// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/runtime/runtime-utils.h" #include "src/arguments.h" #include "src/regexp/jsregexp-inl.h" #include "src/string-builder.h" #include "src/string-search.h" namespace v8 { namespace internal { // This may return an empty MaybeHandle if an exception is thrown or // we abort due to reaching the recursion limit. MaybeHandle<String> StringReplaceOneCharWithString( Isolate* isolate, Handle<String> subject, Handle<String> search, Handle<String> replace, bool* found, int recursion_limit) { StackLimitCheck stackLimitCheck(isolate); if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) { return MaybeHandle<String>(); } recursion_limit--; if (subject->IsConsString()) { ConsString* cons = ConsString::cast(*subject); Handle<String> first = Handle<String>(cons->first()); Handle<String> second = Handle<String>(cons->second()); Handle<String> new_first; if (!StringReplaceOneCharWithString(isolate, first, search, replace, found, recursion_limit).ToHandle(&new_first)) { return MaybeHandle<String>(); } if (*found) return isolate->factory()->NewConsString(new_first, second); Handle<String> new_second; if (!StringReplaceOneCharWithString(isolate, second, search, replace, found, recursion_limit) .ToHandle(&new_second)) { return MaybeHandle<String>(); } if (*found) return isolate->factory()->NewConsString(first, new_second); return subject; } else { int index = String::IndexOf(isolate, subject, search, 0); if (index == -1) return subject; *found = true; Handle<String> first = isolate->factory()->NewSubString(subject, 0, index); Handle<String> cons1; ASSIGN_RETURN_ON_EXCEPTION( isolate, cons1, isolate->factory()->NewConsString(first, replace), String); Handle<String> second = isolate->factory()->NewSubString(subject, index + 1, subject->length()); return isolate->factory()->NewConsString(cons1, second); } } RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, search, 1); CONVERT_ARG_HANDLE_CHECKED(String, replace, 2); // If the cons string tree is too deep, we simply abort the recursion and // retry with a flattened subject string. const int kRecursionLimit = 0x1000; bool found = false; Handle<String> result; if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found, kRecursionLimit).ToHandle(&result)) { return *result; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); subject = String::Flatten(subject); if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found, kRecursionLimit).ToHandle(&result)) { return *result; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); // In case of empty handle and no pending exception we have stack overflow. return isolate->StackOverflow(); } RUNTIME_FUNCTION(Runtime_StringIndexOf) { HandleScope scope(isolate); DCHECK(args.length() == 3); return String::IndexOf(isolate, args.at<Object>(0), args.at<Object>(1), args.at<Object>(2)); } RUNTIME_FUNCTION(Runtime_StringLastIndexOf) { HandleScope handle_scope(isolate); return String::LastIndexOf(isolate, args.at<Object>(0), args.at<Object>(1), isolate->factory()->undefined_value()); } RUNTIME_FUNCTION(Runtime_SubString) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); int start, end; // We have a fast integer-only case here to avoid a conversion to double in // the common case where from and to are Smis. if (args[1]->IsSmi() && args[2]->IsSmi()) { CONVERT_SMI_ARG_CHECKED(from_number, 1); CONVERT_SMI_ARG_CHECKED(to_number, 2); start = from_number; end = to_number; } else if (args[1]->IsNumber() && args[2]->IsNumber()) { CONVERT_DOUBLE_ARG_CHECKED(from_number, 1); CONVERT_DOUBLE_ARG_CHECKED(to_number, 2); start = FastD2IChecked(from_number); end = FastD2IChecked(to_number); } else { return isolate->ThrowIllegalOperation(); } // The following condition is intentionally robust because the SubStringStub // delegates here and we test this in cctest/test-strings/RobustSubStringStub. if (end < start || start < 0 || end > string->length()) { return isolate->ThrowIllegalOperation(); } isolate->counters()->sub_string_runtime()->Increment(); return *isolate->factory()->NewSubString(string, start, end); } RUNTIME_FUNCTION(Runtime_StringAdd) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, obj1, 0); CONVERT_ARG_HANDLE_CHECKED(Object, obj2, 1); isolate->counters()->string_add_runtime()->Increment(); MaybeHandle<String> maybe_str1(Object::ToString(isolate, obj1)); MaybeHandle<String> maybe_str2(Object::ToString(isolate, obj2)); Handle<String> str1; Handle<String> str2; maybe_str1.ToHandle(&str1); maybe_str2.ToHandle(&str2); RETURN_RESULT_OR_FAILURE(isolate, isolate->factory()->NewConsString(str1, str2)); } RUNTIME_FUNCTION(Runtime_InternalizeString) { HandleScope handles(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); return *isolate->factory()->InternalizeString(string); } RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) { HandleScope handle_scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]); // Flatten the string. If someone wants to get a char at an index // in a cons string, it is likely that more indices will be // accessed. subject = String::Flatten(subject); if (i >= static_cast<uint32_t>(subject->length())) { return isolate->heap()->nan_value(); } return Smi::FromInt(subject->Get(i)); } RUNTIME_FUNCTION(Runtime_StringCompare) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); isolate->counters()->string_compare_runtime()->Increment(); switch (String::Compare(x, y)) { case ComparisonResult::kLessThan: return Smi::FromInt(LESS); case ComparisonResult::kEqual: return Smi::FromInt(EQUAL); case ComparisonResult::kGreaterThan: return Smi::FromInt(GREATER); case ComparisonResult::kUndefined: break; } UNREACHABLE(); return Smi::kZero; } RUNTIME_FUNCTION(Runtime_StringBuilderConcat) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); int32_t array_length; if (!args[1]->ToInt32(&array_length)) { THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } CONVERT_ARG_HANDLE_CHECKED(String, special, 2); size_t actual_array_length = 0; CHECK(TryNumberToSize(array->length(), &actual_array_length)); CHECK(array_length >= 0); CHECK(static_cast<size_t>(array_length) <= actual_array_length); // This assumption is used by the slice encoding in one or two smis. DCHECK(Smi::kMaxValue >= String::kMaxLength); CHECK(array->HasFastElements()); JSObject::EnsureCanContainHeapObjectElements(array); int special_length = special->length(); if (!array->HasFastObjectElements()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } int length; bool one_byte = special->HasOnlyOneByteChars(); { DisallowHeapAllocation no_gc; FixedArray* fixed_array = FixedArray::cast(array->elements()); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); if (first->IsString()) return first; } length = StringBuilderConcatLength(special_length, fixed_array, array_length, &one_byte); } if (length == -1) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } if (one_byte) { Handle<SeqOneByteString> answer; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, answer, isolate->factory()->NewRawOneByteString(length)); StringBuilderConcatHelper(*special, answer->GetChars(), FixedArray::cast(array->elements()), array_length); return *answer; } else { Handle<SeqTwoByteString> answer; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, answer, isolate->factory()->NewRawTwoByteString(length)); StringBuilderConcatHelper(*special, answer->GetChars(), FixedArray::cast(array->elements()), array_length); return *answer; } } RUNTIME_FUNCTION(Runtime_StringBuilderJoin) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); int32_t array_length; if (!args[1]->ToInt32(&array_length)) { THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } CONVERT_ARG_HANDLE_CHECKED(String, separator, 2); CHECK(array->HasFastObjectElements()); CHECK(array_length >= 0); Handle<FixedArray> fixed_array(FixedArray::cast(array->elements())); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); CHECK(first->IsString()); return first; } int separator_length = separator->length(); CHECK(separator_length > 0); int max_nof_separators = (String::kMaxLength + separator_length - 1) / separator_length; if (max_nof_separators < (array_length - 1)) { THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } int length = (array_length - 1) * separator_length; for (int i = 0; i < array_length; i++) { Object* element_obj = fixed_array->get(i); CHECK(element_obj->IsString()); String* element = String::cast(element_obj); int increment = element->length(); if (increment > String::kMaxLength - length) { STATIC_ASSERT(String::kMaxLength < kMaxInt); length = kMaxInt; // Provoke exception; break; } length += increment; } Handle<SeqTwoByteString> answer; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, answer, isolate->factory()->NewRawTwoByteString(length)); DisallowHeapAllocation no_gc; uc16* sink = answer->GetChars(); #ifdef DEBUG uc16* end = sink + length; #endif CHECK(fixed_array->get(0)->IsString()); String* first = String::cast(fixed_array->get(0)); String* separator_raw = *separator; int first_length = first->length(); String::WriteToFlat(first, sink, 0, first_length); sink += first_length; for (int i = 1; i < array_length; i++) { DCHECK(sink + separator_length <= end); String::WriteToFlat(separator_raw, sink, 0, separator_length); sink += separator_length; CHECK(fixed_array->get(i)->IsString()); String* element = String::cast(fixed_array->get(i)); int element_length = element->length(); DCHECK(sink + element_length <= end); String::WriteToFlat(element, sink, 0, element_length); sink += element_length; } DCHECK(sink == end); // Use %_FastOneByteArrayJoin instead. DCHECK(!answer->IsOneByteRepresentation()); return *answer; } template <typename sinkchar> static void WriteRepeatToFlat(String* src, Vector<sinkchar> buffer, int cursor, int repeat, int length) { if (repeat == 0) return; sinkchar* start = &buffer[cursor]; String::WriteToFlat<sinkchar>(src, start, 0, length); int done = 1; sinkchar* next = start + length; while (done < repeat) { int block = Min(done, repeat - done); int block_chars = block * length; CopyChars(next, start, block_chars); next += block_chars; done += block; } } template <typename Char> static void JoinSparseArrayWithSeparator(FixedArray* elements, int elements_length, uint32_t array_length, String* separator, Vector<Char> buffer) { DisallowHeapAllocation no_gc; int previous_separator_position = 0; int separator_length = separator->length(); DCHECK_LT(0, separator_length); int cursor = 0; for (int i = 0; i < elements_length; i += 2) { int position = NumberToInt32(elements->get(i)); String* string = String::cast(elements->get(i + 1)); int string_length = string->length(); if (string->length() > 0) { int repeat = position - previous_separator_position; WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat, separator_length); cursor += repeat * separator_length; previous_separator_position = position; String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length); cursor += string->length(); } } int last_array_index = static_cast<int>(array_length - 1); // Array length must be representable as a signed 32-bit number, // otherwise the total string length would have been too large. DCHECK(array_length <= 0x7fffffff); // Is int32_t. int repeat = last_array_index - previous_separator_position; WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat, separator_length); cursor += repeat * separator_length; DCHECK(cursor <= buffer.length()); } RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0); CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]); CONVERT_ARG_HANDLE_CHECKED(String, separator, 2); // elements_array is fast-mode JSarray of alternating positions // (increasing order) and strings. CHECK(elements_array->HasFastSmiOrObjectElements()); // array_length is length of original array (used to add separators); // separator is string to put between elements. Assumed to be non-empty. CHECK(array_length > 0); // Find total length of join result. int string_length = 0; bool is_one_byte = separator->IsOneByteRepresentation(); bool overflow = false; CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length()); CHECK(elements_length <= elements_array->elements()->length()); CHECK((elements_length & 1) == 0); // Even length. FixedArray* elements = FixedArray::cast(elements_array->elements()); { DisallowHeapAllocation no_gc; for (int i = 0; i < elements_length; i += 2) { String* string = String::cast(elements->get(i + 1)); int length = string->length(); if (is_one_byte && !string->IsOneByteRepresentation()) { is_one_byte = false; } if (length > String::kMaxLength || String::kMaxLength - length < string_length) { overflow = true; break; } string_length += length; } } int separator_length = separator->length(); if (!overflow && separator_length > 0) { if (array_length <= 0x7fffffffu) { int separator_count = static_cast<int>(array_length) - 1; int remaining_length = String::kMaxLength - string_length; if ((remaining_length / separator_length) >= separator_count) { string_length += separator_length * (array_length - 1); } else { // Not room for the separators within the maximal string length. overflow = true; } } else { // Nonempty separator and at least 2^31-1 separators necessary // means that the string is too large to create. STATIC_ASSERT(String::kMaxLength < 0x7fffffff); overflow = true; } } if (overflow) { // Throw an exception if the resulting string is too large. See // https://code.google.com/p/chromium/issues/detail?id=336820 // for details. THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } if (is_one_byte) { Handle<SeqOneByteString> result = isolate->factory() ->NewRawOneByteString(string_length) .ToHandleChecked(); JoinSparseArrayWithSeparator<uint8_t>( FixedArray::cast(elements_array->elements()), elements_length, array_length, *separator, Vector<uint8_t>(result->GetChars(), string_length)); return *result; } else { Handle<SeqTwoByteString> result = isolate->factory() ->NewRawTwoByteString(string_length) .ToHandleChecked(); JoinSparseArrayWithSeparator<uc16>( FixedArray::cast(elements_array->elements()), elements_length, array_length, *separator, Vector<uc16>(result->GetChars(), string_length)); return *result; } } // Copies Latin1 characters to the given fixed array looking up // one-char strings in the cache. Gives up on the first char that is // not in the cache and fills the remainder with smi zeros. Returns // the length of the successfully copied prefix. static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars, FixedArray* elements, int length) { DisallowHeapAllocation no_gc; FixedArray* one_byte_cache = heap->single_character_string_cache(); Object* undefined = heap->undefined_value(); int i; WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); for (i = 0; i < length; ++i) { Object* value = one_byte_cache->get(chars[i]); if (value == undefined) break; elements->set(i, value, mode); } if (i < length) { DCHECK(Smi::kZero == 0); memset(elements->data_start() + i, 0, kPointerSize * (length - i)); } #ifdef DEBUG for (int j = 0; j < length; ++j) { Object* element = elements->get(j); DCHECK(element == Smi::kZero || (element->IsString() && String::cast(element)->LooksValid())); } #endif return i; } // Converts a String to JSArray. // For example, "foo" => ["f", "o", "o"]. RUNTIME_FUNCTION(Runtime_StringToArray) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); s = String::Flatten(s); const int length = static_cast<int>(Min<uint32_t>(s->length(), limit)); Handle<FixedArray> elements; int position = 0; if (s->IsFlat() && s->IsOneByteRepresentation()) { // Try using cached chars where possible. elements = isolate->factory()->NewUninitializedFixedArray(length); DisallowHeapAllocation no_gc; String::FlatContent content = s->GetFlatContent(); if (content.IsOneByte()) { Vector<const uint8_t> chars = content.ToOneByteVector(); // Note, this will initialize all elements (not only the prefix) // to prevent GC from seeing partially initialized array. position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(), *elements, length); } else { MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(), length); } } else { elements = isolate->factory()->NewFixedArray(length); } for (int i = position; i < length; ++i) { Handle<Object> str = isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i)); elements->set(i, *str); } #ifdef DEBUG for (int i = 0; i < length; ++i) { DCHECK(String::cast(elements->get(i))->length() == 1); } #endif return *isolate->factory()->NewJSArrayWithElements(elements); } static inline bool ToUpperOverflows(uc32 character) { // y with umlauts and the micro sign are the only characters that stop // fitting into one-byte when converting to uppercase. static const uc32 yuml_code = 0xff; static const uc32 micro_code = 0xb5; return (character == yuml_code || character == micro_code); } template <class Converter> MUST_USE_RESULT static Object* ConvertCaseHelper( Isolate* isolate, String* string, SeqString* result, int result_length, unibrow::Mapping<Converter, 128>* mapping) { DisallowHeapAllocation no_gc; // We try this twice, once with the assumption that the result is no longer // than the input and, if that assumption breaks, again with the exact // length. This may not be pretty, but it is nicer than what was here before // and I hereby claim my vaffel-is. // // NOTE: This assumes that the upper/lower case of an ASCII // character is also ASCII. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. bool has_changed_character = false; // Convert all characters to upper case, assuming that they will fit // in the buffer StringCharacterStream stream(string); unibrow::uchar chars[Converter::kMaxWidth]; // We can assume that the string is not empty uc32 current = stream.GetNext(); bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString(); for (int i = 0; i < result_length;) { bool has_next = stream.HasMore(); uc32 next = has_next ? stream.GetNext() : 0; int char_length = mapping->get(current, next, chars); if (char_length == 0) { // The case conversion of this character is the character itself. result->Set(i, current); i++; } else if (char_length == 1 && (ignore_overflow || !ToUpperOverflows(current))) { // Common case: converting the letter resulted in one character. DCHECK(static_cast<uc32>(chars[0]) != current); result->Set(i, chars[0]); has_changed_character = true; i++; } else if (result_length == string->length()) { bool overflows = ToUpperOverflows(current); // We've assumed that the result would be as long as the // input but here is a character that converts to several // characters. No matter, we calculate the exact length // of the result and try the whole thing again. // // Note that this leaves room for optimization. We could just // memcpy what we already have to the result string. Also, // the result string is the last object allocated we could // "realloc" it and probably, in the vast majority of cases, // extend the existing string to be able to hold the full // result. int next_length = 0; if (has_next) { next_length = mapping->get(next, 0, chars); if (next_length == 0) next_length = 1; } int current_length = i + char_length + next_length; while (stream.HasMore()) { current = stream.GetNext(); overflows |= ToUpperOverflows(current); // NOTE: we use 0 as the next character here because, while // the next character may affect what a character converts to, // it does not in any case affect the length of what it convert // to. int char_length = mapping->get(current, 0, chars); if (char_length == 0) char_length = 1; current_length += char_length; if (current_length > String::kMaxLength) { AllowHeapAllocation allocate_error_and_return; THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } } // Try again with the real length. Return signed if we need // to allocate a two-byte string for to uppercase. return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length) : Smi::FromInt(current_length); } else { for (int j = 0; j < char_length; j++) { result->Set(i, chars[j]); i++; } has_changed_character = true; } current = next; } if (has_changed_character) { return result; } else { // If we didn't actually change anything in doing the conversion // we simple return the result and let the converted string // become garbage; there is no reason to keep two identical strings // alive. return string; } } static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; static const uintptr_t kAsciiMask = kOneInEveryByte << 7; // Given a word and two range boundaries returns a word with high bit // set in every byte iff the corresponding input byte was strictly in // the range (m, n). All the other bits in the result are cleared. // This function is only useful when it can be inlined and the // boundaries are statically known. // Requires: all bytes in the input word and the boundaries must be // ASCII (less than 0x7F). static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { // Use strict inequalities since in edge cases the function could be // further simplified. DCHECK(0 < m && m < n); // Has high bit set in every w byte less than n. uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; // Has high bit set in every w byte greater than m. uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); } #ifdef DEBUG static bool CheckFastAsciiConvert(char* dst, const char* src, int length, bool changed, bool is_to_lower) { bool expected_changed = false; for (int i = 0; i < length; i++) { if (dst[i] == src[i]) continue; expected_changed = true; if (is_to_lower) { DCHECK('A' <= src[i] && src[i] <= 'Z'); DCHECK(dst[i] == src[i] + ('a' - 'A')); } else { DCHECK('a' <= src[i] && src[i] <= 'z'); DCHECK(dst[i] == src[i] - ('a' - 'A')); } } return (expected_changed == changed); } #endif template <class Converter> static bool FastAsciiConvert(char* dst, const char* src, int length, bool* changed_out) { #ifdef DEBUG char* saved_dst = dst; const char* saved_src = src; #endif DisallowHeapAllocation no_gc; // We rely on the distance between upper and lower case letters // being a known power of 2. DCHECK('a' - 'A' == (1 << 5)); // Boundaries for the range of input characters than require conversion. static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1; static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1; bool changed = false; uintptr_t or_acc = 0; const char* const limit = src + length; // dst is newly allocated and always aligned. DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t))); // Only attempt processing one word at a time if src is also aligned. if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) { // Process the prefix of the input that requires no conversion one aligned // (machine) word at a time. while (src <= limit - sizeof(uintptr_t)) { const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); or_acc |= w; if (AsciiRangeMask(w, lo, hi) != 0) { changed = true; break; } *reinterpret_cast<uintptr_t*>(dst) = w; src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } // Process the remainder of the input performing conversion when // required one word at a time. while (src <= limit - sizeof(uintptr_t)) { const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); or_acc |= w; uintptr_t m = AsciiRangeMask(w, lo, hi); // The mask has high (7th) bit set in every byte that needs // conversion and we know that the distance between cases is // 1 << 5. *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } } // Process the last few bytes of the input (or the whole input if // unaligned access is not supported). while (src < limit) { char c = *src; or_acc |= c; if (lo < c && c < hi) { c ^= (1 << 5); changed = true; } *dst = c; ++src; ++dst; } if ((or_acc & kAsciiMask) != 0) return false; DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed, Converter::kIsToLower)); *changed_out = changed; return true; } template <class Converter> MUST_USE_RESULT static Object* ConvertCase( Handle<String> s, Isolate* isolate, unibrow::Mapping<Converter, 128>* mapping) { s = String::Flatten(s); int length = s->length(); // Assume that the string is not empty; we need this assumption later if (length == 0) return *s; // Simpler handling of ASCII strings. // // NOTE: This assumes that the upper/lower case of an ASCII // character is also ASCII. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. if (s->IsOneByteRepresentationUnderneath()) { // Same length as input. Handle<SeqOneByteString> result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; String::FlatContent flat_content = s->GetFlatContent(); DCHECK(flat_content.IsFlat()); bool has_changed_character = false; bool is_ascii = FastAsciiConvert<Converter>( reinterpret_cast<char*>(result->GetChars()), reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()), length, &has_changed_character); // If not ASCII, we discard the result and take the 2 byte path. if (is_ascii) return has_changed_character ? *result : *s; } Handle<SeqString> result; // Same length as input. if (s->IsOneByteRepresentation()) { result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); } else { result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked(); } Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping); if (answer->IsException(isolate) || answer->IsString()) return answer; DCHECK(answer->IsSmi()); length = Smi::cast(answer)->value(); if (s->IsOneByteRepresentation() && length > 0) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawOneByteString(length)); } else { if (length < 0) length = -length; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawTwoByteString(length)); } return ConvertCaseHelper(isolate, *s, *result, length, mapping); } RUNTIME_FUNCTION(Runtime_StringToLowerCase) { HandleScope scope(isolate); DCHECK_EQ(args.length(), 1); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping()); } RUNTIME_FUNCTION(Runtime_StringToUpperCase) { HandleScope scope(isolate); DCHECK_EQ(args.length(), 1); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping()); } RUNTIME_FUNCTION(Runtime_StringLessThan) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); switch (String::Compare(x, y)) { case ComparisonResult::kLessThan: return isolate->heap()->true_value(); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return isolate->heap()->false_value(); case ComparisonResult::kUndefined: break; } UNREACHABLE(); return Smi::kZero; } RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); switch (String::Compare(x, y)) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return isolate->heap()->true_value(); case ComparisonResult::kGreaterThan: return isolate->heap()->false_value(); case ComparisonResult::kUndefined: break; } UNREACHABLE(); return Smi::kZero; } RUNTIME_FUNCTION(Runtime_StringGreaterThan) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); switch (String::Compare(x, y)) { case ComparisonResult::kGreaterThan: return isolate->heap()->true_value(); case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return isolate->heap()->false_value(); case ComparisonResult::kUndefined: break; } UNREACHABLE(); return Smi::kZero; } RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); switch (String::Compare(x, y)) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return isolate->heap()->true_value(); case ComparisonResult::kLessThan: return isolate->heap()->false_value(); case ComparisonResult::kUndefined: break; } UNREACHABLE(); return Smi::kZero; } RUNTIME_FUNCTION(Runtime_StringEqual) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); return isolate->heap()->ToBoolean(String::Equals(x, y)); } RUNTIME_FUNCTION(Runtime_StringNotEqual) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); return isolate->heap()->ToBoolean(!String::Equals(x, y)); } RUNTIME_FUNCTION(Runtime_FlattenString) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, str, 0); return *String::Flatten(str); } RUNTIME_FUNCTION(Runtime_StringCharFromCode) { HandleScope handlescope(isolate); DCHECK_EQ(1, args.length()); if (args[0]->IsNumber()) { CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]); code &= 0xffff; return *isolate->factory()->LookupSingleCharacterStringFromCode(code); } return isolate->heap()->empty_string(); } RUNTIME_FUNCTION(Runtime_ExternalStringGetChar) { SealHandleScope shs(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_CHECKED(ExternalString, string, 0); CONVERT_INT32_ARG_CHECKED(index, 1); return Smi::FromInt(string->Get(index)); } RUNTIME_FUNCTION(Runtime_StringCharCodeAt) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); if (!args[0]->IsString()) return isolate->heap()->undefined_value(); if (!args[1]->IsNumber()) return isolate->heap()->undefined_value(); if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value(); return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate); } } // namespace internal } // namespace v8