kStringEncodingMask)); CmpP(ip, Operand(encoding_mask)); Check(eq, kUnexpectedStringType); // The index is assumed to be untagged coming in, tag it to compare with the // string length without using a temp register, it is restored at the end of // this function. #if !V8_TARGET_ARCH_S390X Label index_tag_ok, index_tag_bad; JumpIfNotSmiCandidate(index, r0, &index_tag_bad); #endif SmiTag(index, index); #if !V8_TARGET_ARCH_S390X b(&index_tag_ok); bind(&index_tag_bad); Abort(kIndexIsTooLarge); bind(&index_tag_ok); #endif LoadP(ip, FieldMemOperand(string, String::kLengthOffset)); CmpP(index, ip); Check(lt, kIndexIsTooLarge); DCHECK(Smi::kZero == 0); CmpP(index, Operand::Zero()); Check(ge, kIndexIsNegative); SmiUntag(index, index); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); int stack_passed_arguments = CalculateStackPassedWords(num_reg_arguments, num_double_arguments); int stack_space = kNumRequiredStackFrameSlots; if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for stack arguments // -- preserving original value of sp. LoadRR(scratch, sp); lay(sp, MemOperand(sp, -(stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); StoreP(scratch, MemOperand(sp, (stack_passed_arguments)*kPointerSize)); } else { stack_space += stack_passed_arguments; } lay(sp, MemOperand(sp, -(stack_space)*kPointerSize)); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d0, src); } void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d0, src); } void MacroAssembler::MovToFloatParameters(DoubleRegister src1, DoubleRegister src2) { if (src2.is(d0)) { DCHECK(!src1.is(d2)); Move(d2, src2); Move(d0, src1); } else { Move(d0, src1); Move(d2, src2); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { mov(ip, Operand(function)); CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK(has_frame()); // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. Register dest = function; if (ABI_CALL_VIA_IP) { Move(ip, function); dest = ip; } Call(dest); int stack_passed_arguments = CalculateStackPassedWords(num_reg_arguments, num_double_arguments); int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; if (ActivationFrameAlignment() > kPointerSize) { // Load the original stack pointer (pre-alignment) from the stack LoadP(sp, MemOperand(sp, stack_space * kPointerSize)); } else { la(sp, MemOperand(sp, stack_space * kPointerSize)); } } void MacroAssembler::CheckPageFlag( Register object, Register scratch, // scratch may be same register as object int mask, Condition cc, Label* condition_met) { DCHECK(cc == ne || cc == eq); ClearRightImm(scratch, object, Operand(kPageSizeBits)); if (base::bits::IsPowerOfTwo32(mask)) { // If it's a power of two, we can use Test-Under-Mask Memory-Imm form // which allows testing of a single byte in memory. int32_t byte_offset = 4; uint32_t shifted_mask = mask; // Determine the byte offset to be tested if (mask <= 0x80) { byte_offset = kPointerSize - 1; } else if (mask < 0x8000) { byte_offset = kPointerSize - 2; shifted_mask = mask >> 8; } else if (mask < 0x800000) { byte_offset = kPointerSize - 3; shifted_mask = mask >> 16; } else { byte_offset = kPointerSize - 4; shifted_mask = mask >> 24; } #if V8_TARGET_LITTLE_ENDIAN // Reverse the byte_offset if emulating on little endian platform byte_offset = kPointerSize - byte_offset - 1; #endif tm(MemOperand(scratch, MemoryChunk::kFlagsOffset + byte_offset), Operand(shifted_mask)); } else { LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); AndP(r0, scratch, Operand(mask)); } // Should be okay to remove rc if (cc == ne) { bne(condition_met); } if (cc == eq) { beq(condition_met); } } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { HasColor(object, scratch0, scratch1, on_black, 1, 1); // kBlackBitPattern. DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, int first_bit, int second_bit) { DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; LoadlW(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); // Test the first bit AndP(r0, ip, mask_scratch /*, SetRC*/); // Should be okay to remove rc b(first_bit == 1 ? eq : ne, &other_color, Label::kNear); // Shift left 1 // May need to load the next cell sll(mask_scratch, Operand(1) /*, SetRC*/); LoadAndTest32(mask_scratch, mask_scratch); beq(&word_boundary, Label::kNear); // Test the second bit AndP(r0, ip, mask_scratch /*, SetRC*/); // Should be okay to remove rc b(second_bit == 1 ? ne : eq, has_color); b(&other_color, Label::kNear); bind(&word_boundary); LoadlW(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize)); AndP(r0, ip, Operand(1)); b(second_bit == 1 ? ne : eq, has_color); bind(&other_color); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); LoadRR(bitmap_reg, addr_reg); nilf(bitmap_reg, Operand(~Page::kPageAlignmentMask)); const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2); ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits); ShiftLeftP(ip, ip, Operand(Bitmap::kBytesPerCellLog2)); AddP(bitmap_reg, ip); LoadRR(ip, mask_reg); // Have to do some funky reg shuffling as // 31-bit shift left clobbers on s390. LoadImmP(mask_reg, Operand(1)); ShiftLeftP(mask_reg, mask_reg, ip); } void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch, Register mask_scratch, Register load_scratch, Label* value_is_white) { DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. LoadlW(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); LoadRR(r0, load_scratch); AndP(r0, mask_scratch); beq(value_is_white); } // Saturate a value into 8-bit unsigned integer // if input_value < 0, output_value is 0 // if input_value > 255, output_value is 255 // otherwise output_value is the input_value void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { int satval = (1 << 8) - 1; Label done, negative_label, overflow_label; CmpP(input_reg, Operand::Zero()); blt(&negative_label); CmpP(input_reg, Operand(satval)); bgt(&overflow_label); if (!output_reg.is(input_reg)) { LoadRR(output_reg, input_reg); } b(&done); bind(&negative_label); LoadImmP(output_reg, Operand::Zero()); // set to 0 if negative b(&done); bind(&overflow_label); // set to satval if > satval LoadImmP(output_reg, Operand(satval)); bind(&done); } void MacroAssembler::ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister double_scratch) { Label above_zero; Label done; Label in_bounds; LoadDoubleLiteral(double_scratch, 0.0, result_reg); cdbr(input_reg, double_scratch); bgt(&above_zero, Label::kNear); // Double value is less than zero, NaN or Inf, return 0. LoadIntLiteral(result_reg, 0); b(&done, Label::kNear); // Double value is >= 255, return 255. bind(&above_zero); LoadDoubleLiteral(double_scratch, 255.0, result_reg); cdbr(input_reg, double_scratch); ble(&in_bounds, Label::kNear); LoadIntLiteral(result_reg, 255); b(&done, Label::kNear); // In 0-255 range, round and truncate. bind(&in_bounds); // round to nearest (default rounding mode) cfdbr(ROUND_TO_NEAREST_WITH_TIES_TO_EVEN, result_reg, input_reg); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { LoadlW(dst, FieldMemOperand(map, Map::kBitField3Offset)); DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); } void MacroAssembler::EnumLength(Register dst, Register map) { STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); LoadW(dst, FieldMemOperand(map, Map::kBitField3Offset)); And(dst, Operand(Map::EnumLengthBits::kMask)); SmiTag(dst); } void MacroAssembler::LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor) { LoadP(dst, FieldMemOperand(holder, HeapObject::kMapOffset)); LoadInstanceDescriptors(dst, dst); LoadP(dst, FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index))); const int getterOffset = AccessorPair::kGetterOffset; const int setterOffset = AccessorPair::kSetterOffset; int offset = ((accessor == ACCESSOR_GETTER) ? getterOffset : setterOffset); LoadP(dst, FieldMemOperand(dst, offset)); } void MacroAssembler::CheckEnumCache(Label* call_runtime) { Register null_value = r7; Register empty_fixed_array_value = r8; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Label next, start; LoadRR(r4, r2); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. LoadP(r3, FieldMemOperand(r4, HeapObject::kMapOffset)); EnumLength(r5, r3); CmpSmiLiteral(r5, Smi::FromInt(kInvalidEnumCacheSentinel), r0); beq(call_runtime); LoadRoot(null_value, Heap::kNullValueRootIndex); b(&start, Label::kNear); bind(&next); LoadP(r3, FieldMemOperand(r4, HeapObject::kMapOffset)); // For all objects but the receiver, check that the cache is empty. EnumLength(r5, r3); CmpSmiLiteral(r5, Smi::kZero, r0); bne(call_runtime); bind(&start); // Check that there are no elements. Register r4 contains the current JS // object we've reached through the prototype chain. Label no_elements; LoadP(r4, FieldMemOperand(r4, JSObject::kElementsOffset)); CmpP(r4, empty_fixed_array_value); beq(&no_elements, Label::kNear); // Second chance, the object may be using the empty slow element dictionary. CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex); bne(call_runtime); bind(&no_elements); LoadP(r4, FieldMemOperand(r3, Map::kPrototypeOffset)); CmpP(r4, null_value); bne(&next); } //////////////////////////////////////////////////////////////////////////////// // // New MacroAssembler Interfaces added for S390 // //////////////////////////////////////////////////////////////////////////////// // Primarily used for loading constants // This should really move to be in macro-assembler as it // is really a pseudo instruction // Some usages of this intend for a FIXED_SEQUENCE to be used // @TODO - break this dependency so we can optimize mov() in general // and only use the generic version when we require a fixed sequence void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem, Representation r, Register scratch) { DCHECK(!r.IsDouble()); if (r.IsInteger8()) { LoadB(dst, mem); lgbr(dst, dst); } else if (r.IsUInteger8()) { LoadlB(dst, mem); } else if (r.IsInteger16()) { LoadHalfWordP(dst, mem, scratch); lghr(dst, dst); } else if (r.IsUInteger16()) { LoadHalfWordP(dst, mem, scratch); #if V8_TARGET_ARCH_S390X } else if (r.IsInteger32()) { LoadW(dst, mem, scratch); #endif } else { LoadP(dst, mem, scratch); } } void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem, Representation r, Register scratch) { DCHECK(!r.IsDouble()); if (r.IsInteger8() || r.IsUInteger8()) { StoreByte(src, mem, scratch); } else if (r.IsInteger16() || r.IsUInteger16()) { StoreHalfWord(src, mem, scratch); #if V8_TARGET_ARCH_S390X } else if (r.IsInteger32()) { StoreW(src, mem, scratch); #endif } else { if (r.IsHeapObject()) { AssertNotSmi(src); } else if (r.IsSmi()) { AssertSmi(src); } StoreP(src, mem, scratch); } } void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg, Register scratch_reg, Register scratch2_reg, Label* no_memento_found) { Label map_check; Label top_check; ExternalReference new_space_allocation_top_adr = ExternalReference::new_space_allocation_top_address(isolate()); const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; DCHECK(!AreAliased(receiver_reg, scratch_reg)); // Bail out if the object is not in new space. JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found); DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0); // If the object is in new space, we need to check whether it is on the same // page as the current top. AddP(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset)); mov(ip, Operand(new_space_allocation_top_adr)); LoadP(ip, MemOperand(ip)); XorP(r0, scratch_reg, ip); AndP(r0, r0, Operand(~Page::kPageAlignmentMask)); beq(&top_check, Label::kNear); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. XorP(r0, scratch_reg, receiver_reg); AndP(r0, r0, Operand(~Page::kPageAlignmentMask)); bne(no_memento_found); // Continue with the actual map check. b(&map_check, Label::kNear); // If top is on the same page as the current object, we need to check whether // we are below top. bind(&top_check); CmpP(scratch_reg, ip); bge(no_memento_found); // Memento map check. bind(&map_check); LoadP(scratch_reg, MemOperand(receiver_reg, kMementoMapOffset)); CmpP(scratch_reg, Operand(isolate()->factory()->allocation_memento_map())); } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); Register candidate = Register::from_code(code); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); return no_reg; } void MacroAssembler::JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, Register scratch1, Label* found) { DCHECK(!scratch1.is(scratch0)); Register current = scratch0; Label loop_again, end; // scratch contained elements pointer. LoadRR(current, object); LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset)); LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareRoot(current, Heap::kNullValueRootIndex); beq(&end); // Loop based on the map going up the prototype chain. bind(&loop_again); LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset)); STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE); STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE); LoadlB(scratch1, FieldMemOperand(current, Map::kInstanceTypeOffset)); CmpP(scratch1, Operand(JS_OBJECT_TYPE)); blt(found); LoadlB(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); DecodeField<Map::ElementsKindBits>(scratch1); CmpP(scratch1, Operand(DICTIONARY_ELEMENTS)); beq(found); LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareRoot(current, Heap::kNullValueRootIndex); bne(&loop_again); bind(&end); } void MacroAssembler::mov(Register dst, const Operand& src) { if (src.rmode_ != kRelocInfo_NONEPTR) { // some form of relocation needed RecordRelocInfo(src.rmode_, src.imm_); } #if V8_TARGET_ARCH_S390X int64_t value = src.immediate(); int32_t hi_32 = static_cast<int64_t>(value) >> 32; int32_t lo_32 = static_cast<int32_t>(value); iihf(dst, Operand(hi_32)); iilf(dst, Operand(lo_32)); #else int value = src.immediate(); iilf(dst, Operand(value)); #endif } void MacroAssembler::Mul32(Register dst, const MemOperand& src1) { if (is_uint12(src1.offset())) { ms(dst, src1); } else if (is_int20(src1.offset())) { msy(dst, src1); } else { UNIMPLEMENTED(); } } void MacroAssembler::Mul32(Register dst, Register src1) { msr(dst, src1); } void MacroAssembler::Mul32(Register dst, const Operand& src1) { msfi(dst, src1); } void MacroAssembler::Mul64(Register dst, const MemOperand& src1) { if (is_int20(src1.offset())) { msg(dst, src1); } else { UNIMPLEMENTED(); } } void MacroAssembler::Mul64(Register dst, Register src1) { msgr(dst, src1); } void MacroAssembler::Mul64(Register dst, const Operand& src1) { msgfi(dst, src1); } void MacroAssembler::Mul(Register dst, Register src1, Register src2) { if (dst.is(src2)) { MulP(dst, src1); } else if (dst.is(src1)) { MulP(dst, src2); } else { Move(dst, src1); MulP(dst, src2); } } void MacroAssembler::DivP(Register dividend, Register divider) { // have to make sure the src and dst are reg pairs DCHECK(dividend.code() % 2 == 0); #if V8_TARGET_ARCH_S390X dsgr(dividend, divider); #else dr(dividend, divider); #endif } void MacroAssembler::MulP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X msgfi(dst, opnd); #else msfi(dst, opnd); #endif } void MacroAssembler::MulP(Register dst, Register src) { #if V8_TARGET_ARCH_S390X msgr(dst, src); #else msr(dst, src); #endif } void MacroAssembler::MulP(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X if (is_uint16(opnd.offset())) { ms(dst, opnd); } else if (is_int20(opnd.offset())) { msy(dst, opnd); } else { UNIMPLEMENTED(); } #else if (is_int20(opnd.offset())) { msg(dst, opnd); } else { UNIMPLEMENTED(); } #endif } //---------------------------------------------------------------------------- // Add Instructions //---------------------------------------------------------------------------- // Add 32-bit (Register dst = Register dst + Immediate opnd) void MacroAssembler::Add32(Register dst, const Operand& opnd) { if (is_int16(opnd.immediate())) ahi(dst, opnd); else afi(dst, opnd); } // Add Pointer Size (Register dst = Register dst + Immediate opnd) void MacroAssembler::AddP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X if (is_int16(opnd.immediate())) aghi(dst, opnd); else agfi(dst, opnd); #else Add32(dst, opnd); #endif } // Add 32-bit (Register dst = Register src + Immediate opnd) void MacroAssembler::Add32(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) { if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) { ahik(dst, src, opnd); return; } lr(dst, src); } Add32(dst, opnd); } // Add Pointer Size (Register dst = Register src + Immediate opnd) void MacroAssembler::AddP(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) { if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) { AddPImm_RRI(dst, src, opnd); return; } LoadRR(dst, src); } AddP(dst, opnd); } // Add 32-bit (Register dst = Register dst + Register src) void MacroAssembler::Add32(Register dst, Register src) { ar(dst, src); } // Add Pointer Size (Register dst = Register dst + Register src) void MacroAssembler::AddP(Register dst, Register src) { AddRR(dst, src); } // Add Pointer Size with src extension // (Register dst(ptr) = Register dst (ptr) + Register src (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::AddP_ExtendSrc(Register dst, Register src) { #if V8_TARGET_ARCH_S390X agfr(dst, src); #else ar(dst, src); #endif } // Add 32-bit (Register dst = Register src1 + Register src2) void MacroAssembler::Add32(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate AR/AGR, over the non clobbering ARK/AGRK // as AR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { ark(dst, src1, src2); return; } else { lr(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } ar(dst, src2); } // Add Pointer Size (Register dst = Register src1 + Register src2) void MacroAssembler::AddP(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate AR/AGR, over the non clobbering ARK/AGRK // as AR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { AddP_RRR(dst, src1, src2); return; } else { LoadRR(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } AddRR(dst, src2); } // Add Pointer Size with src extension // (Register dst (ptr) = Register dst (ptr) + Register src1 (ptr) + // Register src2 (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::AddP_ExtendSrc(Register dst, Register src1, Register src2) { #if V8_TARGET_ARCH_S390X if (dst.is(src2)) { // The source we need to sign extend is the same as result. lgfr(dst, src2); agr(dst, src1); } else { if (!dst.is(src1)) LoadRR(dst, src1); agfr(dst, src2); } #else AddP(dst, src1, src2); #endif } // Add 32-bit (Register-Memory) void MacroAssembler::Add32(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) a(dst, opnd); else ay(dst, opnd); } // Add Pointer Size (Register-Memory) void MacroAssembler::AddP(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(opnd.offset())); ag(dst, opnd); #else Add32(dst, opnd); #endif } // Add Pointer Size with src extension // (Register dst (ptr) = Register dst (ptr) + Mem opnd (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::AddP_ExtendSrc(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(opnd.offset())); agf(dst, opnd); #else Add32(dst, opnd); #endif } // Add 32-bit (Memory - Immediate) void MacroAssembler::Add32(const MemOperand& opnd, const Operand& imm) { DCHECK(is_int8(imm.immediate())); DCHECK(is_int20(opnd.offset())); DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT)); asi(opnd, imm); } // Add Pointer-sized (Memory - Immediate) void MacroAssembler::AddP(const MemOperand& opnd, const Operand& imm) { DCHECK(is_int8(imm.immediate())); DCHECK(is_int20(opnd.offset())); DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT)); #if V8_TARGET_ARCH_S390X agsi(opnd, imm); #else asi(opnd, imm); #endif } //---------------------------------------------------------------------------- // Add Logical Instructions //---------------------------------------------------------------------------- // Add Logical With Carry 32-bit (Register dst = Register src1 + Register src2) void MacroAssembler::AddLogicalWithCarry32(Register dst, Register src1, Register src2) { if (!dst.is(src2) && !dst.is(src1)) { lr(dst, src1); alcr(dst, src2); } else if (!dst.is(src2)) { // dst == src1 DCHECK(dst.is(src1)); alcr(dst, src2); } else { // dst == src2 DCHECK(dst.is(src2)); alcr(dst, src1); } } // Add Logical 32-bit (Register dst = Register src1 + Register src2) void MacroAssembler::AddLogical32(Register dst, Register src1, Register src2) { if (!dst.is(src2) && !dst.is(src1)) { lr(dst, src1); alr(dst, src2); } else if (!dst.is(src2)) { // dst == src1 DCHECK(dst.is(src1)); alr(dst, src2); } else { // dst == src2 DCHECK(dst.is(src2)); alr(dst, src1); } } // Add Logical 32-bit (Register dst = Register dst + Immediate opnd) void MacroAssembler::AddLogical(Register dst, const Operand& imm) { alfi(dst, imm); } // Add Logical Pointer Size (Register dst = Register dst + Immediate opnd) void MacroAssembler::AddLogicalP(Register dst, const Operand& imm) { #ifdef V8_TARGET_ARCH_S390X algfi(dst, imm); #else AddLogical(dst, imm); #endif } // Add Logical 32-bit (Register-Memory) void MacroAssembler::AddLogical(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) al_z(dst, opnd); else aly(dst, opnd); } // Add Logical Pointer Size (Register-Memory) void MacroAssembler::AddLogicalP(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(opnd.offset())); alg(dst, opnd); #else AddLogical(dst, opnd); #endif } //---------------------------------------------------------------------------- // Subtract Instructions //---------------------------------------------------------------------------- // Subtract Logical With Carry 32-bit (Register dst = Register src1 - Register // src2) void MacroAssembler::SubLogicalWithBorrow32(Register dst, Register src1, Register src2) { if (!dst.is(src2) && !dst.is(src1)) { lr(dst, src1); slbr(dst, src2); } else if (!dst.is(src2)) { // dst == src1 DCHECK(dst.is(src1)); slbr(dst, src2); } else { // dst == src2 DCHECK(dst.is(src2)); lr(r0, dst); SubLogicalWithBorrow32(dst, src1, r0); } } // Subtract Logical 32-bit (Register dst = Register src1 - Register src2) void MacroAssembler::SubLogical32(Register dst, Register src1, Register src2) { if (!dst.is(src2) && !dst.is(src1)) { lr(dst, src1); slr(dst, src2); } else if (!dst.is(src2)) { // dst == src1 DCHECK(dst.is(src1)); slr(dst, src2); } else { // dst == src2 DCHECK(dst.is(src2)); lr(r0, dst); SubLogical32(dst, src1, r0); } } // Subtract 32-bit (Register dst = Register dst - Immediate opnd) void MacroAssembler::Sub32(Register dst, const Operand& imm) { Add32(dst, Operand(-(imm.imm_))); } // Subtract Pointer Size (Register dst = Register dst - Immediate opnd) void MacroAssembler::SubP(Register dst, const Operand& imm) { AddP(dst, Operand(-(imm.imm_))); } // Subtract 32-bit (Register dst = Register src - Immediate opnd) void MacroAssembler::Sub32(Register dst, Register src, const Operand& imm) { Add32(dst, src, Operand(-(imm.imm_))); } // Subtract Pointer Sized (Register dst = Register src - Immediate opnd) void MacroAssembler::SubP(Register dst, Register src, const Operand& imm) { AddP(dst, src, Operand(-(imm.imm_))); } // Subtract 32-bit (Register dst = Register dst - Register src) void MacroAssembler::Sub32(Register dst, Register src) { sr(dst, src); } // Subtract Pointer Size (Register dst = Register dst - Register src) void MacroAssembler::SubP(Register dst, Register src) { SubRR(dst, src); } // Subtract Pointer Size with src extension // (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::SubP_ExtendSrc(Register dst, Register src) { #if V8_TARGET_ARCH_S390X sgfr(dst, src); #else sr(dst, src); #endif } // Subtract 32-bit (Register = Register - Register) void MacroAssembler::Sub32(Register dst, Register src1, Register src2) { // Use non-clobbering version if possible if (CpuFeatures::IsSupported(DISTINCT_OPS)) { srk(dst, src1, src2); return; } if (!dst.is(src1) && !dst.is(src2)) lr(dst, src1); // In scenario where we have dst = src - dst, we need to swap and negate if (!dst.is(src1) && dst.is(src2)) { Label done; lcr(dst, dst); // dst = -dst b(overflow, &done); ar(dst, src1); // dst = dst + src bind(&done); } else { sr(dst, src2); } } // Subtract Pointer Sized (Register = Register - Register) void MacroAssembler::SubP(Register dst, Register src1, Register src2) { // Use non-clobbering version if possible if (CpuFeatures::IsSupported(DISTINCT_OPS)) { SubP_RRR(dst, src1, src2); return; } if (!dst.is(src1) && !dst.is(src2)) LoadRR(dst, src1); // In scenario where we have dst = src - dst, we need to swap and negate if (!dst.is(src1) && dst.is(src2)) { Label done; LoadComplementRR(dst, dst); // dst = -dst b(overflow, &done); AddP(dst, src1); // dst = dst + src bind(&done); } else { SubP(dst, src2); } } // Subtract Pointer Size with src extension // (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::SubP_ExtendSrc(Register dst, Register src1, Register src2) { #if V8_TARGET_ARCH_S390X if (!dst.is(src1) && !dst.is(src2)) LoadRR(dst, src1); // In scenario where we have dst = src - dst, we need to swap and negate if (!dst.is(src1) && dst.is(src2)) { lgfr(dst, dst); // Sign extend this operand first. LoadComplementRR(dst, dst); // dst = -dst AddP(dst, src1); // dst = -dst + src } else { sgfr(dst, src2); } #else SubP(dst, src1, src2); #endif } // Subtract 32-bit (Register-Memory) void MacroAssembler::Sub32(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) s(dst, opnd); else sy(dst, opnd); } // Subtract Pointer Sized (Register - Memory) void MacroAssembler::SubP(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X sg(dst, opnd); #else Sub32(dst, opnd); #endif } void MacroAssembler::MovIntToFloat(DoubleRegister dst, Register src) { sllg(src, src, Operand(32)); ldgr(dst, src); } void MacroAssembler::MovFloatToInt(Register dst, DoubleRegister src) { lgdr(dst, src); srlg(dst, dst, Operand(32)); } void MacroAssembler::SubP_ExtendSrc(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(opnd.offset())); sgf(dst, opnd); #else Sub32(dst, opnd); #endif } //---------------------------------------------------------------------------- // Subtract Logical Instructions //---------------------------------------------------------------------------- // Subtract Logical 32-bit (Register - Memory) void MacroAssembler::SubLogical(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) sl(dst, opnd); else sly(dst, opnd); } // Subtract Logical Pointer Sized (Register - Memory) void MacroAssembler::SubLogicalP(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X slgf(dst, opnd); #else SubLogical(dst, opnd); #endif } // Subtract Logical Pointer Size with src extension // (Register dst (ptr) = Register dst (ptr) - Mem opnd (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(opnd.offset())); slgf(dst, opnd); #else SubLogical(dst, opnd); #endif } //---------------------------------------------------------------------------- // Bitwise Operations //---------------------------------------------------------------------------- // AND 32-bit - dst = dst & src void MacroAssembler::And(Register dst, Register src) { nr(dst, src); } // AND Pointer Size - dst = dst & src void MacroAssembler::AndP(Register dst, Register src) { AndRR(dst, src); } // Non-clobbering AND 32-bit - dst = src1 & src1 void MacroAssembler::And(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate XR/XGR, over the non clobbering XRK/XRK // as XR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { nrk(dst, src1, src2); return; } else { lr(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } And(dst, src2); } // Non-clobbering AND pointer size - dst = src1 & src1 void MacroAssembler::AndP(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate XR/XGR, over the non clobbering XRK/XRK // as XR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { AndP_RRR(dst, src1, src2); return; } else { LoadRR(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } AndP(dst, src2); } // AND 32-bit (Reg - Mem) void MacroAssembler::And(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) n(dst, opnd); else ny(dst, opnd); } // AND Pointer Size (Reg - Mem) void MacroAssembler::AndP(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X ng(dst, opnd); #else And(dst, opnd); #endif } // AND 32-bit - dst = dst & imm void MacroAssembler::And(Register dst, const Operand& opnd) { nilf(dst, opnd); } // AND Pointer Size - dst = dst & imm void MacroAssembler::AndP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X intptr_t value = opnd.imm_; if (value >> 32 != -1) { // this may not work b/c condition code won't be set correctly nihf(dst, Operand(value >> 32)); } nilf(dst, Operand(value & 0xFFFFFFFF)); #else And(dst, opnd); #endif } // AND 32-bit - dst = src & imm void MacroAssembler::And(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) lr(dst, src); nilf(dst, opnd); } // AND Pointer Size - dst = src & imm void MacroAssembler::AndP(Register dst, Register src, const Operand& opnd) { // Try to exploit RISBG first intptr_t value = opnd.imm_; if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { intptr_t shifted_value = value; int trailing_zeros = 0; // We start checking how many trailing zeros are left at the end. while ((0 != shifted_value) && (0 == (shifted_value & 1))) { trailing_zeros++; shifted_value >>= 1; } // If temp (value with right-most set of zeros shifted out) is 1 less // than power of 2, we have consecutive bits of 1. // Special case: If shift_value is zero, we cannot use RISBG, as it requires // selection of at least 1 bit. if ((0 != shifted_value) && base::bits::IsPowerOfTwo64(shifted_value + 1)) { int startBit = base::bits::CountLeadingZeros64(shifted_value) - trailing_zeros; int endBit = 63 - trailing_zeros; // Start: startBit, End: endBit, Shift = 0, true = zero unselected bits. risbg(dst, src, Operand(startBit), Operand(endBit), Operand::Zero(), true); return; } else if (-1 == shifted_value) { // A Special case in which all top bits up to MSB are 1's. In this case, // we can set startBit to be 0. int endBit = 63 - trailing_zeros; risbg(dst, src, Operand::Zero(), Operand(endBit), Operand::Zero(), true); return; } } // If we are &'ing zero, we can just whack the dst register and skip copy if (!dst.is(src) && (0 != value)) LoadRR(dst, src); AndP(dst, opnd); } // OR 32-bit - dst = dst & src void MacroAssembler::Or(Register dst, Register src) { or_z(dst, src); } // OR Pointer Size - dst = dst & src void MacroAssembler::OrP(Register dst, Register src) { OrRR(dst, src); } // Non-clobbering OR 32-bit - dst = src1 & src1 void MacroAssembler::Or(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate XR/XGR, over the non clobbering XRK/XRK // as XR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { ork(dst, src1, src2); return; } else { lr(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } Or(dst, src2); } // Non-clobbering OR pointer size - dst = src1 & src1 void MacroAssembler::OrP(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate XR/XGR, over the non clobbering XRK/XRK // as XR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { OrP_RRR(dst, src1, src2); return; } else { LoadRR(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } OrP(dst, src2); } // OR 32-bit (Reg - Mem) void MacroAssembler::Or(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) o(dst, opnd); else oy(dst, opnd); } // OR Pointer Size (Reg - Mem) void MacroAssembler::OrP(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X og(dst, opnd); #else Or(dst, opnd); #endif } // OR 32-bit - dst = dst & imm void MacroAssembler::Or(Register dst, const Operand& opnd) { oilf(dst, opnd); } // OR Pointer Size - dst = dst & imm void MacroAssembler::OrP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X intptr_t value = opnd.imm_; if (value >> 32 != 0) { // this may not work b/c condition code won't be set correctly oihf(dst, Operand(value >> 32)); } oilf(dst, Operand(value & 0xFFFFFFFF)); #else Or(dst, opnd); #endif } // OR 32-bit - dst = src & imm void MacroAssembler::Or(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) lr(dst, src); oilf(dst, opnd); } // OR Pointer Size - dst = src & imm void MacroAssembler::OrP(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) LoadRR(dst, src); OrP(dst, opnd); } // XOR 32-bit - dst = dst & src void MacroAssembler::Xor(Register dst, Register src) { xr(dst, src); } // XOR Pointer Size - dst = dst & src void MacroAssembler::XorP(Register dst, Register src) { XorRR(dst, src); } // Non-clobbering XOR 32-bit - dst = src1 & src1 void MacroAssembler::Xor(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate XR/XGR, over the non clobbering XRK/XRK // as XR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { xrk(dst, src1, src2); return; } else { lr(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } Xor(dst, src2); } // Non-clobbering XOR pointer size - dst = src1 & src1 void MacroAssembler::XorP(Register dst, Register src1, Register src2) { if (!dst.is(src1) && !dst.is(src2)) { // We prefer to generate XR/XGR, over the non clobbering XRK/XRK // as XR is a smaller instruction if (CpuFeatures::IsSupported(DISTINCT_OPS)) { XorP_RRR(dst, src1, src2); return; } else { LoadRR(dst, src1); } } else if (dst.is(src2)) { src2 = src1; } XorP(dst, src2); } // XOR 32-bit (Reg - Mem) void MacroAssembler::Xor(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) x(dst, opnd); else xy(dst, opnd); } // XOR Pointer Size (Reg - Mem) void MacroAssembler::XorP(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X xg(dst, opnd); #else Xor(dst, opnd); #endif } // XOR 32-bit - dst = dst & imm void MacroAssembler::Xor(Register dst, const Operand& opnd) { xilf(dst, opnd); } // XOR Pointer Size - dst = dst & imm void MacroAssembler::XorP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X intptr_t value = opnd.imm_; xihf(dst, Operand(value >> 32)); xilf(dst, Operand(value & 0xFFFFFFFF)); #else Xor(dst, opnd); #endif } // XOR 32-bit - dst = src & imm void MacroAssembler::Xor(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) lr(dst, src); xilf(dst, opnd); } // XOR Pointer Size - dst = src & imm void MacroAssembler::XorP(Register dst, Register src, const Operand& opnd) { if (!dst.is(src)) LoadRR(dst, src); XorP(dst, opnd); } void MacroAssembler::Not32(Register dst, Register src) { if (!src.is(no_reg) && !src.is(dst)) lr(dst, src); xilf(dst, Operand(0xFFFFFFFF)); } void MacroAssembler::Not64(Register dst, Register src) { if (!src.is(no_reg) && !src.is(dst)) lgr(dst, src); xihf(dst, Operand(0xFFFFFFFF)); xilf(dst, Operand(0xFFFFFFFF)); } void MacroAssembler::NotP(Register dst, Register src) { #if V8_TARGET_ARCH_S390X Not64(dst, src); #else Not32(dst, src); #endif } // works the same as mov void MacroAssembler::Load(Register dst, const Operand& opnd) { intptr_t value = opnd.immediate(); if (is_int16(value)) { #if V8_TARGET_ARCH_S390X lghi(dst, opnd); #else lhi(dst, opnd); #endif } else { #if V8_TARGET_ARCH_S390X llilf(dst, opnd); #else iilf(dst, opnd); #endif } } void MacroAssembler::Load(Register dst, const MemOperand& opnd) { DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X lgf(dst, opnd); // 64<-32 #else if (is_uint12(opnd.offset())) { l(dst, opnd); } else { ly(dst, opnd); } #endif } //----------------------------------------------------------------------------- // Compare Helpers //----------------------------------------------------------------------------- // Compare 32-bit Register vs Register void MacroAssembler::Cmp32(Register src1, Register src2) { cr_z(src1, src2); } // Compare Pointer Sized Register vs Register void MacroAssembler::CmpP(Register src1, Register src2) { #if V8_TARGET_ARCH_S390X cgr(src1, src2); #else Cmp32(src1, src2); #endif } // Compare 32-bit Register vs Immediate // This helper will set up proper relocation entries if required. void MacroAssembler::Cmp32(Register dst, const Operand& opnd) { if (opnd.rmode_ == kRelocInfo_NONEPTR) { intptr_t value = opnd.immediate(); if (is_int16(value)) chi(dst, opnd); else cfi(dst, opnd); } else { // Need to generate relocation record here RecordRelocInfo(opnd.rmode_, opnd.imm_); cfi(dst, opnd); } } // Compare Pointer Sized Register vs Immediate // This helper will set up proper relocation entries if required. void MacroAssembler::CmpP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X if (opnd.rmode_ == kRelocInfo_NONEPTR) { cgfi(dst, opnd); } else { mov(r0, opnd); // Need to generate 64-bit relocation cgr(dst, r0); } #else Cmp32(dst, opnd); #endif } // Compare 32-bit Register vs Memory void MacroAssembler::Cmp32(Register dst, const MemOperand& opnd) { // make sure offset is within 20 bit range DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) c(dst, opnd); else cy(dst, opnd); } // Compare Pointer Size Register vs Memory void MacroAssembler::CmpP(Register dst, const MemOperand& opnd) { // make sure offset is within 20 bit range DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X cg(dst, opnd); #else Cmp32(dst, opnd); #endif } //----------------------------------------------------------------------------- // Compare Logical Helpers //----------------------------------------------------------------------------- // Compare Logical 32-bit Register vs Register void MacroAssembler::CmpLogical32(Register dst, Register src) { clr(dst, src); } // Compare Logical Pointer Sized Register vs Register void MacroAssembler::CmpLogicalP(Register dst, Register src) { #ifdef V8_TARGET_ARCH_S390X clgr(dst, src); #else CmpLogical32(dst, src); #endif } // Compare Logical 32-bit Register vs Immediate void MacroAssembler::CmpLogical32(Register dst, const Operand& opnd) { clfi(dst, opnd); } // Compare Logical Pointer Sized Register vs Immediate void MacroAssembler::CmpLogicalP(Register dst, const Operand& opnd) { #if V8_TARGET_ARCH_S390X DCHECK(static_cast<uint32_t>(opnd.immediate() >> 32) == 0); clgfi(dst, opnd); #else CmpLogical32(dst, opnd); #endif } // Compare Logical 32-bit Register vs Memory void MacroAssembler::CmpLogical32(Register dst, const MemOperand& opnd) { // make sure offset is within 20 bit range DCHECK(is_int20(opnd.offset())); if (is_uint12(opnd.offset())) cl(dst, opnd); else cly(dst, opnd); } // Compare Logical Pointer Sized Register vs Memory void MacroAssembler::CmpLogicalP(Register dst, const MemOperand& opnd) { // make sure offset is within 20 bit range DCHECK(is_int20(opnd.offset())); #if V8_TARGET_ARCH_S390X clg(dst, opnd); #else CmpLogical32(dst, opnd); #endif } // Compare Logical Byte (Mem - Imm) void MacroAssembler::CmpLogicalByte(const MemOperand& mem, const Operand& imm) { DCHECK(is_uint8(imm.immediate())); if (is_uint12(mem.offset())) cli(mem, imm); else cliy(mem, imm); } void MacroAssembler::Branch(Condition c, const Operand& opnd) { intptr_t value = opnd.immediate(); if (is_int16(value)) brc(c, opnd); else brcl(c, opnd); } // Branch On Count. Decrement R1, and branch if R1 != 0. void MacroAssembler::BranchOnCount(Register r1, Label* l) { int32_t offset = branch_offset(l); if (is_int16(offset)) { #if V8_TARGET_ARCH_S390X brctg(r1, Operand(offset)); #else brct(r1, Operand(offset)); #endif } else { AddP(r1, Operand(-1)); Branch(ne, Operand(offset)); } } void MacroAssembler::LoadIntLiteral(Register dst, int value) { Load(dst, Operand(value)); } void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) { intptr_t value = reinterpret_cast<intptr_t>(smi); #if V8_TARGET_ARCH_S390X DCHECK((value & 0xffffffff) == 0); // The smi value is loaded in upper 32-bits. Lower 32-bit are zeros. llihf(dst, Operand(value >> 32)); #else llilf(dst, Operand(value)); #endif } void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, uint64_t value, Register scratch) { uint32_t hi_32 = value >> 32; uint32_t lo_32 = static_cast<uint32_t>(value); // Load the 64-bit value into a GPR, then transfer it to FPR via LDGR iihf(scratch, Operand(hi_32)); iilf(scratch, Operand(lo_32)); ldgr(result, scratch); } void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value, Register scratch) { uint64_t int_val = bit_cast<uint64_t, double>(value); LoadDoubleLiteral(result, int_val, scratch); } void MacroAssembler::LoadFloat32Literal(DoubleRegister result, float value, Register scratch) { uint32_t hi_32 = bit_cast<uint32_t>(value); uint32_t lo_32 = 0; // Load the 64-bit value into a GPR, then transfer it to FPR via LDGR iihf(scratch, Operand(hi_32)); iilf(scratch, Operand(lo_32)); ldgr(result, scratch); } void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch) { #if V8_TARGET_ARCH_S390X LoadSmiLiteral(scratch, smi); cgr(src1, scratch); #else // CFI takes 32-bit immediate. cfi(src1, Operand(smi)); #endif } void MacroAssembler::CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch) { #if V8_TARGET_ARCH_S390X LoadSmiLiteral(scratch, smi); clgr(src1, scratch); #else // CLFI takes 32-bit immediate clfi(src1, Operand(smi)); #endif } void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch) { #if V8_TARGET_ARCH_S390X LoadSmiLiteral(scratch, smi); AddP(dst, src, scratch); #else AddP(dst, src, Operand(reinterpret_cast<intptr_t>(smi))); #endif } void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch) { #if V8_TARGET_ARCH_S390X LoadSmiLiteral(scratch, smi); SubP(dst, src, scratch); #else AddP(dst, src, Operand(-(reinterpret_cast<intptr_t>(smi)))); #endif } void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi) { if (!dst.is(src)) LoadRR(dst, src); #if V8_TARGET_ARCH_S390X DCHECK((reinterpret_cast<intptr_t>(smi) & 0xffffffff) == 0); int value = static_cast<int>(reinterpret_cast<intptr_t>(smi) >> 32); nihf(dst, Operand(value)); #else nilf(dst, Operand(reinterpret_cast<int>(smi))); #endif } // Load a "pointer" sized value from the memory location void MacroAssembler::LoadP(Register dst, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!scratch.is(no_reg) && !is_int20(offset)) { /* cannot use d-form */ LoadIntLiteral(scratch, offset); #if V8_TARGET_ARCH_S390X lg(dst, MemOperand(mem.rb(), scratch)); #else l(dst, MemOperand(mem.rb(), scratch)); #endif } else { #if V8_TARGET_ARCH_S390X lg(dst, mem); #else if (is_uint12(offset)) { l(dst, mem); } else { ly(dst, mem); } #endif } } // Store a "pointer" sized value to the memory location void MacroAssembler::StoreP(Register src, const MemOperand& mem, Register scratch) { if (!is_int20(mem.offset())) { DCHECK(!scratch.is(no_reg)); DCHECK(!scratch.is(r0)); LoadIntLiteral(scratch, mem.offset()); #if V8_TARGET_ARCH_S390X stg(src, MemOperand(mem.rb(), scratch)); #else st(src, MemOperand(mem.rb(), scratch)); #endif } else { #if V8_TARGET_ARCH_S390X stg(src, mem); #else // StoreW will try to generate ST if offset fits, otherwise // it'll generate STY. StoreW(src, mem); #endif } } // Store a "pointer" sized constant to the memory location void MacroAssembler::StoreP(const MemOperand& mem, const Operand& opnd, Register scratch) { // Relocations not supported DCHECK(opnd.rmode_ == kRelocInfo_NONEPTR); // Try to use MVGHI/MVHI if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_uint12(mem.offset()) && mem.getIndexRegister().is(r0) && is_int16(opnd.imm_)) { #if V8_TARGET_ARCH_S390X mvghi(mem, opnd); #else mvhi(mem, opnd); #endif } else { LoadImmP(scratch, opnd); StoreP(scratch, mem); } } void MacroAssembler::LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(mem.offset())); lmg(dst1, dst2, mem); #else if (is_uint12(mem.offset())) { lm(dst1, dst2, mem); } else { DCHECK(is_int20(mem.offset())); lmy(dst1, dst2, mem); } #endif } void MacroAssembler::StoreMultipleP(Register src1, Register src2, const MemOperand& mem) { #if V8_TARGET_ARCH_S390X DCHECK(is_int20(mem.offset())); stmg(src1, src2, mem); #else if (is_uint12(mem.offset())) { stm(src1, src2, mem); } else { DCHECK(is_int20(mem.offset())); stmy(src1, src2, mem); } #endif } void MacroAssembler::LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem) { if (is_uint12(mem.offset())) { lm(dst1, dst2, mem); } else { DCHECK(is_int20(mem.offset())); lmy(dst1, dst2, mem); } } void MacroAssembler::StoreMultipleW(Register src1, Register src2, const MemOperand& mem) { if (is_uint12(mem.offset())) { stm(src1, src2, mem); } else { DCHECK(is_int20(mem.offset())); stmy(src1, src2, mem); } } // Load 32-bits and sign extend if necessary. void MacroAssembler::LoadW(Register dst, Register src) { #if V8_TARGET_ARCH_S390X lgfr(dst, src); #else if (!dst.is(src)) lr(dst, src); #endif } // Load 32-bits and sign extend if necessary. void MacroAssembler::LoadW(Register dst, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int20(offset)) { DCHECK(!scratch.is(no_reg)); LoadIntLiteral(scratch, offset); #if V8_TARGET_ARCH_S390X lgf(dst, MemOperand(mem.rb(), scratch)); #else l(dst, MemOperand(mem.rb(), scratch)); #endif } else { #if V8_TARGET_ARCH_S390X lgf(dst, mem); #else if (is_uint12(offset)) { l(dst, mem); } else { ly(dst, mem); } #endif } } // Load 32-bits and zero extend if necessary. void MacroAssembler::LoadlW(Register dst, Register src) { #if V8_TARGET_ARCH_S390X llgfr(dst, src); #else if (!dst.is(src)) lr(dst, src); #endif } // Variable length depending on whether offset fits into immediate field // MemOperand of RX or RXY format void MacroAssembler::LoadlW(Register dst, const MemOperand& mem, Register scratch) { Register base = mem.rb(); int offset = mem.offset(); #if V8_TARGET_ARCH_S390X if (is_int20(offset)) { llgf(dst, mem); } else if (!scratch.is(no_reg)) { // Materialize offset into scratch register. LoadIntLiteral(scratch, offset); llgf(dst, MemOperand(base, scratch)); } else { DCHECK(false); } #else bool use_RXform = false; bool use_RXYform = false; if (is_uint12(offset)) { // RX-format supports unsigned 12-bits offset. use_RXform = true; } else if (is_int20(offset)) { // RXY-format supports signed 20-bits offset. use_RXYform = true; } else if (!scratch.is(no_reg)) { // Materialize offset into scratch register. LoadIntLiteral(scratch, offset); } else { DCHECK(false); } if (use_RXform) { l(dst, mem); } else if (use_RXYform) { ly(dst, mem); } else { ly(dst, MemOperand(base, scratch)); } #endif } void MacroAssembler::LoadLogicalHalfWordP(Register dst, const MemOperand& mem) { #if V8_TARGET_ARCH_S390X llgh(dst, mem); #else llh(dst, mem); #endif } void MacroAssembler::LoadLogicalHalfWordP(Register dst, Register src) { #if V8_TARGET_ARCH_S390X llghr(dst, src); #else llhr(dst, src); #endif } void MacroAssembler::LoadB(Register dst, const MemOperand& mem) { #if V8_TARGET_ARCH_S390X lgb(dst, mem); #else lb(dst, mem); #endif } void MacroAssembler::LoadB(Register dst, Register src) { #if V8_TARGET_ARCH_S390X lgbr(dst, src); #else lbr(dst, src); #endif } void MacroAssembler::LoadlB(Register dst, const MemOperand& mem) { #if V8_TARGET_ARCH_S390X llgc(dst, mem); #else llc(dst, mem); #endif } void MacroAssembler::LoadLogicalReversedWordP(Register dst, const MemOperand& mem) { lrv(dst, mem); LoadlW(dst, dst); } void MacroAssembler::LoadLogicalReversedHalfWordP(Register dst, const MemOperand& mem) { lrvh(dst, mem); LoadLogicalHalfWordP(dst, dst); } // Load And Test (Reg <- Reg) void MacroAssembler::LoadAndTest32(Register dst, Register src) { ltr(dst, src); } // Load And Test // (Register dst(ptr) = Register src (32 | 32->64)) // src is treated as a 32-bit signed integer, which is sign extended to // 64-bit if necessary. void MacroAssembler::LoadAndTestP_ExtendSrc(Register dst, Register src) { #if V8_TARGET_ARCH_S390X ltgfr(dst, src); #else ltr(dst, src); #endif } // Load And Test Pointer Sized (Reg <- Reg) void MacroAssembler::LoadAndTestP(Register dst, Register src) { #if V8_TARGET_ARCH_S390X ltgr(dst, src); #else ltr(dst, src); #endif } // Load And Test 32-bit (Reg <- Mem) void MacroAssembler::LoadAndTest32(Register dst, const MemOperand& mem) { lt_z(dst, mem); } // Load And Test Pointer Sized (Reg <- Mem) void MacroAssembler::LoadAndTestP(Register dst, const MemOperand& mem) { #if V8_TARGET_ARCH_S390X ltg(dst, mem); #else lt_z(dst, mem); #endif } // Load On Condition Pointer Sized (Reg <- Reg) void MacroAssembler::LoadOnConditionP(Condition cond, Register dst, Register src) { #if V8_TARGET_ARCH_S390X locgr(cond, dst, src); #else locr(cond, dst, src); #endif } // Load Double Precision (64-bit) Floating Point number from memory void MacroAssembler::LoadDouble(DoubleRegister dst, const MemOperand& mem) { // for 32bit and 64bit we all use 64bit floating point regs if (is_uint12(mem.offset())) { ld(dst, mem); } else { ldy(dst, mem); } } // Load Single Precision (32-bit) Floating Point number from memory void MacroAssembler::LoadFloat32(DoubleRegister dst, const MemOperand& mem) { if (is_uint12(mem.offset())) { le_z(dst, mem); } else { DCHECK(is_int20(mem.offset())); ley(dst, mem); } } // Load Single Precision (32-bit) Floating Point number from memory, // and convert to Double Precision (64-bit) void MacroAssembler::LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem) { LoadFloat32(dst, mem); ldebr(dst, dst); } // Store Double Precision (64-bit) Floating Point number to memory void MacroAssembler::StoreDouble(DoubleRegister dst, const MemOperand& mem) { if (is_uint12(mem.offset())) { std(dst, mem); } else { stdy(dst, mem); } } // Store Single Precision (32-bit) Floating Point number to memory void MacroAssembler::StoreFloat32(DoubleRegister src, const MemOperand& mem) { if (is_uint12(mem.offset())) { ste(src, mem); } else { stey(src, mem); } } // Convert Double precision (64-bit) to Single Precision (32-bit) // and store resulting Float32 to memory void MacroAssembler::StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem, DoubleRegister scratch) { ledbr(scratch, src); StoreFloat32(scratch, mem); } // Variable length depending on whether offset fits into immediate field // MemOperand of RX or RXY format void MacroAssembler::StoreW(Register src, const MemOperand& mem, Register scratch) { Register base = mem.rb(); int offset = mem.offset(); bool use_RXform = false; bool use_RXYform = false; if (is_uint12(offset)) { // RX-format supports unsigned 12-bits offset. use_RXform = true; } else if (is_int20(offset)) { // RXY-format supports signed 20-bits offset. use_RXYform = true; } else if (!scratch.is(no_reg)) { // Materialize offset into scratch register. LoadIntLiteral(scratch, offset); } else { // scratch is no_reg DCHECK(false); } if (use_RXform) { st(src, mem); } else if (use_RXYform) { sty(src, mem); } else { StoreW(src, MemOperand(base, scratch)); } } // Loads 16-bits half-word value from memory and sign extends to pointer // sized register void MacroAssembler::LoadHalfWordP(Register dst, const MemOperand& mem, Register scratch) { Register base = mem.rb(); int offset = mem.offset(); if (!is_int20(offset)) { DCHECK(!scratch.is(no_reg)); LoadIntLiteral(scratch, offset); #if V8_TARGET_ARCH_S390X lgh(dst, MemOperand(base, scratch)); #else lh(dst, MemOperand(base, scratch)); #endif } else { #if V8_TARGET_ARCH_S390X lgh(dst, mem); #else if (is_uint12(offset)) { lh(dst, mem); } else { lhy(dst, mem); } #endif } } // Variable length depending on whether offset fits into immediate field // MemOperand current only supports d-form void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem, Register scratch) { Register base = mem.rb(); int offset = mem.offset(); if (is_uint12(offset)) { sth(src, mem); } else if (is_int20(offset)) { sthy(src, mem); } else { DCHECK(!scratch.is(no_reg)); LoadIntLiteral(scratch, offset); sth(src, MemOperand(base, scratch)); } } // Variable length depending on whether offset fits into immediate field // MemOperand current only supports d-form void MacroAssembler::StoreByte(Register src, const MemOperand& mem, Register scratch) { Register base = mem.rb(); int offset = mem.offset(); if (is_uint12(offset)) { stc(src, mem); } else if (is_int20(offset)) { stcy(src, mem); } else { DCHECK(!scratch.is(no_reg)); LoadIntLiteral(scratch, offset); stc(src, MemOperand(base, scratch)); } } // Shift left logical for 32-bit integer types. void MacroAssembler::ShiftLeft(Register dst, Register src, const Operand& val) { if (dst.is(src)) { sll(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { sllk(dst, src, val); } else { lr(dst, src); sll(dst, val); } } // Shift left logical for 32-bit integer types. void MacroAssembler::ShiftLeft(Register dst, Register src, Register val) { if (dst.is(src)) { sll(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { sllk(dst, src, val); } else { DCHECK(!dst.is(val)); // The lr/sll path clobbers val. lr(dst, src); sll(dst, val); } } // Shift right logical for 32-bit integer types. void MacroAssembler::ShiftRight(Register dst, Register src, const Operand& val) { if (dst.is(src)) { srl(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { srlk(dst, src, val); } else { lr(dst, src); srl(dst, val); } } // Shift right logical for 32-bit integer types. void MacroAssembler::ShiftRight(Register dst, Register src, Register val) { if (dst.is(src)) { srl(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { srlk(dst, src, val); } else { DCHECK(!dst.is(val)); // The lr/srl path clobbers val. lr(dst, src); srl(dst, val); } } // Shift left arithmetic for 32-bit integer types. void MacroAssembler::ShiftLeftArith(Register dst, Register src, const Operand& val) { if (dst.is(src)) { sla(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { slak(dst, src, val); } else { lr(dst, src); sla(dst, val); } } // Shift left arithmetic for 32-bit integer types. void MacroAssembler::ShiftLeftArith(Register dst, Register src, Register val) { if (dst.is(src)) { sla(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { slak(dst, src, val); } else { DCHECK(!dst.is(val)); // The lr/sla path clobbers val. lr(dst, src); sla(dst, val); } } // Shift right arithmetic for 32-bit integer types. void MacroAssembler::ShiftRightArith(Register dst, Register src, const Operand& val) { if (dst.is(src)) { sra(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { srak(dst, src, val); } else { lr(dst, src); sra(dst, val); } } // Shift right arithmetic for 32-bit integer types. void MacroAssembler::ShiftRightArith(Register dst, Register src, Register val) { if (dst.is(src)) { sra(dst, val); } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { srak(dst, src, val); } else { DCHECK(!dst.is(val)); // The lr/sra path clobbers val. lr(dst, src); sra(dst, val); } } // Clear right most # of bits void MacroAssembler::ClearRightImm(Register dst, Register src, const Operand& val) { int numBitsToClear = val.imm_ % (kPointerSize * 8); // Try to use RISBG if possible if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { int endBit = 63 - numBitsToClear; risbg(dst, src, Operand::Zero(), Operand(endBit), Operand::Zero(), true); return; } uint64_t hexMask = ~((1L << numBitsToClear) - 1); // S390 AND instr clobbers source. Make a copy if necessary if (!dst.is(src)) LoadRR(dst, src); if (numBitsToClear <= 16) { nill(dst, Operand(static_cast<uint16_t>(hexMask))); } else if (numBitsToClear <= 32) { nilf(dst, Operand(static_cast<uint32_t>(hexMask))); } else if (numBitsToClear <= 64) { nilf(dst, Operand(static_cast<intptr_t>(0))); nihf(dst, Operand(hexMask >> 32)); } } void MacroAssembler::Popcnt32(Register dst, Register src) { DCHECK(!src.is(r0)); DCHECK(!dst.is(r0)); popcnt(dst, src); ShiftRight(r0, dst, Operand(16)); ar(dst, r0); ShiftRight(r0, dst, Operand(8)); ar(dst, r0); LoadB(dst, dst); } #ifdef V8_TARGET_ARCH_S390X void MacroAssembler::Popcnt64(Register dst, Register src) { DCHECK(!src.is(r0)); DCHECK(!dst.is(r0)); popcnt(dst, src); ShiftRightP(r0, dst, Operand(32)); AddP(dst, r0); ShiftRightP(r0, dst, Operand(16)); AddP(dst, r0); ShiftRightP(r0, dst, Operand(8)); AddP(dst, r0); LoadB(dst, dst); } #endif #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6, Register reg7, Register reg8, Register reg9, Register reg10) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + reg7.is_valid() + reg8.is_valid() + reg9.is_valid() + reg10.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); if (reg7.is_valid()) regs |= reg7.bit(); if (reg8.is_valid()) regs |= reg8.bit(); if (reg9.is_valid()) regs |= reg9.bit(); if (reg10.is_valid()) regs |= reg10.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } #endif CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size, FlushICache flush_cache) : address_(address), size_(size), masm_(isolate, address, size_ + Assembler::kGap, CodeObjectRequired::kNo), flush_cache_(flush_cache) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. if (flush_cache_ == FLUSH) { Assembler::FlushICache(masm_.isolate(), address_, size_); } // Check that the code was patched as expected. DCHECK(masm_.pc_ == address_ + size_); DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void MacroAssembler::TruncatingDiv(Register result, Register dividend, int32_t divisor) { DCHECK(!dividend.is(result)); DCHECK(!dividend.is(r0)); DCHECK(!result.is(r0)); base::MagicNumbersForDivision<uint32_t> mag = base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); #ifdef V8_TARGET_ARCH_S390X LoadRR(result, dividend); MulP(result, Operand(mag.multiplier)); ShiftRightArithP(result, result, Operand(32)); #else lay(sp, MemOperand(sp, -kPointerSize)); StoreP(r1, MemOperand(sp)); mov(r1, Operand(mag.multiplier)); mr_z(r0, dividend); // r0:r1 = r1 * dividend LoadRR(result, r0); LoadP(r1, MemOperand(sp)); la(sp, MemOperand(sp, kPointerSize)); #endif bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; if (divisor > 0 && neg) { AddP(result, dividend); } if (divisor < 0 && !neg && mag.multiplier > 0) { SubP(result, dividend); } if (mag.shift > 0) ShiftRightArith(result, result, Operand(mag.shift)); ExtractBit(r0, dividend, 31); AddP(result, r0); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_S390