// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS64 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" #include "src/code-stubs.h" #include "src/log.h" #include "src/macro-assembler.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/regexp/regexp-stack.h" #include "src/unicode.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP /* * This assembler uses the following register assignment convention * - t3 : Temporarily stores the index of capture start after a matching pass * for a global regexp. * - a5 : Pointer to current code object (Code*) including heap object tag. * - a6 : Current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character offset! * - a7 : Currently loaded character. Must be loaded using * LoadCurrentCharacter before using any of the dispatch methods. * - t0 : Points to tip of backtrack stack * - t1 : Unused. * - t2 : End of input (points to byte after last character in input). * - fp : Frame pointer. Used to access arguments, local variables and * RegExp registers. * - sp : Points to tip of C stack. * * The remaining registers are free for computations. * Each call to a public method should retain this convention. * * TODO(plind): O32 documented here with intent of having single 32/64 codebase * in the future. * * The O32 stack will have the following structure: * * - fp[76] Isolate* isolate (address of the current isolate) * - fp[72] direct_call (if 1, direct call from JavaScript code, * if 0, call through the runtime system). * - fp[68] stack_area_base (High end of the memory area to use as * backtracking stack). * - fp[64] capture array size (may fit multiple sets of matches) * - fp[60] int* capture_array (int[num_saved_registers_], for output). * - fp[44..59] MIPS O32 four argument slots * - fp[40] secondary link/return address used by native call. * --- sp when called --- * - fp[36] return address (lr). * - fp[32] old frame pointer (r11). * - fp[0..31] backup of registers s0..s7. * --- frame pointer ---- * - fp[-4] end of input (address of end of string). * - fp[-8] start of input (address of first character in string). * - fp[-12] start index (character index of start). * - fp[-16] void* input_string (location of a handle containing the string). * - fp[-20] success counter (only for global regexps to count matches). * - fp[-24] Offset of location before start of input (effectively character * string start - 1). Used to initialize capture registers to a * non-position. * - fp[-28] At start (if 1, we are starting at the start of the * string, otherwise 0) * - fp[-32] register 0 (Only positions must be stored in the first * - register 1 num_saved_registers_ registers) * - ... * - register num_registers-1 * --- sp --- * * * The N64 stack will have the following structure: * * - fp[88] Isolate* isolate (address of the current isolate) kIsolate * - fp[80] secondary link/return address used by exit frame on native call. kSecondaryReturnAddress kStackFrameHeader * --- sp when called --- * - fp[72] ra Return from RegExp code (ra). kReturnAddress * - fp[64] s9, old-fp Old fp, callee saved(s9). * - fp[0..63] s0..s7 Callee-saved registers s0..s7. * --- frame pointer ---- * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput * - fp[-40] end of input (address of end of string). kInputEnd * - fp[-48] start of input (address of first character in string). kInputStart * - fp[-56] start index (character index of start). kStartIndex * - fp[-64] void* input_string (location of a handle containing the string). kInputString * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures * - fp[-80] Offset of location before start of input (effectively character kStringStartMinusOne * position -1). Used to initialize capture registers to a * non-position. * --------- The following output registers are 32-bit values. --------- * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero * - register 1 num_saved_registers_ registers) * - ... * - register num_registers-1 * --- sp --- * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers start out as garbage. * * The data up to the return address must be placed there by the calling * code and the remaining arguments are passed in registers, e.g. by calling the * code entry as cast to a function with the signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * Address secondary_return_address, // Only used by native call. * int* capture_output_array, * byte* stack_area_base, * bool direct_call = false, * void* return_address, * Isolate* isolate); * The call is performed by NativeRegExpMacroAssembler::Execute() * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro * in mips/simulator-mips.h. * When calling as a non-direct call (i.e., from C++ code), the return address * area is overwritten with the ra register by the RegExp code. When doing a * direct call from generated code, the return address is placed there by * the calling code, as in a normal exit frame. */ #define __ ACCESS_MASM(masm_) RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save) : NativeRegExpMacroAssembler(isolate, zone), masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize, CodeObjectRequired::kYes)), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_(), internal_failure_label_() { DCHECK_EQ(0, registers_to_save % 2); __ jmp(&entry_label_); // We'll write the entry code later. // If the code gets too big or corrupted, an internal exception will be // raised, and we will exit right away. __ bind(&internal_failure_label_); __ li(v0, Operand(FAILURE)); __ Ret(); __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() { delete masm_; // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); internal_failure_label_.Unuse(); } int RegExpMacroAssemblerMIPS::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) { if (by != 0) { __ Daddu(current_input_offset(), current_input_offset(), Operand(by * char_size())); } } void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) { DCHECK(reg >= 0); DCHECK(reg < num_registers_); if (by != 0) { __ ld(a0, register_location(reg)); __ Daddu(a0, a0, Operand(by)); __ sd(a0, register_location(reg)); } } void RegExpMacroAssemblerMIPS::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(a0); __ Daddu(a0, a0, code_pointer()); __ Jump(a0); } void RegExpMacroAssemblerMIPS::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) { BranchOrBacktrack(on_equal, eq, current_character(), Operand(c)); } void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) { BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit)); } void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) { __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne)); __ Daddu(a0, current_input_offset(), Operand(-char_size())); BranchOrBacktrack(on_at_start, eq, a0, Operand(a1)); } void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset, Label* on_not_at_start) { __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne)); __ Daddu(a0, current_input_offset(), Operand(-char_size() + cp_offset * char_size())); BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1)); } void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) { BranchOrBacktrack(on_less, lt, current_character(), Operand(limit)); } void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) { Label backtrack_non_equal; __ lw(a0, MemOperand(backtrack_stackpointer(), 0)); __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0)); __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(kIntSize)); __ bind(&backtrack_non_equal); BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0)); } void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase( int start_reg, bool read_backward, bool unicode, Label* on_no_match) { Label fallthrough; __ ld(a0, register_location(start_reg)); // Index of start of capture. __ ld(a1, register_location(start_reg + 1)); // Index of end of capture. __ Dsubu(a1, a1, a0); // Length of capture. // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); if (read_backward) { __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne)); __ Daddu(t1, t1, a1); BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1)); } else { __ Daddu(t1, a1, current_input_offset()); // Check that there are enough characters left in the input. BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); } if (mode_ == LATIN1) { Label success; Label fail; Label loop_check; // a0 - offset of start of capture. // a1 - length of capture. __ Daddu(a0, a0, Operand(end_of_input_address())); __ Daddu(a2, end_of_input_address(), Operand(current_input_offset())); if (read_backward) { __ Dsubu(a2, a2, Operand(a1)); } __ Daddu(a1, a0, Operand(a1)); // a0 - Address of start of capture. // a1 - Address of end of capture. // a2 - Address of current input position. Label loop; __ bind(&loop); __ lbu(a3, MemOperand(a0, 0)); __ daddiu(a0, a0, char_size()); __ lbu(a4, MemOperand(a2, 0)); __ daddiu(a2, a2, char_size()); __ Branch(&loop_check, eq, a4, Operand(a3)); // Mismatch, try case-insensitive match (converting letters to lower-case). __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case. __ Or(a4, a4, Operand(0x20)); // Also convert input character. __ Branch(&fail, ne, a4, Operand(a3)); __ Dsubu(a3, a3, Operand('a')); __ Branch(&loop_check, ls, a3, Operand('z' - 'a')); // Latin-1: Check for values in range [224,254] but not 247. __ Dsubu(a3, a3, Operand(224 - 'a')); // Weren't Latin-1 letters. __ Branch(&fail, hi, a3, Operand(254 - 224)); // Check for 247. __ Branch(&fail, eq, a3, Operand(247 - 224)); __ bind(&loop_check); __ Branch(&loop, lt, a0, Operand(a1)); __ jmp(&success); __ bind(&fail); GoTo(on_no_match); __ bind(&success); // Compute new value of character position after the matched part. __ Dsubu(current_input_offset(), a2, end_of_input_address()); if (read_backward) { __ ld(t1, register_location(start_reg)); // Index of start of capture. __ ld(a2, register_location(start_reg + 1)); // Index of end of capture. __ Daddu(current_input_offset(), current_input_offset(), Operand(t1)); __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2)); } } else { DCHECK(mode_ == UC16); // Put regexp engine registers on stack. RegList regexp_registers_to_retain = current_input_offset().bit() | current_character().bit() | backtrack_stackpointer().bit(); __ MultiPush(regexp_registers_to_retain); int argument_count = 4; __ PrepareCallCFunction(argument_count, a2); // a0 - offset of start of capture. // a1 - length of capture. // Put arguments into arguments registers. // Parameters are // a0: Address byte_offset1 - Address captured substring's start. // a1: Address byte_offset2 - Address of current character position. // a2: size_t byte_length - length of capture in bytes(!). // a3: Isolate* isolate or 0 if unicode flag. // Address of start of capture. __ Daddu(a0, a0, Operand(end_of_input_address())); // Length of capture. __ mov(a2, a1); // Save length in callee-save register for use on return. __ mov(s3, a1); // Address of current input position. __ Daddu(a1, current_input_offset(), Operand(end_of_input_address())); if (read_backward) { __ Dsubu(a1, a1, Operand(s3)); } // Isolate. #ifdef V8_I18N_SUPPORT if (unicode) { __ mov(a3, zero_reg); } else // NOLINT #endif // V8_I18N_SUPPORT { __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate()))); } { AllowExternalCallThatCantCauseGC scope(masm_); ExternalReference function = ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate()); __ CallCFunction(function, argument_count); } // Restore regexp engine registers. __ MultiPop(regexp_registers_to_retain); __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); // Check if function returned non-zero for success or zero for failure. BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg)); // On success, increment position by length of capture. if (read_backward) { __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3)); } else { __ Daddu(current_input_offset(), current_input_offset(), Operand(s3)); } } __ bind(&fallthrough); } void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match) { Label fallthrough; Label success; // Find length of back-referenced capture. __ ld(a0, register_location(start_reg)); __ ld(a1, register_location(start_reg + 1)); __ Dsubu(a1, a1, a0); // Length to check. // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); if (read_backward) { __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne)); __ Daddu(t1, t1, a1); BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1)); } else { __ Daddu(t1, a1, current_input_offset()); // Check that there are enough characters left in the input. BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); } // Compute pointers to match string and capture string. __ Daddu(a0, a0, Operand(end_of_input_address())); __ Daddu(a2, end_of_input_address(), Operand(current_input_offset())); if (read_backward) { __ Dsubu(a2, a2, Operand(a1)); } __ Daddu(a1, a1, Operand(a0)); Label loop; __ bind(&loop); if (mode_ == LATIN1) { __ lbu(a3, MemOperand(a0, 0)); __ daddiu(a0, a0, char_size()); __ lbu(a4, MemOperand(a2, 0)); __ daddiu(a2, a2, char_size()); } else { DCHECK(mode_ == UC16); __ lhu(a3, MemOperand(a0, 0)); __ daddiu(a0, a0, char_size()); __ lhu(a4, MemOperand(a2, 0)); __ daddiu(a2, a2, char_size()); } BranchOrBacktrack(on_no_match, ne, a3, Operand(a4)); __ Branch(&loop, lt, a0, Operand(a1)); // Move current character position to position after match. __ Dsubu(current_input_offset(), a2, end_of_input_address()); if (read_backward) { __ ld(t1, register_location(start_reg)); // Index of start of capture. __ ld(a2, register_location(start_reg + 1)); // Index of end of capture. __ Daddu(current_input_offset(), current_input_offset(), Operand(t1)); __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2)); } __ bind(&fallthrough); } void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c, Label* on_not_equal) { BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c)); } void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { __ And(a0, current_character(), Operand(mask)); Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); BranchOrBacktrack(on_equal, eq, a0, rhs); } void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal) { __ And(a0, current_character(), Operand(mask)); Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); BranchOrBacktrack(on_not_equal, ne, a0, rhs); } void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { DCHECK(minus < String::kMaxUtf16CodeUnit); __ Dsubu(a0, current_character(), Operand(minus)); __ And(a0, a0, Operand(mask)); BranchOrBacktrack(on_not_equal, ne, a0, Operand(c)); } void RegExpMacroAssemblerMIPS::CheckCharacterInRange( uc16 from, uc16 to, Label* on_in_range) { __ Dsubu(a0, current_character(), Operand(from)); // Unsigned lower-or-same condition. BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from)); } void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange( uc16 from, uc16 to, Label* on_not_in_range) { __ Dsubu(a0, current_character(), Operand(from)); // Unsigned higher condition. BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from)); } void RegExpMacroAssemblerMIPS::CheckBitInTable( Handle<ByteArray> table, Label* on_bit_set) { __ li(a0, Operand(table)); if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { __ And(a1, current_character(), Operand(kTableSize - 1)); __ Daddu(a0, a0, a1); } else { __ Daddu(a0, a0, current_character()); } __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize)); BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg)); } bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check. switch (type) { case 's': // Match space-characters. if (mode_ == LATIN1) { // One byte space characters are '\t'..'\r', ' ' and \u00a0. Label success; __ Branch(&success, eq, current_character(), Operand(' ')); // Check range 0x09..0x0d. __ Dsubu(a0, current_character(), Operand('\t')); __ Branch(&success, ls, a0, Operand('\r' - '\t')); // \u00a0 (NBSP). BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t')); __ bind(&success); return true; } return false; case 'S': // The emitted code for generic character classes is good enough. return false; case 'd': // Match Latin1 digits ('0'..'9'). __ Dsubu(a0, current_character(), Operand('0')); BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0')); return true; case 'D': // Match non Latin1-digits. __ Dsubu(a0, current_character(), Operand('0')); BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0')); return true; case '.': { // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). __ Xor(a0, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. __ Dsubu(a0, a0, Operand(0x0b)); BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b)); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ Dsubu(a0, a0, Operand(0x2028 - 0x0b)); BranchOrBacktrack(on_no_match, ls, a0, Operand(1)); } return true; } case 'n': { // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). __ Xor(a0, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. __ Dsubu(a0, a0, Operand(0x0b)); if (mode_ == LATIN1) { BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b)); } else { Label done; BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b)); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ Dsubu(a0, a0, Operand(0x2028 - 0x0b)); BranchOrBacktrack(on_no_match, hi, a0, Operand(1)); __ bind(&done); } return true; } case 'w': { if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z')); } ExternalReference map = ExternalReference::re_word_character_map(); __ li(a0, Operand(map)); __ Daddu(a0, a0, current_character()); __ lbu(a0, MemOperand(a0, 0)); BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg)); return true; } case 'W': { Label done; if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. __ Branch(&done, hi, current_character(), Operand('z')); } ExternalReference map = ExternalReference::re_word_character_map(); __ li(a0, Operand(map)); __ Daddu(a0, a0, current_character()); __ lbu(a0, MemOperand(a0, 0)); BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg)); if (mode_ != LATIN1) { __ bind(&done); } return true; } case '*': // Match any character. return true; // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerMIPS::Fail() { __ li(v0, Operand(FAILURE)); __ jmp(&exit_label_); } Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) { Label return_v0; if (masm_->has_exception()) { // If the code gets corrupted due to long regular expressions and lack of // space on trampolines, an internal exception flag is set. If this case // is detected, we will jump into exit sequence right away. __ bind_to(&entry_label_, internal_failure_label_.pos()); } else { // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Tell the system that we have a stack frame. Because the type is MANUAL, // no is generated. FrameScope scope(masm_, StackFrame::MANUAL); // Actually emit code to start a new stack frame. // Push arguments // Save callee-save registers. // Start new stack frame. // Store link register in existing stack-cell. // Order here should correspond to order of offset constants in header file. // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs // or dont save. RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() | s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit(); RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit(); argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit(); __ MultiPush(argument_registers | registers_to_retain | ra.bit()); // Set frame pointer in space for it if this is not a direct call // from generated code. // TODO(plind): this 8 is the # of argument regs, should have definition. __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize)); __ mov(a0, zero_reg); __ push(a0); // Make room for success counter and initialize it to 0. __ push(a0); // Make room for "string start - 1" constant. // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm_->isolate()); __ li(a0, Operand(stack_limit)); __ ld(a0, MemOperand(a0)); __ Dsubu(a0, sp, a0); // Handle it if the stack pointer is already below the stack limit. __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg)); // Check if there is room for the variable number of registers above // the stack limit. __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize)); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ li(v0, Operand(EXCEPTION)); __ jmp(&return_v0); __ bind(&stack_limit_hit); CallCheckStackGuardState(a0); // If returned value is non-zero, we exit with the returned value as result. __ Branch(&return_v0, ne, v0, Operand(zero_reg)); __ bind(&stack_ok); // Allocate space on stack for registers. __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize)); // Load string end. __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); // Load input start. __ ld(a0, MemOperand(frame_pointer(), kInputStart)); // Find negative length (offset of start relative to end). __ Dsubu(current_input_offset(), a0, end_of_input_address()); // Set a0 to address of char before start of the input string // (effectively string position -1). __ ld(a1, MemOperand(frame_pointer(), kStartIndex)); __ Dsubu(a0, current_input_offset(), Operand(char_size())); __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0); __ Dsubu(a0, a0, t1); // Store this value in a local variable, for use when clearing // position registers. __ sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne)); // Initialize code pointer register __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); Label load_char_start_regexp, start_regexp; // Load newline if index is at start, previous character otherwise. __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg)); __ li(current_character(), Operand('\n')); __ jmp(&start_regexp); // Global regexp restarts matching here. __ bind(&load_char_start_regexp); // Load previous char as initial value of current character register. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&start_regexp); // Initialize on-stack registers. if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. // Fill saved registers with initial value = start offset - 1. if (num_saved_registers_ > 8) { // Address of register 0. __ Daddu(a1, frame_pointer(), Operand(kRegisterZero)); __ li(a2, Operand(num_saved_registers_)); Label init_loop; __ bind(&init_loop); __ sd(a0, MemOperand(a1)); __ Daddu(a1, a1, Operand(-kPointerSize)); __ Dsubu(a2, a2, Operand(1)); __ Branch(&init_loop, ne, a2, Operand(zero_reg)); } else { for (int i = 0; i < num_saved_registers_; i++) { __ sd(a0, register_location(i)); } } } // Initialize backtrack stack pointer. __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); __ jmp(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // Copy captures to output. __ ld(a1, MemOperand(frame_pointer(), kInputStart)); __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput)); __ ld(a2, MemOperand(frame_pointer(), kStartIndex)); __ Dsubu(a1, end_of_input_address(), a1); // a1 is length of input in bytes. if (mode_ == UC16) { __ dsrl(a1, a1, 1); } // a1 is length of input in characters. __ Daddu(a1, a1, Operand(a2)); // a1 is length of string in characters. DCHECK_EQ(0, num_saved_registers_ % 2); // Always an even number of capture registers. This allows us to // unroll the loop once to add an operation between a load of a register // and the following use of that register. for (int i = 0; i < num_saved_registers_; i += 2) { __ ld(a2, register_location(i)); __ ld(a3, register_location(i + 1)); if (i == 0 && global_with_zero_length_check()) { // Keep capture start in a4 for the zero-length check later. __ mov(t3, a2); } if (mode_ == UC16) { __ dsra(a2, a2, 1); __ Daddu(a2, a2, a1); __ dsra(a3, a3, 1); __ Daddu(a3, a3, a1); } else { __ Daddu(a2, a1, Operand(a2)); __ Daddu(a3, a1, Operand(a3)); } // V8 expects the output to be an int32_t array. __ sw(a2, MemOperand(a0)); __ Daddu(a0, a0, kIntSize); __ sw(a3, MemOperand(a0)); __ Daddu(a0, a0, kIntSize); } } if (global()) { // Restart matching if the regular expression is flagged as global. __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); __ ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput)); // Increment success counter. __ Daddu(a0, a0, 1); __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); // Capture results have been stored, so the number of remaining global // output registers is reduced by the number of stored captures. __ Dsubu(a1, a1, num_saved_registers_); // Check whether we have enough room for another set of capture results. __ mov(v0, a0); __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_)); __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); // Advance the location for output. __ Daddu(a2, a2, num_saved_registers_ * kIntSize); __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput)); // Prepare a0 to initialize registers with its value in the next run. __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne)); if (global_with_zero_length_check()) { // Special case for zero-length matches. // t3: capture start index // Not a zero-length match, restart. __ Branch( &load_char_start_regexp, ne, current_input_offset(), Operand(t3)); // Offset from the end is zero if we already reached the end. __ Branch(&exit_label_, eq, current_input_offset(), Operand(zero_reg)); // Advance current position after a zero-length match. Label advance; __ bind(&advance); __ Daddu(current_input_offset(), current_input_offset(), Operand((mode_ == UC16) ? 2 : 1)); if (global_unicode()) CheckNotInSurrogatePair(0, &advance); } __ Branch(&load_char_start_regexp); } else { __ li(v0, Operand(SUCCESS)); } } // Exit and return v0. __ bind(&exit_label_); if (global()) { __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures)); } __ bind(&return_v0); // Skip sp past regexp registers and local variables.. __ mov(sp, frame_pointer()); // Restore registers s0..s7 and return (restoring ra to pc). __ MultiPop(registers_to_retain | ra.bit()); __ Ret(); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code. if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); // Put regexp engine registers on stack. RegList regexp_registers_to_retain = current_input_offset().bit() | current_character().bit() | backtrack_stackpointer().bit(); __ MultiPush(regexp_registers_to_retain); CallCheckStackGuardState(a0); __ MultiPop(regexp_registers_to_retain); // If returning non-zero, we should end execution with the given // result as return value. __ Branch(&return_v0, ne, v0, Operand(zero_reg)); // String might have moved: Reload end of string from frame. __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. // Put regexp engine registers on stack first. RegList regexp_registers = current_input_offset().bit() | current_character().bit(); __ MultiPush(regexp_registers); Label grow_failed; // Call GrowStack(backtrack_stackpointer(), &stack_base) static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments, a0); __ mov(a0, backtrack_stackpointer()); __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd)); __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate()))); ExternalReference grow_stack = ExternalReference::re_grow_stack(masm_->isolate()); __ CallCFunction(grow_stack, num_arguments); // Restore regexp registers. __ MultiPop(regexp_registers); // If return NULL, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg)); // Otherwise use return value as new stack pointer. __ mov(backtrack_stackpointer(), v0); // Restore saved registers and continue. __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ li(v0, Operand(EXCEPTION)); __ jmp(&return_v0); } } CodeDesc code_desc; masm_->GetCode(&code_desc); Handle<Code> code = isolate()->factory()->NewCode( code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); LOG(masm_->isolate(), RegExpCodeCreateEvent(AbstractCode::cast(*code), *source)); return Handle<HeapObject>::cast(code); } void RegExpMacroAssemblerMIPS::GoTo(Label* to) { if (to == NULL) { Backtrack(); return; } __ jmp(to); return; } void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ ld(a0, register_location(reg)); BranchOrBacktrack(if_ge, ge, a0, Operand(comparand)); } void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ ld(a0, register_location(reg)); BranchOrBacktrack(if_lt, lt, a0, Operand(comparand)); } void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg, Label* if_eq) { __ ld(a0, register_location(reg)); BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset())); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerMIPS::Implementation() { return kMIPSImplementation; } void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works). if (check_bounds) { if (cp_offset >= 0) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } else { CheckPosition(cp_offset, on_end_of_input); } } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerMIPS::PopCurrentPosition() { Pop(current_input_offset()); } void RegExpMacroAssemblerMIPS::PopRegister(int register_index) { Pop(a0); __ sd(a0, register_location(register_index)); } void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) { if (label->is_bound()) { int target = label->pos(); __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag)); } else { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label after_constant; __ Branch(&after_constant); int offset = masm_->pc_offset(); int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag; __ emit(0); masm_->label_at_put(label, offset); __ bind(&after_constant); if (is_int16(cp_offset)) { __ lwu(a0, MemOperand(code_pointer(), cp_offset)); } else { __ Daddu(a0, code_pointer(), cp_offset); __ lwu(a0, MemOperand(a0, 0)); } } Push(a0); CheckStackLimit(); } void RegExpMacroAssemblerMIPS::PushCurrentPosition() { Push(current_input_offset()); } void RegExpMacroAssemblerMIPS::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ ld(a0, register_location(register_index)); Push(a0); if (check_stack_limit) CheckStackLimit(); } void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) { __ ld(current_input_offset(), register_location(reg)); } void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) { __ ld(backtrack_stackpointer(), register_location(reg)); __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd)); __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0)); } void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) { Label after_position; __ Branch(&after_position, ge, current_input_offset(), Operand(-by * char_size())); __ li(current_input_offset(), -by * char_size()); // On RegExp code entry (where this operation is used), the character before // the current position is expected to be already loaded. // We have advanced the position, so it's safe to read backwards. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&after_position); } void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) { DCHECK(register_index >= num_saved_registers_); // Reserved for positions! __ li(a0, Operand(to)); __ sd(a0, register_location(register_index)); } bool RegExpMacroAssemblerMIPS::Succeed() { __ jmp(&success_label_); return global(); } void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ sd(current_input_offset(), register_location(reg)); } else { __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size())); __ sd(a0, register_location(reg)); } } void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) { DCHECK(reg_from <= reg_to); __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ sd(a0, register_location(reg)); } } void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) { __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd)); __ Dsubu(a0, backtrack_stackpointer(), a1); __ sd(a0, register_location(reg)); } bool RegExpMacroAssemblerMIPS::CanReadUnaligned() { return false; } // Private methods: void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) { int stack_alignment = base::OS::ActivationFrameAlignment(); // Align the stack pointer and save the original sp value on the stack. __ mov(scratch, sp); __ Dsubu(sp, sp, Operand(kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(stack_alignment)); __ And(sp, sp, Operand(-stack_alignment)); __ sd(scratch, MemOperand(sp)); __ mov(a2, frame_pointer()); // Code* of self. __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE); // We need to make room for the return address on the stack. DCHECK(IsAligned(stack_alignment, kPointerSize)); __ Dsubu(sp, sp, Operand(stack_alignment)); // Stack pointer now points to cell where return address is to be written. // Arguments are in registers, meaning we teat the return address as // argument 5. Since DirectCEntryStub will handleallocating space for the C // argument slots, we don't need to care about that here. This is how the // stack will look (sp meaning the value of sp at this moment): // [sp + 3] - empty slot if needed for alignment. // [sp + 2] - saved sp. // [sp + 1] - second word reserved for return value. // [sp + 0] - first word reserved for return value. // a0 will point to the return address, placed by DirectCEntry. __ mov(a0, sp); ExternalReference stack_guard_check = ExternalReference::re_check_stack_guard_state(masm_->isolate()); __ li(t9, Operand(stack_guard_check)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm_, t9); // DirectCEntryStub allocated space for the C argument slots so we have to // drop them with the return address from the stack with loading saved sp. // At this point stack must look: // [sp + 7] - empty slot if needed for alignment. // [sp + 6] - saved sp. // [sp + 5] - second word reserved for return value. // [sp + 4] - first word reserved for return value. // [sp + 3] - C argument slot. // [sp + 2] - C argument slot. // [sp + 1] - C argument slot. // [sp + 0] - C argument slot. __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize)); __ li(code_pointer(), Operand(masm_->CodeObject())); } // Helper function for reading a value out of a stack frame. template <typename T> static T& frame_entry(Address re_frame, int frame_offset) { return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); } template <typename T> static T* frame_entry_address(Address re_frame, int frame_offset) { return reinterpret_cast<T*>(re_frame + frame_offset); } int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { return NativeRegExpMacroAssembler::CheckStackGuardState( frame_entry<Isolate*>(re_frame, kIsolate), static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)), frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code, frame_entry_address<String*>(re_frame, kInputString), frame_entry_address<const byte*>(re_frame, kInputStart), frame_entry_address<const byte*>(re_frame, kInputEnd)); } MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) { DCHECK(register_index < (1<<30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return MemOperand(frame_pointer(), kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset, Label* on_outside_input) { if (cp_offset >= 0) { BranchOrBacktrack(on_outside_input, ge, current_input_offset(), Operand(-cp_offset * char_size())); } else { __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne)); __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size())); BranchOrBacktrack(on_outside_input, le, a0, Operand(a1)); } } void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to, Condition condition, Register rs, const Operand& rt) { if (condition == al) { // Unconditional. if (to == NULL) { Backtrack(); return; } __ jmp(to); return; } if (to == NULL) { __ Branch(&backtrack_label_, condition, rs, rt); return; } __ Branch(to, condition, rs, rt); } void RegExpMacroAssemblerMIPS::SafeCall(Label* to, Condition cond, Register rs, const Operand& rt) { __ BranchAndLink(to, cond, rs, rt); } void RegExpMacroAssemblerMIPS::SafeReturn() { __ pop(ra); __ Daddu(t1, ra, Operand(masm_->CodeObject())); __ Jump(t1); } void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) { __ bind(name); __ Dsubu(ra, ra, Operand(masm_->CodeObject())); __ push(ra); } void RegExpMacroAssemblerMIPS::Push(Register source) { DCHECK(!source.is(backtrack_stackpointer())); __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(-kIntSize)); __ sw(source, MemOperand(backtrack_stackpointer())); } void RegExpMacroAssemblerMIPS::Pop(Register target) { DCHECK(!target.is(backtrack_stackpointer())); __ lw(target, MemOperand(backtrack_stackpointer())); __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize); } void RegExpMacroAssemblerMIPS::CheckPreemption() { // Check for preemption. ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm_->isolate()); __ li(a0, Operand(stack_limit)); __ ld(a0, MemOperand(a0)); SafeCall(&check_preempt_label_, ls, sp, Operand(a0)); } void RegExpMacroAssemblerMIPS::CheckStackLimit() { ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(masm_->isolate()); __ li(a0, Operand(stack_limit)); __ ld(a0, MemOperand(a0)); SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0)); } void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { Register offset = current_input_offset(); if (cp_offset != 0) { // t3 is not being used to store the capture start index at this point. __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size())); offset = t3; } // We assume that we cannot do unaligned loads on MIPS, so this function // must only be used to load a single character at a time. DCHECK(characters == 1); __ Daddu(t1, end_of_input_address(), Operand(offset)); if (mode_ == LATIN1) { __ lbu(current_character(), MemOperand(t1, 0)); } else { DCHECK(mode_ == UC16); __ lhu(current_character(), MemOperand(t1, 0)); } } #undef __ #endif // V8_INTERPRETED_REGEXP } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64