// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_JSREGEXP_H_ #define V8_REGEXP_JSREGEXP_H_ #include "src/allocation.h" #include "src/assembler.h" #include "src/regexp/regexp-ast.h" #include "src/regexp/regexp-macro-assembler.h" namespace v8 { namespace internal { class NodeVisitor; class RegExpCompiler; class RegExpMacroAssembler; class RegExpNode; class RegExpTree; class BoyerMooreLookahead; class RegExpImpl { public: // Whether V8 is compiled with native regexp support or not. static bool UsesNativeRegExp() { #ifdef V8_INTERPRETED_REGEXP return false; #else return true; #endif } // Returns a string representation of a regular expression. // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. // This function calls the garbage collector if necessary. static Handle<String> ToString(Handle<Object> value); // Parses the RegExp pattern and prepares the JSRegExp object with // generic data and choice of implementation - as well as what // the implementation wants to store in the data field. // Returns false if compilation fails. MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re, Handle<String> pattern, JSRegExp::Flags flags); // See ECMA-262 section 15.10.6.2. // This function calls the garbage collector if necessary. V8_EXPORT_PRIVATE MUST_USE_RESULT static MaybeHandle<Object> Exec( Handle<JSRegExp> regexp, Handle<String> subject, int index, Handle<RegExpMatchInfo> last_match_info); // Prepares a JSRegExp object with Irregexp-specific data. static void IrregexpInitialize(Handle<JSRegExp> re, Handle<String> pattern, JSRegExp::Flags flags, int capture_register_count); static void AtomCompile(Handle<JSRegExp> re, Handle<String> pattern, JSRegExp::Flags flags, Handle<String> match_pattern); static int AtomExecRaw(Handle<JSRegExp> regexp, Handle<String> subject, int index, int32_t* output, int output_size); static Handle<Object> AtomExec(Handle<JSRegExp> regexp, Handle<String> subject, int index, Handle<RegExpMatchInfo> last_match_info); enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; // Prepare a RegExp for being executed one or more times (using // IrregexpExecOnce) on the subject. // This ensures that the regexp is compiled for the subject, and that // the subject is flat. // Returns the number of integer spaces required by IrregexpExecOnce // as its "registers" argument. If the regexp cannot be compiled, // an exception is set as pending, and this function returns negative. static int IrregexpPrepare(Handle<JSRegExp> regexp, Handle<String> subject); // Execute a regular expression on the subject, starting from index. // If matching succeeds, return the number of matches. This can be larger // than one in the case of global regular expressions. // The captures and subcaptures are stored into the registers vector. // If matching fails, returns RE_FAILURE. // If execution fails, sets a pending exception and returns RE_EXCEPTION. static int IrregexpExecRaw(Handle<JSRegExp> regexp, Handle<String> subject, int index, int32_t* output, int output_size); // Execute an Irregexp bytecode pattern. // On a successful match, the result is a JSArray containing // captured positions. On a failure, the result is the null value. // Returns an empty handle in case of an exception. MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( Handle<JSRegExp> regexp, Handle<String> subject, int index, Handle<RegExpMatchInfo> last_match_info); // Set last match info. If match is NULL, then setting captures is omitted. static Handle<RegExpMatchInfo> SetLastMatchInfo( Handle<RegExpMatchInfo> last_match_info, Handle<String> subject, int capture_count, int32_t* match); class GlobalCache { public: GlobalCache(Handle<JSRegExp> regexp, Handle<String> subject, Isolate* isolate); INLINE(~GlobalCache()); // Fetch the next entry in the cache for global regexp match results. // This does not set the last match info. Upon failure, NULL is returned. // The cause can be checked with Result(). The previous // result is still in available in memory when a failure happens. INLINE(int32_t* FetchNext()); INLINE(int32_t* LastSuccessfulMatch()); INLINE(bool HasException()) { return num_matches_ < 0; } private: int AdvanceZeroLength(int last_index); int num_matches_; int max_matches_; int current_match_index_; int registers_per_match_; // Pointer to the last set of captures. int32_t* register_array_; int register_array_size_; Handle<JSRegExp> regexp_; Handle<String> subject_; }; // For acting on the JSRegExp data FixedArray. static int IrregexpMaxRegisterCount(FixedArray* re); static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); static void SetIrregexpCaptureNameMap(FixedArray* re, Handle<FixedArray> value); static int IrregexpNumberOfCaptures(FixedArray* re); static int IrregexpNumberOfRegisters(FixedArray* re); static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte); static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte); // Limit the space regexps take up on the heap. In order to limit this we // would like to keep track of the amount of regexp code on the heap. This // is not tracked, however. As a conservative approximation we track the // total regexp code compiled including code that has subsequently been freed // and the total executable memory at any point. static const size_t kRegExpExecutableMemoryLimit = 16 * MB; static const int kRegExpCompiledLimit = 1 * MB; static const int kRegExpTooLargeToOptimize = 20 * KB; private: static bool CompileIrregexp(Handle<JSRegExp> re, Handle<String> sample_subject, bool is_one_byte); static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, Handle<String> sample_subject, bool is_one_byte); }; // Represents the location of one element relative to the intersection of // two sets. Corresponds to the four areas of a Venn diagram. enum ElementInSetsRelation { kInsideNone = 0, kInsideFirst = 1, kInsideSecond = 2, kInsideBoth = 3 }; // A set of unsigned integers that behaves especially well on small // integers (< 32). May do zone-allocation. class OutSet: public ZoneObject { public: OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } OutSet* Extend(unsigned value, Zone* zone); bool Get(unsigned value) const; static const unsigned kFirstLimit = 32; private: // Destructively set a value in this set. In most cases you want // to use Extend instead to ensure that only one instance exists // that contains the same values. void Set(unsigned value, Zone* zone); // The successors are a list of sets that contain the same values // as this set and the one more value that is not present in this // set. ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } OutSet(uint32_t first, ZoneList<unsigned>* remaining) : first_(first), remaining_(remaining), successors_(NULL) { } uint32_t first_; ZoneList<unsigned>* remaining_; ZoneList<OutSet*>* successors_; friend class Trace; }; // A mapping from integers, specified as ranges, to a set of integers. // Used for mapping character ranges to choices. class DispatchTable : public ZoneObject { public: explicit DispatchTable(Zone* zone) : tree_(zone) { } class Entry { public: Entry() : from_(0), to_(0), out_set_(NULL) { } Entry(uc32 from, uc32 to, OutSet* out_set) : from_(from), to_(to), out_set_(out_set) { DCHECK(from <= to); } uc32 from() { return from_; } uc32 to() { return to_; } void set_to(uc32 value) { to_ = value; } void AddValue(int value, Zone* zone) { out_set_ = out_set_->Extend(value, zone); } OutSet* out_set() { return out_set_; } private: uc32 from_; uc32 to_; OutSet* out_set_; }; class Config { public: typedef uc32 Key; typedef Entry Value; static const uc32 kNoKey; static const Entry NoValue() { return Value(); } static inline int Compare(uc32 a, uc32 b) { if (a == b) return 0; else if (a < b) return -1; else return 1; } }; void AddRange(CharacterRange range, int value, Zone* zone); OutSet* Get(uc32 value); void Dump(); template <typename Callback> void ForEach(Callback* callback) { return tree()->ForEach(callback); } private: // There can't be a static empty set since it allocates its // successors in a zone and caches them. OutSet* empty() { return &empty_; } OutSet empty_; ZoneSplayTree<Config>* tree() { return &tree_; } ZoneSplayTree<Config> tree_; }; // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates. class UnicodeRangeSplitter { public: UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base); void Call(uc32 from, DispatchTable::Entry entry); ZoneList<CharacterRange>* bmp() { return bmp_; } ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; } ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; } ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; } private: static const int kBase = 0; // Separate ranges into static const int kBmpCodePoints = 1; static const int kLeadSurrogates = 2; static const int kTrailSurrogates = 3; static const int kNonBmpCodePoints = 4; Zone* zone_; DispatchTable table_; ZoneList<CharacterRange>* bmp_; ZoneList<CharacterRange>* lead_surrogates_; ZoneList<CharacterRange>* trail_surrogates_; ZoneList<CharacterRange>* non_bmp_; }; #define FOR_EACH_NODE_TYPE(VISIT) \ VISIT(End) \ VISIT(Action) \ VISIT(Choice) \ VISIT(BackReference) \ VISIT(Assertion) \ VISIT(Text) class Trace; struct PreloadState; class GreedyLoopState; class AlternativeGenerationList; struct NodeInfo { NodeInfo() : being_analyzed(false), been_analyzed(false), follows_word_interest(false), follows_newline_interest(false), follows_start_interest(false), at_end(false), visited(false), replacement_calculated(false) { } // Returns true if the interests and assumptions of this node // matches the given one. bool Matches(NodeInfo* that) { return (at_end == that->at_end) && (follows_word_interest == that->follows_word_interest) && (follows_newline_interest == that->follows_newline_interest) && (follows_start_interest == that->follows_start_interest); } // Updates the interests of this node given the interests of the // node preceding it. void AddFromPreceding(NodeInfo* that) { at_end |= that->at_end; follows_word_interest |= that->follows_word_interest; follows_newline_interest |= that->follows_newline_interest; follows_start_interest |= that->follows_start_interest; } bool HasLookbehind() { return follows_word_interest || follows_newline_interest || follows_start_interest; } // Sets the interests of this node to include the interests of the // following node. void AddFromFollowing(NodeInfo* that) { follows_word_interest |= that->follows_word_interest; follows_newline_interest |= that->follows_newline_interest; follows_start_interest |= that->follows_start_interest; } void ResetCompilationState() { being_analyzed = false; been_analyzed = false; } bool being_analyzed: 1; bool been_analyzed: 1; // These bits are set of this node has to know what the preceding // character was. bool follows_word_interest: 1; bool follows_newline_interest: 1; bool follows_start_interest: 1; bool at_end: 1; bool visited: 1; bool replacement_calculated: 1; }; // Details of a quick mask-compare check that can look ahead in the // input stream. class QuickCheckDetails { public: QuickCheckDetails() : characters_(0), mask_(0), value_(0), cannot_match_(false) { } explicit QuickCheckDetails(int characters) : characters_(characters), mask_(0), value_(0), cannot_match_(false) { } bool Rationalize(bool one_byte); // Merge in the information from another branch of an alternation. void Merge(QuickCheckDetails* other, int from_index); // Advance the current position by some amount. void Advance(int by, bool one_byte); void Clear(); bool cannot_match() { return cannot_match_; } void set_cannot_match() { cannot_match_ = true; } struct Position { Position() : mask(0), value(0), determines_perfectly(false) { } uc16 mask; uc16 value; bool determines_perfectly; }; int characters() { return characters_; } void set_characters(int characters) { characters_ = characters; } Position* positions(int index) { DCHECK(index >= 0); DCHECK(index < characters_); return positions_ + index; } uint32_t mask() { return mask_; } uint32_t value() { return value_; } private: // How many characters do we have quick check information from. This is // the same for all branches of a choice node. int characters_; Position positions_[4]; // These values are the condensate of the above array after Rationalize(). uint32_t mask_; uint32_t value_; // If set to true, there is no way this quick check can match at all. // E.g., if it requires to be at the start of the input, and isn't. bool cannot_match_; }; extern int kUninitializedRegExpNodePlaceHolder; class RegExpNode: public ZoneObject { public: explicit RegExpNode(Zone* zone) : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) { bm_info_[0] = bm_info_[1] = NULL; } virtual ~RegExpNode(); virtual void Accept(NodeVisitor* visitor) = 0; // Generates a goto to this node or actually generates the code at this point. virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; // How many characters must this node consume at a minimum in order to // succeed. If we have found at least 'still_to_find' characters that // must be consumed there is no need to ask any following nodes whether // they are sure to eat any more characters. The not_at_start argument is // used to indicate that we know we are not at the start of the input. In // this case anchored branches will always fail and can be ignored when // determining how many characters are consumed on success. virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; // Emits some quick code that checks whether the preloaded characters match. // Falls through on certain failure, jumps to the label on possible success. // If the node cannot make a quick check it does nothing and returns false. bool EmitQuickCheck(RegExpCompiler* compiler, Trace* bounds_check_trace, Trace* trace, bool preload_has_checked_bounds, Label* on_possible_success, QuickCheckDetails* details_return, bool fall_through_on_failure); // For a given number of characters this returns a mask and a value. The // next n characters are anded with the mask and compared with the value. // A comparison failure indicates the node cannot match the next n characters. // A comparison success indicates the node may match. virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) = 0; static const int kNodeIsTooComplexForGreedyLoops = kMinInt; virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } // Only returns the successor for a text node of length 1 that matches any // character and that has no guards on it. virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( RegExpCompiler* compiler) { return NULL; } // Collects information on the possible code units (mod 128) that can match if // we look forward. This is used for a Boyer-Moore-like string searching // implementation. TODO(erikcorry): This should share more code with // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit // the number of nodes we are willing to look at in order to create this data. static const int kRecursionBudget = 200; bool KeepRecursing(RegExpCompiler* compiler); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { UNREACHABLE(); } // If we know that the input is one-byte then there are some nodes that can // never match. This method returns a node that can be substituted for // itself, or NULL if the node can never match. virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) { return this; } // Helper for FilterOneByte. RegExpNode* replacement() { DCHECK(info()->replacement_calculated); return replacement_; } RegExpNode* set_replacement(RegExpNode* replacement) { info()->replacement_calculated = true; replacement_ = replacement; return replacement; // For convenience. } // We want to avoid recalculating the lookahead info, so we store it on the // node. Only info that is for this node is stored. We can tell that the // info is for this node when offset == 0, so the information is calculated // relative to this node. void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { if (offset == 0) set_bm_info(not_at_start, bm); } Label* label() { return &label_; } // If non-generic code is generated for a node (i.e. the node is not at the // start of the trace) then it cannot be reused. This variable sets a limit // on how often we allow that to happen before we insist on starting a new // trace and generating generic code for a node that can be reused by flushing // the deferred actions in the current trace and generating a goto. static const int kMaxCopiesCodeGenerated = 10; bool on_work_list() { return on_work_list_; } void set_on_work_list(bool value) { on_work_list_ = value; } NodeInfo* info() { return &info_; } BoyerMooreLookahead* bm_info(bool not_at_start) { return bm_info_[not_at_start ? 1 : 0]; } Zone* zone() const { return zone_; } protected: enum LimitResult { DONE, CONTINUE }; RegExpNode* replacement_; LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { bm_info_[not_at_start ? 1 : 0] = bm; } private: static const int kFirstCharBudget = 10; Label label_; bool on_work_list_; NodeInfo info_; // This variable keeps track of how many times code has been generated for // this node (in different traces). We don't keep track of where the // generated code is located unless the code is generated at the start of // a trace, in which case it is generic and can be reused by flushing the // deferred operations in the current trace and generating a goto. int trace_count_; BoyerMooreLookahead* bm_info_[2]; Zone* zone_; }; class SeqRegExpNode: public RegExpNode { public: explicit SeqRegExpNode(RegExpNode* on_success) : RegExpNode(on_success->zone()), on_success_(on_success) { } RegExpNode* on_success() { return on_success_; } void set_on_success(RegExpNode* node) { on_success_ = node; } virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); if (offset == 0) set_bm_info(not_at_start, bm); } protected: RegExpNode* FilterSuccessor(int depth, bool ignore_case); private: RegExpNode* on_success_; }; class ActionNode: public SeqRegExpNode { public: enum ActionType { SET_REGISTER, INCREMENT_REGISTER, STORE_POSITION, BEGIN_SUBMATCH, POSITIVE_SUBMATCH_SUCCESS, EMPTY_MATCH_CHECK, CLEAR_CAPTURES }; static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); static ActionNode* StorePosition(int reg, bool is_capture, RegExpNode* on_success); static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); static ActionNode* BeginSubmatch(int stack_pointer_reg, int position_reg, RegExpNode* on_success); static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, int restore_reg, int clear_capture_count, int clear_capture_from, RegExpNode* on_success); static ActionNode* EmptyMatchCheck(int start_register, int repetition_register, int repetition_limit, RegExpNode* on_success); virtual void Accept(NodeVisitor* visitor); virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { return on_success()->GetQuickCheckDetails( details, compiler, filled_in, not_at_start); } virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start); ActionType action_type() { return action_type_; } // TODO(erikcorry): We should allow some action nodes in greedy loops. virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } private: union { struct { int reg; int value; } u_store_register; struct { int reg; } u_increment_register; struct { int reg; bool is_capture; } u_position_register; struct { int stack_pointer_register; int current_position_register; int clear_register_count; int clear_register_from; } u_submatch; struct { int start_register; int repetition_register; int repetition_limit; } u_empty_match_check; struct { int range_from; int range_to; } u_clear_captures; } data_; ActionNode(ActionType action_type, RegExpNode* on_success) : SeqRegExpNode(on_success), action_type_(action_type) { } ActionType action_type_; friend class DotPrinter; }; class TextNode: public SeqRegExpNode { public: TextNode(ZoneList<TextElement>* elms, bool read_backward, RegExpNode* on_success) : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} TextNode(RegExpCharacterClass* that, bool read_backward, RegExpNode* on_success) : SeqRegExpNode(on_success), elms_(new (zone()) ZoneList<TextElement>(1, zone())), read_backward_(read_backward) { elms_->Add(TextElement::CharClass(that), zone()); } // Create TextNode for a single character class for the given ranges. static TextNode* CreateForCharacterRanges(Zone* zone, ZoneList<CharacterRange>* ranges, bool read_backward, RegExpNode* on_success); // Create TextNode for a surrogate pair with a range given for the // lead and the trail surrogate each. static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead, CharacterRange trail, bool read_backward, RegExpNode* on_success); virtual void Accept(NodeVisitor* visitor); virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start); ZoneList<TextElement>* elements() { return elms_; } bool read_backward() { return read_backward_; } void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); virtual int GreedyLoopTextLength(); virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( RegExpCompiler* compiler); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start); void CalculateOffsets(); virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); private: enum TextEmitPassType { NON_LATIN1_MATCH, // Check for characters that can't match. SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. CASE_CHARACTER_MATCH, // Case-independent single character check. CHARACTER_CLASS_MATCH // Character class. }; static bool SkipPass(int pass, bool ignore_case); static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; static const int kLastPass = CHARACTER_CLASS_MATCH; void TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, bool preloaded, Trace* trace, bool first_element_checked, int* checked_up_to); int Length(); ZoneList<TextElement>* elms_; bool read_backward_; }; class AssertionNode: public SeqRegExpNode { public: enum AssertionType { AT_END, AT_START, AT_BOUNDARY, AT_NON_BOUNDARY, AFTER_NEWLINE }; static AssertionNode* AtEnd(RegExpNode* on_success) { return new(on_success->zone()) AssertionNode(AT_END, on_success); } static AssertionNode* AtStart(RegExpNode* on_success) { return new(on_success->zone()) AssertionNode(AT_START, on_success); } static AssertionNode* AtBoundary(RegExpNode* on_success) { return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); } static AssertionNode* AtNonBoundary(RegExpNode* on_success) { return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); } static AssertionNode* AfterNewline(RegExpNode* on_success) { return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); } virtual void Accept(NodeVisitor* visitor); virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start); AssertionType assertion_type() { return assertion_type_; } private: void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); enum IfPrevious { kIsNonWord, kIsWord }; void BacktrackIfPrevious(RegExpCompiler* compiler, Trace* trace, IfPrevious backtrack_if_previous); AssertionNode(AssertionType t, RegExpNode* on_success) : SeqRegExpNode(on_success), assertion_type_(t) { } AssertionType assertion_type_; }; class BackReferenceNode: public SeqRegExpNode { public: BackReferenceNode(int start_reg, int end_reg, bool read_backward, RegExpNode* on_success) : SeqRegExpNode(on_success), start_reg_(start_reg), end_reg_(end_reg), read_backward_(read_backward) {} virtual void Accept(NodeVisitor* visitor); int start_register() { return start_reg_; } int end_register() { return end_reg_; } bool read_backward() { return read_backward_; } virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int recursion_depth, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { return; } virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start); private: int start_reg_; int end_reg_; bool read_backward_; }; class EndNode: public RegExpNode { public: enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {} virtual void Accept(NodeVisitor* visitor); virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int recursion_depth, bool not_at_start) { return 0; } virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { // Returning 0 from EatsAtLeast should ensure we never get here. UNREACHABLE(); } virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { // Returning 0 from EatsAtLeast should ensure we never get here. UNREACHABLE(); } private: Action action_; }; class NegativeSubmatchSuccess: public EndNode { public: NegativeSubmatchSuccess(int stack_pointer_reg, int position_reg, int clear_capture_count, int clear_capture_start, Zone* zone) : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), stack_pointer_register_(stack_pointer_reg), current_position_register_(position_reg), clear_capture_count_(clear_capture_count), clear_capture_start_(clear_capture_start) { } virtual void Emit(RegExpCompiler* compiler, Trace* trace); private: int stack_pointer_register_; int current_position_register_; int clear_capture_count_; int clear_capture_start_; }; class Guard: public ZoneObject { public: enum Relation { LT, GEQ }; Guard(int reg, Relation op, int value) : reg_(reg), op_(op), value_(value) { } int reg() { return reg_; } Relation op() { return op_; } int value() { return value_; } private: int reg_; Relation op_; int value_; }; class GuardedAlternative { public: explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } void AddGuard(Guard* guard, Zone* zone); RegExpNode* node() { return node_; } void set_node(RegExpNode* node) { node_ = node; } ZoneList<Guard*>* guards() { return guards_; } private: RegExpNode* node_; ZoneList<Guard*>* guards_; }; class AlternativeGeneration; class ChoiceNode: public RegExpNode { public: explicit ChoiceNode(int expected_size, Zone* zone) : RegExpNode(zone), alternatives_(new(zone) ZoneList<GuardedAlternative>(expected_size, zone)), table_(NULL), not_at_start_(false), being_calculated_(false) { } virtual void Accept(NodeVisitor* visitor); void AddAlternative(GuardedAlternative node) { alternatives()->Add(node, zone()); } ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } DispatchTable* GetTable(bool ignore_case); virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); int EatsAtLeastHelper(int still_to_find, int budget, RegExpNode* ignore_this_node, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start); bool being_calculated() { return being_calculated_; } bool not_at_start() { return not_at_start_; } void set_not_at_start() { not_at_start_ = true; } void set_being_calculated(bool b) { being_calculated_ = b; } virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { return true; } virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); virtual bool read_backward() { return false; } protected: int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); ZoneList<GuardedAlternative>* alternatives_; private: friend class DispatchTableConstructor; friend class Analysis; void GenerateGuard(RegExpMacroAssembler* macro_assembler, Guard* guard, Trace* trace); int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); void EmitOutOfLineContinuation(RegExpCompiler* compiler, Trace* trace, GuardedAlternative alternative, AlternativeGeneration* alt_gen, int preload_characters, bool next_expects_preload); void SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace, PreloadState* preloads); void AssertGuardsMentionRegisters(Trace* trace); int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); Trace* EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace, AlternativeGenerationList* alt_gens, PreloadState* preloads, GreedyLoopState* greedy_loop_state, int text_length); void EmitChoices(RegExpCompiler* compiler, AlternativeGenerationList* alt_gens, int first_choice, Trace* trace, PreloadState* preloads); DispatchTable* table_; // If true, this node is never checked at the start of the input. // Allows a new trace to start with at_start() set to false. bool not_at_start_; bool being_calculated_; }; class NegativeLookaroundChoiceNode : public ChoiceNode { public: explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, GuardedAlternative then_do_this, Zone* zone) : ChoiceNode(2, zone) { AddAlternative(this_must_fail); AddAlternative(then_do_this); } virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); if (offset == 0) set_bm_info(not_at_start, bm); } // For a negative lookahead we don't emit the quick check for the // alternative that is expected to fail. This is because quick check code // starts by loading enough characters for the alternative that takes fewest // characters, but on a negative lookahead the negative branch did not take // part in that calculation (EatsAtLeast) so the assumptions don't hold. virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { return !is_first; } virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); }; class LoopChoiceNode: public ChoiceNode { public: LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone) : ChoiceNode(2, zone), loop_node_(NULL), continue_node_(NULL), body_can_be_zero_length_(body_can_be_zero_length), read_backward_(read_backward) {} void AddLoopAlternative(GuardedAlternative alt); void AddContinueAlternative(GuardedAlternative alt); virtual void Emit(RegExpCompiler* compiler, Trace* trace); virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); virtual void GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start); virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start); RegExpNode* loop_node() { return loop_node_; } RegExpNode* continue_node() { return continue_node_; } bool body_can_be_zero_length() { return body_can_be_zero_length_; } virtual bool read_backward() { return read_backward_; } virtual void Accept(NodeVisitor* visitor); virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); private: // AddAlternative is made private for loop nodes because alternatives // should not be added freely, we need to keep track of which node // goes back to the node itself. void AddAlternative(GuardedAlternative node) { ChoiceNode::AddAlternative(node); } RegExpNode* loop_node_; RegExpNode* continue_node_; bool body_can_be_zero_length_; bool read_backward_; }; // Improve the speed that we scan for an initial point where a non-anchored // regexp can match by using a Boyer-Moore-like table. This is done by // identifying non-greedy non-capturing loops in the nodes that eat any // character one at a time. For example in the middle of the regexp // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly // inserted at the start of any non-anchored regexp. // // When we have found such a loop we look ahead in the nodes to find the set of // characters that can come at given distances. For example for the regexp // /.?foo/ we know that there are at least 3 characters ahead of us, and the // sets of characters that can occur are [any, [f, o], [o]]. We find a range in // the lookahead info where the set of characters is reasonably constrained. In // our example this is from index 1 to 2 (0 is not constrained). We can now // look 3 characters ahead and if we don't find one of [f, o] (the union of // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). // // For Unicode input strings we do the same, but modulo 128. // // We also look at the first string fed to the regexp and use that to get a hint // of the character frequencies in the inputs. This affects the assessment of // whether the set of characters is 'reasonably constrained'. // // We also have another lookahead mechanism (called quick check in the code), // which uses a wide load of multiple characters followed by a mask and compare // to determine whether a match is possible at this point. enum ContainedInLattice { kNotYet = 0, kLatticeIn = 1, kLatticeOut = 2, kLatticeUnknown = 3 // Can also mean both in and out. }; inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { return static_cast<ContainedInLattice>(a | b); } ContainedInLattice AddRange(ContainedInLattice a, const int* ranges, int ranges_size, Interval new_range); class BoyerMoorePositionInfo : public ZoneObject { public: explicit BoyerMoorePositionInfo(Zone* zone) : map_(new(zone) ZoneList<bool>(kMapSize, zone)), map_count_(0), w_(kNotYet), s_(kNotYet), d_(kNotYet), surrogate_(kNotYet) { for (int i = 0; i < kMapSize; i++) { map_->Add(false, zone); } } bool& at(int i) { return map_->at(i); } static const int kMapSize = 128; static const int kMask = kMapSize - 1; int map_count() const { return map_count_; } void Set(int character); void SetInterval(const Interval& interval); void SetAll(); bool is_non_word() { return w_ == kLatticeOut; } bool is_word() { return w_ == kLatticeIn; } private: ZoneList<bool>* map_; int map_count_; // Number of set bits in the map. ContainedInLattice w_; // The \w character class. ContainedInLattice s_; // The \s character class. ContainedInLattice d_; // The \d character class. ContainedInLattice surrogate_; // Surrogate UTF-16 code units. }; class BoyerMooreLookahead : public ZoneObject { public: BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); int length() { return length_; } int max_char() { return max_char_; } RegExpCompiler* compiler() { return compiler_; } int Count(int map_number) { return bitmaps_->at(map_number)->map_count(); } BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } void Set(int map_number, int character) { if (character > max_char_) return; BoyerMoorePositionInfo* info = bitmaps_->at(map_number); info->Set(character); } void SetInterval(int map_number, const Interval& interval) { if (interval.from() > max_char_) return; BoyerMoorePositionInfo* info = bitmaps_->at(map_number); if (interval.to() > max_char_) { info->SetInterval(Interval(interval.from(), max_char_)); } else { info->SetInterval(interval); } } void SetAll(int map_number) { bitmaps_->at(map_number)->SetAll(); } void SetRest(int from_map) { for (int i = from_map; i < length_; i++) SetAll(i); } void EmitSkipInstructions(RegExpMacroAssembler* masm); private: // This is the value obtained by EatsAtLeast. If we do not have at least this // many characters left in the sample string then the match is bound to fail. // Therefore it is OK to read a character this far ahead of the current match // point. int length_; RegExpCompiler* compiler_; // 0xff for Latin1, 0xffff for UTF-16. int max_char_; ZoneList<BoyerMoorePositionInfo*>* bitmaps_; int GetSkipTable(int min_lookahead, int max_lookahead, Handle<ByteArray> boolean_skip_table); bool FindWorthwhileInterval(int* from, int* to); int FindBestInterval( int max_number_of_chars, int old_biggest_points, int* from, int* to); }; // There are many ways to generate code for a node. This class encapsulates // the current way we should be generating. In other words it encapsulates // the current state of the code generator. The effect of this is that we // generate code for paths that the matcher can take through the regular // expression. A given node in the regexp can be code-generated several times // as it can be part of several traces. For example for the regexp: // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code // to match foo is generated only once (the traces have a common prefix). The // code to store the capture is deferred and generated (twice) after the places // where baz has been matched. class Trace { public: // A value for a property that is either known to be true, know to be false, // or not known. enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 }; class DeferredAction { public: DeferredAction(ActionNode::ActionType action_type, int reg) : action_type_(action_type), reg_(reg), next_(NULL) { } DeferredAction* next() { return next_; } bool Mentions(int reg); int reg() { return reg_; } ActionNode::ActionType action_type() { return action_type_; } private: ActionNode::ActionType action_type_; int reg_; DeferredAction* next_; friend class Trace; }; class DeferredCapture : public DeferredAction { public: DeferredCapture(int reg, bool is_capture, Trace* trace) : DeferredAction(ActionNode::STORE_POSITION, reg), cp_offset_(trace->cp_offset()), is_capture_(is_capture) { } int cp_offset() { return cp_offset_; } bool is_capture() { return is_capture_; } private: int cp_offset_; bool is_capture_; void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } }; class DeferredSetRegister : public DeferredAction { public: DeferredSetRegister(int reg, int value) : DeferredAction(ActionNode::SET_REGISTER, reg), value_(value) { } int value() { return value_; } private: int value_; }; class DeferredClearCaptures : public DeferredAction { public: explicit DeferredClearCaptures(Interval range) : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) { } Interval range() { return range_; } private: Interval range_; }; class DeferredIncrementRegister : public DeferredAction { public: explicit DeferredIncrementRegister(int reg) : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } }; Trace() : cp_offset_(0), actions_(NULL), backtrack_(NULL), stop_node_(NULL), loop_label_(NULL), characters_preloaded_(0), bound_checked_up_to_(0), flush_budget_(100), at_start_(UNKNOWN) { } // End the trace. This involves flushing the deferred actions in the trace // and pushing a backtrack location onto the backtrack stack. Once this is // done we can start a new trace or go to one that has already been // generated. void Flush(RegExpCompiler* compiler, RegExpNode* successor); int cp_offset() { return cp_offset_; } DeferredAction* actions() { return actions_; } // A trivial trace is one that has no deferred actions or other state that // affects the assumptions used when generating code. There is no recorded // backtrack location in a trivial trace, so with a trivial trace we will // generate code that, on a failure to match, gets the backtrack location // from the backtrack stack rather than using a direct jump instruction. We // always start code generation with a trivial trace and non-trivial traces // are created as we emit code for nodes or add to the list of deferred // actions in the trace. The location of the code generated for a node using // a trivial trace is recorded in a label in the node so that gotos can be // generated to that code. bool is_trivial() { return backtrack_ == NULL && actions_ == NULL && cp_offset_ == 0 && characters_preloaded_ == 0 && bound_checked_up_to_ == 0 && quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN; } TriBool at_start() { return at_start_; } void set_at_start(TriBool at_start) { at_start_ = at_start; } Label* backtrack() { return backtrack_; } Label* loop_label() { return loop_label_; } RegExpNode* stop_node() { return stop_node_; } int characters_preloaded() { return characters_preloaded_; } int bound_checked_up_to() { return bound_checked_up_to_; } int flush_budget() { return flush_budget_; } QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } bool mentions_reg(int reg); // Returns true if a deferred position store exists to the specified // register and stores the offset in the out-parameter. Otherwise // returns false. bool GetStoredPosition(int reg, int* cp_offset); // These set methods and AdvanceCurrentPositionInTrace should be used only on // new traces - the intention is that traces are immutable after creation. void add_action(DeferredAction* new_action) { DCHECK(new_action->next_ == NULL); new_action->next_ = actions_; actions_ = new_action; } void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } void set_stop_node(RegExpNode* node) { stop_node_ = node; } void set_loop_label(Label* label) { loop_label_ = label; } void set_characters_preloaded(int count) { characters_preloaded_ = count; } void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } void set_flush_budget(int to) { flush_budget_ = to; } void set_quick_check_performed(QuickCheckDetails* d) { quick_check_performed_ = *d; } void InvalidateCurrentCharacter(); void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); private: int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); void PerformDeferredActions(RegExpMacroAssembler* macro, int max_register, const OutSet& affected_registers, OutSet* registers_to_pop, OutSet* registers_to_clear, Zone* zone); void RestoreAffectedRegisters(RegExpMacroAssembler* macro, int max_register, const OutSet& registers_to_pop, const OutSet& registers_to_clear); int cp_offset_; DeferredAction* actions_; Label* backtrack_; RegExpNode* stop_node_; Label* loop_label_; int characters_preloaded_; int bound_checked_up_to_; QuickCheckDetails quick_check_performed_; int flush_budget_; TriBool at_start_; }; class GreedyLoopState { public: explicit GreedyLoopState(bool not_at_start); Label* label() { return &label_; } Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } private: Label label_; Trace counter_backtrack_trace_; }; struct PreloadState { static const int kEatsAtLeastNotYetInitialized = -1; bool preload_is_current_; bool preload_has_checked_bounds_; int preload_characters_; int eats_at_least_; void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; } }; class NodeVisitor { public: virtual ~NodeVisitor() { } #define DECLARE_VISIT(Type) \ virtual void Visit##Type(Type##Node* that) = 0; FOR_EACH_NODE_TYPE(DECLARE_VISIT) #undef DECLARE_VISIT virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } }; // Node visitor used to add the start set of the alternatives to the // dispatch table of a choice node. class DispatchTableConstructor: public NodeVisitor { public: DispatchTableConstructor(DispatchTable* table, bool ignore_case, Zone* zone) : table_(table), choice_index_(-1), ignore_case_(ignore_case), zone_(zone) { } void BuildTable(ChoiceNode* node); void AddRange(CharacterRange range) { table()->AddRange(range, choice_index_, zone_); } void AddInverse(ZoneList<CharacterRange>* ranges); #define DECLARE_VISIT(Type) \ virtual void Visit##Type(Type##Node* that); FOR_EACH_NODE_TYPE(DECLARE_VISIT) #undef DECLARE_VISIT DispatchTable* table() { return table_; } void set_choice_index(int value) { choice_index_ = value; } protected: DispatchTable* table_; int choice_index_; bool ignore_case_; Zone* zone_; }; // Assertion propagation moves information about assertions such as // \b to the affected nodes. For instance, in /.\b./ information must // be propagated to the first '.' that whatever follows needs to know // if it matched a word or a non-word, and to the second '.' that it // has to check if it succeeds a word or non-word. In this case the // result will be something like: // // +-------+ +------------+ // | . | | . | // +-------+ ---> +------------+ // | word? | | check word | // +-------+ +------------+ class Analysis: public NodeVisitor { public: Analysis(Isolate* isolate, JSRegExp::Flags flags, bool is_one_byte) : isolate_(isolate), flags_(flags), is_one_byte_(is_one_byte), error_message_(NULL) {} void EnsureAnalyzed(RegExpNode* node); #define DECLARE_VISIT(Type) \ virtual void Visit##Type(Type##Node* that); FOR_EACH_NODE_TYPE(DECLARE_VISIT) #undef DECLARE_VISIT virtual void VisitLoopChoice(LoopChoiceNode* that); bool has_failed() { return error_message_ != NULL; } const char* error_message() { DCHECK(error_message_ != NULL); return error_message_; } void fail(const char* error_message) { error_message_ = error_message; } Isolate* isolate() const { return isolate_; } bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; } bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; } private: Isolate* isolate_; JSRegExp::Flags flags_; bool is_one_byte_; const char* error_message_; DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); }; struct RegExpCompileData { RegExpCompileData() : tree(NULL), node(NULL), simple(true), contains_anchor(false), capture_count(0) { } RegExpTree* tree; RegExpNode* node; bool simple; bool contains_anchor; Handle<FixedArray> capture_name_map; Handle<String> error; int capture_count; }; class RegExpEngine: public AllStatic { public: struct CompilationResult { CompilationResult(Isolate* isolate, const char* error_message) : error_message(error_message), code(isolate->heap()->the_hole_value()), num_registers(0) {} CompilationResult(Object* code, int registers) : error_message(NULL), code(code), num_registers(registers) {} const char* error_message; Object* code; int num_registers; }; static CompilationResult Compile(Isolate* isolate, Zone* zone, RegExpCompileData* input, JSRegExp::Flags flags, Handle<String> pattern, Handle<String> sample_subject, bool is_one_byte); static bool TooMuchRegExpCode(Handle<String> pattern); static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); }; class RegExpResultsCache : public AllStatic { public: enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS }; // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi. // On success, the returned result is guaranteed to be a COW-array. static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern, FixedArray** last_match_out, ResultsCacheType type); // Attempt to add value_array to the cache specified by type. On success, // value_array is turned into a COW-array. static void Enter(Isolate* isolate, Handle<String> key_string, Handle<Object> key_pattern, Handle<FixedArray> value_array, Handle<FixedArray> last_match_cache, ResultsCacheType type); static void Clear(FixedArray* cache); static const int kRegExpResultsCacheSize = 0x100; private: static const int kArrayEntriesPerCacheEntry = 4; static const int kStringOffset = 0; static const int kPatternOffset = 1; static const int kArrayOffset = 2; static const int kLastMatchOffset = 3; }; } // namespace internal } // namespace v8 #endif // V8_REGEXP_JSREGEXP_H_