// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. #ifndef V8_S390_ASSEMBLER_S390_INL_H_ #define V8_S390_ASSEMBLER_S390_INL_H_ #include "src/s390/assembler-s390.h" #include "src/assembler.h" #include "src/debug/debug.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsCrankshaft() { return true; } bool CpuFeatures::SupportsSimd128() { return false; } void RelocInfo::apply(intptr_t delta) { // Absolute code pointer inside code object moves with the code object. if (IsInternalReference(rmode_)) { // Jump table entry Address target = Memory::Address_at(pc_); Memory::Address_at(pc_) = target + delta; } else if (IsCodeTarget(rmode_)) { SixByteInstr instr = Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_)); int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords - static_cast<int32_t>(delta); instr >>= 32; // Clear the 4-byte displacement field. instr <<= 32; instr |= static_cast<uint32_t>(dis / 2); Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_), instr); } else { // mov sequence DCHECK(IsInternalReferenceEncoded(rmode_)); Address target = Assembler::target_address_at(pc_, host_); Assembler::set_target_address_at(isolate_, pc_, host_, target + delta, SKIP_ICACHE_FLUSH); } } Address RelocInfo::target_internal_reference() { if (IsInternalReference(rmode_)) { // Jump table entry return Memory::Address_at(pc_); } else { // mov sequence DCHECK(IsInternalReferenceEncoded(rmode_)); return Assembler::target_address_at(pc_, host_); } } Address RelocInfo::target_internal_reference_address() { DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); return reinterpret_cast<Address>(pc_); } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LIS/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. return reinterpret_cast<Address>(pc_); } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); return NULL; } int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } Address Assembler::target_address_from_return_address(Address pc) { // Returns the address of the call target from the return address that will // be returned to after a call. // Sequence is: // BRASL r14, RI return pc - kCallTargetAddressOffset; } Address Assembler::return_address_from_call_start(Address pc) { // Sequence is: // BRASL r14, RI return pc + kCallTargetAddressOffset; } Handle<Object> Assembler::code_target_object_handle_at(Address pc) { SixByteInstr instr = Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); int index = instr & 0xFFFFFFFF; return code_targets_[index]; } Object* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); } Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); if (rmode_ == EMBEDDED_OBJECT) { return Handle<Object>( reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); } else { return origin->code_target_object_handle_at(pc_); } } void RelocInfo::set_target_object(Object* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(isolate_, pc_, host_, reinterpret_cast<Address>(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && target->IsHeapObject()) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target)); host()->GetHeap()->RecordWriteIntoCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) set_target_address(target, write_barrier_mode, icache_flush_mode); } Handle<Cell> RelocInfo::target_cell_handle() { DCHECK(rmode_ == RelocInfo::CELL); Address address = Memory::Address_at(pc_); return Handle<Cell>(reinterpret_cast<Cell**>(address)); } Cell* RelocInfo::target_cell() { DCHECK(rmode_ == RelocInfo::CELL); return Cell::FromValueAddress(Memory::Address_at(pc_)); } void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CELL); Address address = cell->address() + Cell::kValueOffset; Memory::Address_at(pc_) = address; if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, cell); } } #if V8_TARGET_ARCH_S390X // NOP(2byte) + PUSH + MOV + BASR = // NOP + LAY + STG + IIHF + IILF + BASR static const int kCodeAgingSequenceLength = 28; static const int kCodeAgingTargetDelta = 14; // Jump past NOP + PUSH to IIHF // LAY + 4 * STG + LA static const int kNoCodeAgeSequenceLength = 34; #else #if (V8_HOST_ARCH_S390) // NOP + NILH + LAY + ST + IILF + BASR static const int kCodeAgingSequenceLength = 24; static const int kCodeAgingTargetDelta = 16; // Jump past NOP to IILF // NILH + LAY + 4 * ST + LA static const int kNoCodeAgeSequenceLength = 30; #else // NOP + LAY + ST + IILF + BASR static const int kCodeAgingSequenceLength = 20; static const int kCodeAgingTargetDelta = 12; // Jump past NOP to IILF // LAY + 4 * ST + LA static const int kNoCodeAgeSequenceLength = 26; #endif #endif Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { UNREACHABLE(); // This should never be reached on S390. return Handle<Object>(); } Code* RelocInfo::code_age_stub() { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); return Code::GetCodeFromTargetAddress( Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_)); } void RelocInfo::set_code_age_stub(Code* stub, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_, stub->instruction_start(), icache_flush_mode); } Address RelocInfo::debug_call_address() { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); return Assembler::target_address_at(pc_, host_); } void RelocInfo::set_debug_call_address(Address target) { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); Assembler::set_target_address_at(isolate_, pc_, host_, target); if (host() != NULL) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); if (IsInternalReference(rmode_)) { // Jump table entry Memory::Address_at(pc_) = NULL; } else if (IsInternalReferenceEncoded(rmode_)) { // mov sequence // Currently used only by deserializer, no need to flush. Assembler::set_target_address_at(isolate_, pc_, host_, NULL, SKIP_ICACHE_FLUSH); } else { Assembler::set_target_address_at(isolate_, pc_, host_, NULL); } } template <typename ObjectVisitor> void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(this); } else if (RelocInfo::IsCodeTarget(mode)) { visitor->VisitCodeTarget(this); } else if (mode == RelocInfo::CELL) { visitor->VisitCell(this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { visitor->VisitInternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { visitor->VisitCodeAgeSequence(this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { visitor->VisitDebugTarget(this); } else if (IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(this); } } template <typename StaticVisitor> void RelocInfo::Visit(Heap* heap) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { StaticVisitor::VisitEmbeddedPointer(heap, this); } else if (RelocInfo::IsCodeTarget(mode)) { StaticVisitor::VisitCodeTarget(heap, this); } else if (mode == RelocInfo::CELL) { StaticVisitor::VisitCell(heap, this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { StaticVisitor::VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { StaticVisitor::VisitInternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { StaticVisitor::VisitCodeAgeSequence(heap, this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { StaticVisitor::VisitDebugTarget(heap, this); } else if (IsRuntimeEntry(mode)) { StaticVisitor::VisitRuntimeEntry(this); } } // Operand constructors Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) { rm_ = no_reg; imm_ = immediate; rmode_ = rmode; } Operand::Operand(const ExternalReference& f) { rm_ = no_reg; imm_ = reinterpret_cast<intptr_t>(f.address()); rmode_ = RelocInfo::EXTERNAL_REFERENCE; } Operand::Operand(Smi* value) { rm_ = no_reg; imm_ = reinterpret_cast<intptr_t>(value); rmode_ = kRelocInfo_NONEPTR; } Operand::Operand(Register rm) { rm_ = rm; rmode_ = kRelocInfo_NONEPTR; // S390 -why doesn't ARM do this? } void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } } int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode, TypeFeedbackId ast_id) { DCHECK(RelocInfo::IsCodeTarget(rmode)); if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { SetRecordedAstId(ast_id); RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID); } else { RecordRelocInfo(rmode); } int current = code_targets_.length(); if (current > 0 && code_targets_.last().is_identical_to(target)) { // Optimization if we keep jumping to the same code target. current--; } else { code_targets_.Add(target); } return current; } // Helper to emit the binary encoding of a 2 byte instruction void Assembler::emit2bytes(uint16_t x) { CheckBuffer(); #if V8_TARGET_LITTLE_ENDIAN // We need to emit instructions in big endian format as disassembler / // simulator require the first byte of the instruction in order to decode // the instruction length. Swap the bytes. x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8); #endif *reinterpret_cast<uint16_t*>(pc_) = x; pc_ += 2; } // Helper to emit the binary encoding of a 4 byte instruction void Assembler::emit4bytes(uint32_t x) { CheckBuffer(); #if V8_TARGET_LITTLE_ENDIAN // We need to emit instructions in big endian format as disassembler / // simulator require the first byte of the instruction in order to decode // the instruction length. Swap the bytes. x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24); #endif *reinterpret_cast<uint32_t*>(pc_) = x; pc_ += 4; } // Helper to emit the binary encoding of a 6 byte instruction void Assembler::emit6bytes(uint64_t x) { CheckBuffer(); #if V8_TARGET_LITTLE_ENDIAN // We need to emit instructions in big endian format as disassembler / // simulator require the first byte of the instruction in order to decode // the instruction length. Swap the bytes. x = (static_cast<uint64_t>(x & 0xFF) << 40) | (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) | (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) | (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) | (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) | (static_cast<uint64_t>((x >> 40) & 0xFF)); x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48; #else // We need to pad two bytes of zeros in order to get the 6-bytes // stored from low address. x = x << 16; x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF; #endif // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap // space left over. *reinterpret_cast<uint64_t*>(pc_) = x; pc_ += 6; } bool Operand::is_reg() const { return rm_.is_valid(); } // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF Address Assembler::target_address_at(Address pc, Address constant_pool) { // S390 Instruction! // We want to check for instructions generated by Asm::mov() Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc)); SixByteInstr instr_1 = Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); if (BRASL == op1 || BRCL == op1) { int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2; return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis); } #if V8_TARGET_ARCH_S390X int instr1_length = Instruction::InstructionLength(reinterpret_cast<const byte*>(pc)); Opcode op2 = Instruction::S390OpcodeValue( reinterpret_cast<const byte*>(pc + instr1_length)); SixByteInstr instr_2 = Instruction::InstructionBits( reinterpret_cast<const byte*>(pc + instr1_length)); // IIHF for hi_32, IILF for lo_32 if (IIHF == op1 && IILF == op2) { return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) | ((instr_2 & 0xFFFFFFFF))); } #else // IILF loads 32-bits if (IILF == op1 || CFI == op1) { return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF)); } #endif UNIMPLEMENTED(); return (Address)0; } // This sets the branch destination (which gets loaded at the call address). // This is for calls and branches within generated code. The serializer // has already deserialized the mov instructions etc. // There is a FIXED_SEQUENCE assumption here void Assembler::deserialization_set_special_target_at( Isolate* isolate, Address instruction_payload, Code* code, Address target) { set_target_address_at(isolate, instruction_payload, code, target); } void Assembler::deserialization_set_target_internal_reference_at( Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { if (RelocInfo::IsInternalReferenceEncoded(mode)) { Code* code = NULL; set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH); } else { Memory::Address_at(pc) = target; } } // This code assumes the FIXED_SEQUENCE of IIHF/IILF void Assembler::set_target_address_at(Isolate* isolate, Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { // Check for instructions generated by Asm::mov() Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc)); SixByteInstr instr_1 = Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); bool patched = false; if (BRASL == op1 || BRCL == op1) { instr_1 >>= 32; // Zero out the lower 32-bits instr_1 <<= 32; int32_t halfwords = (target - pc) / 2; // number of halfwords instr_1 |= static_cast<uint32_t>(halfwords); Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), instr_1); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate, pc, 6); } patched = true; } else { #if V8_TARGET_ARCH_S390X int instr1_length = Instruction::InstructionLength(reinterpret_cast<const byte*>(pc)); Opcode op2 = Instruction::S390OpcodeValue( reinterpret_cast<const byte*>(pc + instr1_length)); SixByteInstr instr_2 = Instruction::InstructionBits( reinterpret_cast<const byte*>(pc + instr1_length)); // IIHF for hi_32, IILF for lo_32 if (IIHF == op1 && IILF == op2) { // IIHF instr_1 >>= 32; // Zero out the lower 32-bits instr_1 <<= 32; instr_1 |= reinterpret_cast<uint64_t>(target) >> 32; Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), instr_1); // IILF instr_2 >>= 32; instr_2 <<= 32; instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF; Instruction::SetInstructionBits<SixByteInstr>( reinterpret_cast<byte*>(pc + instr1_length), instr_2); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate, pc, 12); } patched = true; } #else // IILF loads 32-bits if (IILF == op1 || CFI == op1) { instr_1 >>= 32; // Zero out the lower 32-bits instr_1 <<= 32; instr_1 |= reinterpret_cast<uint32_t>(target); Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), instr_1); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate, pc, 6); } patched = true; } #endif } if (!patched) UNREACHABLE(); } } // namespace internal } // namespace v8 #endif // V8_S390_ASSEMBLER_S390_INL_H_