// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_ #define V8_PPC_MACRO_ASSEMBLER_PPC_H_ #include "src/assembler.h" #include "src/bailout-reason.h" #include "src/frames.h" #include "src/globals.h" namespace v8 { namespace internal { // Give alias names to registers for calling conventions. const Register kReturnRegister0 = {Register::kCode_r3}; const Register kReturnRegister1 = {Register::kCode_r4}; const Register kReturnRegister2 = {Register::kCode_r5}; const Register kJSFunctionRegister = {Register::kCode_r4}; const Register kContextRegister = {Register::kCode_r30}; const Register kAllocateSizeRegister = {Register::kCode_r4}; const Register kInterpreterAccumulatorRegister = {Register::kCode_r3}; const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r15}; const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r16}; const Register kInterpreterDispatchTableRegister = {Register::kCode_r17}; const Register kJavaScriptCallArgCountRegister = {Register::kCode_r3}; const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r6}; const Register kRuntimeCallFunctionRegister = {Register::kCode_r4}; const Register kRuntimeCallArgCountRegister = {Register::kCode_r3}; // ---------------------------------------------------------------------------- // Static helper functions // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, int offset) { return MemOperand(object, offset - kHeapObjectTag); } // Flags used for AllocateHeapNumber enum TaggingMode { // Tag the result. TAG_RESULT, // Don't tag DONT_TAG_RESULT }; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum PointersToHereCheck { kPointersToHereMaybeInteresting, kPointersToHereAreAlwaysInteresting }; enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg); #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg, Register reg7 = no_reg, Register reg8 = no_reg, Register reg9 = no_reg, Register reg10 = no_reg); #endif // These exist to provide portability between 32 and 64bit #if V8_TARGET_ARCH_PPC64 #define LoadPX ldx #define LoadPUX ldux #define StorePX stdx #define StorePUX stdux #define ShiftLeftImm sldi #define ShiftRightImm srdi #define ClearLeftImm clrldi #define ClearRightImm clrrdi #define ShiftRightArithImm sradi #define ShiftLeft_ sld #define ShiftRight_ srd #define ShiftRightArith srad #define Mul mulld #define Div divd #else #define LoadPX lwzx #define LoadPUX lwzux #define StorePX stwx #define StorePUX stwux #define ShiftLeftImm slwi #define ShiftRightImm srwi #define ClearLeftImm clrlwi #define ClearRightImm clrrwi #define ShiftRightArithImm srawi #define ShiftLeft_ slw #define ShiftRight_ srw #define ShiftRightArith sraw #define Mul mullw #define Div divw #endif // MacroAssembler implements a collection of frequently used macros. class MacroAssembler : public Assembler { public: MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object); // Returns the size of a call in instructions. Note, the value returned is // only valid as long as no entries are added to the constant pool between // checking the call size and emitting the actual call. static int CallSize(Register target); int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al); static int CallSizeNotPredictableCodeSize(Address target, RelocInfo::Mode rmode, Condition cond = al); // Jump, Call, and Ret pseudo instructions implementing inter-working. void Jump(Register target); void JumpToJSEntry(Register target); void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al, CRegister cr = cr7); void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); void Call(Register target); void CallJSEntry(Register target); void Call(Address target, RelocInfo::Mode rmode, Condition cond = al); int CallSize(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al); void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al); void Ret() { blr(); } void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); } // Emit code that loads |parameter_index|'th parameter from the stack to // the register according to the CallInterfaceDescriptor definition. // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed // below the caller's sp. template <class Descriptor> void LoadParameterFromStack( Register reg, typename Descriptor::ParameterIndices parameter_index, int sp_to_ra_offset_in_words = 0) { DCHECK(Descriptor::kPassLastArgsOnStack); UNIMPLEMENTED(); } // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the sp register. void Drop(int count); void Drop(Register count, Register scratch = r0); void Ret(int drop) { Drop(drop); blr(); } void Call(Label* target); // Register move. May do nothing if the registers are identical. void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); } void Move(Register dst, Handle<Object> value); void Move(Register dst, Register src, Condition cond = al); void Move(DoubleRegister dst, DoubleRegister src); void MultiPush(RegList regs, Register location = sp); void MultiPop(RegList regs, Register location = sp); void MultiPushDoubles(RegList dregs, Register location = sp); void MultiPopDoubles(RegList dregs, Register location = sp); // Load an object from the root table. void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond = al); // Store an object to the root table. void StoreRoot(Register source, Heap::RootListIndex index, Condition cond = al); // --------------------------------------------------------------------------- // GC Support void IncrementalMarkingRecordWriteHelper(Register object, Register value, Register address); enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd }; // Record in the remembered set the fact that we have a pointer to new space // at the address pointed to by the addr register. Only works if addr is not // in new space. void RememberedSetHelper(Register object, // Used for debug code. Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met); // Check if object is in new space. Jumps if the object is not in new space. // The register scratch can be object itself, but scratch will be clobbered. void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) { InNewSpace(object, scratch, eq, branch); } // Check if object is in new space. Jumps if the object is in new space. // The register scratch can be object itself, but it will be clobbered. void JumpIfInNewSpace(Register object, Register scratch, Label* branch) { InNewSpace(object, scratch, ne, branch); } // Check if an object has a given incremental marking color. void HasColor(Register object, Register scratch0, Register scratch1, Label* has_color, int first_bit, int second_bit); void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black); // Checks the color of an object. If the object is white we jump to the // incremental marker. void JumpIfWhite(Register value, Register scratch1, Register scratch2, Register scratch3, Label* value_is_white); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldMemOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // As above, but the offset has the tag presubtracted. For use with // MemOperand(reg, off). inline void RecordWriteContextSlot( Register context, int offset, Register value, Register scratch, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting) { RecordWriteField(context, offset + kHeapObjectTag, value, scratch, lr_status, save_fp, remembered_set_action, smi_check, pointers_to_here_check_for_value); } // Notify the garbage collector that we wrote a code entry into a // JSFunction. Only scratch is clobbered by the operation. void RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch); void RecordWriteForMap(Register object, Register map, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp); // For a given |object| notify the garbage collector that the slot |address| // has been written. |value| is the object being stored. The value and // address registers are clobbered by the operation. void RecordWrite( Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); void Push(Register src) { push(src); } // Push a handle. void Push(Handle<Object> handle); void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } // Push two registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2) { StorePU(src2, MemOperand(sp, -2 * kPointerSize)); StoreP(src1, MemOperand(sp, kPointerSize)); } // Push three registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3) { StorePU(src3, MemOperand(sp, -3 * kPointerSize)); StoreP(src2, MemOperand(sp, kPointerSize)); StoreP(src1, MemOperand(sp, 2 * kPointerSize)); } // Push four registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4) { StorePU(src4, MemOperand(sp, -4 * kPointerSize)); StoreP(src3, MemOperand(sp, kPointerSize)); StoreP(src2, MemOperand(sp, 2 * kPointerSize)); StoreP(src1, MemOperand(sp, 3 * kPointerSize)); } // Push five registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4, Register src5) { StorePU(src5, MemOperand(sp, -5 * kPointerSize)); StoreP(src4, MemOperand(sp, kPointerSize)); StoreP(src3, MemOperand(sp, 2 * kPointerSize)); StoreP(src2, MemOperand(sp, 3 * kPointerSize)); StoreP(src1, MemOperand(sp, 4 * kPointerSize)); } void Pop(Register dst) { pop(dst); } // Pop two registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2) { LoadP(src2, MemOperand(sp, 0)); LoadP(src1, MemOperand(sp, kPointerSize)); addi(sp, sp, Operand(2 * kPointerSize)); } // Pop three registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3) { LoadP(src3, MemOperand(sp, 0)); LoadP(src2, MemOperand(sp, kPointerSize)); LoadP(src1, MemOperand(sp, 2 * kPointerSize)); addi(sp, sp, Operand(3 * kPointerSize)); } // Pop four registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3, Register src4) { LoadP(src4, MemOperand(sp, 0)); LoadP(src3, MemOperand(sp, kPointerSize)); LoadP(src2, MemOperand(sp, 2 * kPointerSize)); LoadP(src1, MemOperand(sp, 3 * kPointerSize)); addi(sp, sp, Operand(4 * kPointerSize)); } // Pop five registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3, Register src4, Register src5) { LoadP(src5, MemOperand(sp, 0)); LoadP(src4, MemOperand(sp, kPointerSize)); LoadP(src3, MemOperand(sp, 2 * kPointerSize)); LoadP(src2, MemOperand(sp, 3 * kPointerSize)); LoadP(src1, MemOperand(sp, 4 * kPointerSize)); addi(sp, sp, Operand(5 * kPointerSize)); } // Push a fixed frame, consisting of lr, fp, constant pool. void PushCommonFrame(Register marker_reg = no_reg); // Push a standard frame, consisting of lr, fp, constant pool, // context and JS function void PushStandardFrame(Register function_reg); void PopCommonFrame(Register marker_reg = no_reg); // Restore caller's frame pointer and return address prior to being // overwritten by tail call stack preparation. void RestoreFrameStateForTailCall(); // Push and pop the registers that can hold pointers, as defined by the // RegList constant kSafepointSavedRegisters. void PushSafepointRegisters(); void PopSafepointRegisters(); // Store value in register src in the safepoint stack slot for // register dst. void StoreToSafepointRegisterSlot(Register src, Register dst); // Load the value of the src register from its safepoint stack slot // into register dst. void LoadFromSafepointRegisterSlot(Register dst, Register src); // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache // from C. // Does not handle errors. void FlushICache(Register address, size_t size, Register scratch); // If the value is a NaN, canonicalize the value else, do nothing. void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); void CanonicalizeNaN(const DoubleRegister value) { CanonicalizeNaN(value, value); } // Converts the integer (untagged smi) in |src| to a double, storing // the result to |dst| void ConvertIntToDouble(Register src, DoubleRegister dst); // Converts the unsigned integer (untagged smi) in |src| to // a double, storing the result to |dst| void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst); // Converts the integer (untagged smi) in |src| to // a float, storing the result in |dst| void ConvertIntToFloat(Register src, DoubleRegister dst); // Converts the unsigned integer (untagged smi) in |src| to // a float, storing the result in |dst| void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst); #if V8_TARGET_ARCH_PPC64 void ConvertInt64ToFloat(Register src, DoubleRegister double_dst); void ConvertInt64ToDouble(Register src, DoubleRegister double_dst); void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst); void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst); #endif // Converts the double_input to an integer. Note that, upon return, // the contents of double_dst will also hold the fixed point representation. void ConvertDoubleToInt64(const DoubleRegister double_input, #if !V8_TARGET_ARCH_PPC64 const Register dst_hi, #endif const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode = kRoundToZero); #if V8_TARGET_ARCH_PPC64 // Converts the double_input to an unsigned integer. Note that, upon return, // the contents of double_dst will also hold the fixed point representation. void ConvertDoubleToUnsignedInt64( const DoubleRegister double_input, const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode = kRoundToZero); #endif #if !V8_TARGET_ARCH_PPC64 void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift); void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift); void ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift); void ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift); void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift); void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift); #endif // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type, Register base = no_reg, int prologue_offset = 0); void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0); // Enter exit frame. // stack_space - extra stack space, used for parameters before call to C. // At least one slot (for the return address) should be provided. void EnterExitFrame(bool save_doubles, int stack_space = 1, StackFrame::Type frame_type = StackFrame::EXIT); // Leave the current exit frame. Expects the return value in r0. // Expect the number of values, pushed prior to the exit frame, to // remove in a register (or no_reg, if there is nothing to remove). void LeaveExitFrame(bool save_doubles, Register argument_count, bool restore_context, bool argument_count_is_length = false); // Get the actual activation frame alignment for target environment. static int ActivationFrameAlignment(); void LoadContext(Register dst, int context_chain_length); // Load the global object from the current context. void LoadGlobalObject(Register dst) { LoadNativeContextSlot(Context::EXTENSION_INDEX, dst); } // Load the global proxy from the current context. void LoadGlobalProxy(Register dst) { LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); } // Conditionally load the cached Array transitioned map of type // transitioned_kind from the native context if the map in register // map_in_out is the cached Array map in the native context of // expected_kind. void LoadTransitionedArrayMapConditional(ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match); void LoadNativeContextSlot(int index, Register dst); // Load the initial map from the global function. The registers // function and map can be the same, function is then overwritten. void LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch); void InitializeRootRegister() { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(kRootRegister, Operand(roots_array_start)); } // ---------------------------------------------------------------- // new PPC macro-assembler interfaces that are slightly higher level // than assembler-ppc and may generate variable length sequences // load a literal signed int value <value> to GPR <dst> void LoadIntLiteral(Register dst, int value); // load an SMI value <value> to GPR <dst> void LoadSmiLiteral(Register dst, Smi* smi); // load a literal double value <value> to FPR <result> void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch); void LoadWord(Register dst, const MemOperand& mem, Register scratch); void LoadWordArith(Register dst, const MemOperand& mem, Register scratch = no_reg); void StoreWord(Register src, const MemOperand& mem, Register scratch); void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch); void LoadHalfWordArith(Register dst, const MemOperand& mem, Register scratch = no_reg); void StoreHalfWord(Register src, const MemOperand& mem, Register scratch); void LoadByte(Register dst, const MemOperand& mem, Register scratch); void StoreByte(Register src, const MemOperand& mem, Register scratch); void LoadRepresentation(Register dst, const MemOperand& mem, Representation r, Register scratch = no_reg); void StoreRepresentation(Register src, const MemOperand& mem, Representation r, Register scratch = no_reg); void LoadDouble(DoubleRegister dst, const MemOperand& mem, Register scratch = no_reg); void LoadDoubleU(DoubleRegister dst, const MemOperand& mem, Register scratch = no_reg); void LoadSingle(DoubleRegister dst, const MemOperand& mem, Register scratch = no_reg); void LoadSingleU(DoubleRegister dst, const MemOperand& mem, Register scratch = no_reg); void StoreDouble(DoubleRegister src, const MemOperand& mem, Register scratch = no_reg); void StoreDoubleU(DoubleRegister src, const MemOperand& mem, Register scratch = no_reg); void StoreSingle(DoubleRegister src, const MemOperand& mem, Register scratch = no_reg); void StoreSingleU(DoubleRegister src, const MemOperand& mem, Register scratch = no_reg); // Move values between integer and floating point registers. void MovIntToDouble(DoubleRegister dst, Register src, Register scratch); void MovUnsignedIntToDouble(DoubleRegister dst, Register src, Register scratch); void MovInt64ToDouble(DoubleRegister dst, #if !V8_TARGET_ARCH_PPC64 Register src_hi, #endif Register src); #if V8_TARGET_ARCH_PPC64 void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi, Register src_lo, Register scratch); #endif void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch); void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch); void MovDoubleLowToInt(Register dst, DoubleRegister src); void MovDoubleHighToInt(Register dst, DoubleRegister src); void MovDoubleToInt64( #if !V8_TARGET_ARCH_PPC64 Register dst_hi, #endif Register dst, DoubleRegister src); void MovIntToFloat(DoubleRegister dst, Register src); void MovFloatToInt(Register dst, DoubleRegister src); void Add(Register dst, Register src, intptr_t value, Register scratch); void Cmpi(Register src1, const Operand& src2, Register scratch, CRegister cr = cr7); void Cmpli(Register src1, const Operand& src2, Register scratch, CRegister cr = cr7); void Cmpwi(Register src1, const Operand& src2, Register scratch, CRegister cr = cr7); void Cmplwi(Register src1, const Operand& src2, Register scratch, CRegister cr = cr7); void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC); void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC); void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC); void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch); void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch); void CmpSmiLiteral(Register src1, Smi* smi, Register scratch, CRegister cr = cr7); void CmplSmiLiteral(Register src1, Smi* smi, Register scratch, CRegister cr = cr7); void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch, RCBit rc = LeaveRC); // Set new rounding mode RN to FPSCR void SetRoundingMode(FPRoundingMode RN); // reset rounding mode to default (kRoundToNearest) void ResetRoundingMode(); // These exist to provide portability between 32 and 64bit void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg); void LoadPU(Register dst, const MemOperand& mem, Register scratch = no_reg); void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg); void StorePU(Register src, const MemOperand& mem, Register scratch = no_reg); // --------------------------------------------------------------------------- // JavaScript invokes // Removes current frame and its arguments from the stack preserving // the arguments and a return address pushed to the stack for the next call. // Both |callee_args_count| and |caller_args_count_reg| do not include // receiver. |callee_args_count| is not modified, |caller_args_count_reg| // is trashed. void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1); // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void FloodFunctionIfStepping(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void IsObjectJSStringType(Register object, Register scratch, Label* fail); void IsObjectNameType(Register object, Register scratch, Label* fail); // --------------------------------------------------------------------------- // Debugger Support void DebugBreak(); // --------------------------------------------------------------------------- // Exception handling // Push a new stack handler and link into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. // Must preserve the result register. void PopStackHandler(); // --------------------------------------------------------------------------- // Inline caching support void GetNumberHash(Register t0, Register scratch); inline void MarkCode(NopMarkerTypes type) { nop(type); } // Check if the given instruction is a 'type' marker. // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type)) // These instructions are generated to mark special location in the code, // like some special IC code. static inline bool IsMarkedCode(Instr instr, int type) { DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)); return IsNop(instr, type); } static inline int GetCodeMarker(Instr instr) { int dst_reg_offset = 12; int dst_mask = 0xf << dst_reg_offset; int src_mask = 0xf; int dst_reg = (instr & dst_mask) >> dst_reg_offset; int src_reg = instr & src_mask; uint32_t non_register_mask = ~(dst_mask | src_mask); uint32_t mov_mask = al | 13 << 21; // Return <n> if we have a mov rn rn, else return -1. int type = ((instr & non_register_mask) == mov_mask) && (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER) ? src_reg : -1; DCHECK((type == -1) || ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER))); return type; } // --------------------------------------------------------------------------- // Allocation support // Allocate an object in new space or old space. The object_size is // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS // is passed. If the space is exhausted control continues at the gc_required // label. The allocated object is returned in result. If the flag // tag_allocated_object is true the result is tagged as as a heap object. // All registers are clobbered also when control continues at the gc_required // label. void Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags); void Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // FastAllocate is right now only used for folded allocations. It just // increments the top pointer without checking against limit. This can only // be done if it was proved earlier that the allocation will succeed. void FastAllocate(int object_size, Register result, Register scratch1, Register scratch2, AllocationFlags flags); void FastAllocate(Register object_size, Register result, Register result_end, Register scratch, AllocationFlags flags); void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); // Allocates a heap number or jumps to the gc_required label if the young // space is full and a scavenge is needed. All registers are clobbered also // when control continues at the gc_required label. void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required, MutableMode mode = IMMUTABLE); void AllocateHeapNumberWithValue(Register result, DoubleRegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required); // Allocate and initialize a JSValue wrapper with the specified {constructor} // and {value}. void AllocateJSValue(Register result, Register constructor, Register value, Register scratch1, Register scratch2, Label* gc_required); // Initialize fields with filler values. |count| fields starting at // |current_address| are overwritten with the value in |filler|. At the end // the loop, |current_address| points at the next uninitialized field. // |count| is assumed to be non-zero. void InitializeNFieldsWithFiller(Register current_address, Register count, Register filler); // Initialize fields with filler values. Fields starting at |current_address| // not including |end_address| are overwritten with the value in |filler|. At // the end the loop, |current_address| takes the value of |end_address|. void InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler); // --------------------------------------------------------------------------- // Support functions. // Machine code version of Map::GetConstructor(). // |temp| holds |result|'s map when done, and |temp2| its instance type. void GetMapConstructor(Register result, Register map, Register temp, Register temp2); // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other registers may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss); // Compare object type for heap object. heap_object contains a non-Smi // whose object type should be compared with the given type. This both // sets the flags and leaves the object type in the type_reg register. // It leaves the map in the map register (unless the type_reg and map register // are the same register). It leaves the heap object in the heap_object // register unless the heap_object register is the same register as one of the // other registers. // Type_reg can be no_reg. In that case ip is used. void CompareObjectType(Register heap_object, Register map, Register type_reg, InstanceType type); // Compare instance type in a map. map contains a valid map object whose // object type should be compared with the given type. This both // sets the flags and leaves the object type in the type_reg register. void CompareInstanceType(Register map, Register type_reg, InstanceType type); // Check if a map for a JSObject indicates that the object can have both smi // and HeapObject elements. Jump to the specified label if it does not. void CheckFastObjectElements(Register map, Register scratch, Label* fail); // Check if a map for a JSObject indicates that the object has fast smi only // elements. Jump to the specified label if it does not. void CheckFastSmiElements(Register map, Register scratch, Label* fail); // Check to see if maybe_number can be stored as a double in // FastDoubleElements. If it can, store it at the index specified by key in // the FastDoubleElements array elements. Otherwise jump to fail. void StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register elements_reg, Register scratch1, DoubleRegister double_scratch, Label* fail, int elements_offset = 0); // Compare an object's map with the specified map and its transitioned // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are // set with result of map compare. If multiple map compares are required, the // compare sequences branches to early_success. void CompareMap(Register obj, Register scratch, Handle<Map> map, Label* early_success); // As above, but the map of the object is already loaded into the register // which is preserved by the code generated. void CompareMap(Register obj_map, Handle<Map> map, Label* early_success); // Check if the map of an object is equal to a specified map and branch to // label if not. Skip the smi check if not required (object is known to be a // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match // against maps that are ElementsKind transition maps of the specified map. void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type); void CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type); // Check if the map of an object is equal to a specified weak map and branch // to a specified target if equal. Skip the smi check if not required // (object is known to be a heap object) void DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type); // Compare the given value and the value of weak cell. void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch, CRegister cr = cr7); void GetWeakValue(Register value, Handle<WeakCell> cell); // Load the value of the weak cell in the value register. Branch to the given // miss label if the weak cell was cleared. void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss); // Compare the object in a register to a value from the root list. // Uses the ip register as scratch. void CompareRoot(Register obj, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index) { LoadRoot(r0, index); Push(r0); } // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) { CompareRoot(with, index); beq(if_equal); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, Heap::RootListIndex index, Label* if_not_equal) { CompareRoot(with, index); bne(if_not_equal); } // Load and check the instance type of an object for being a string. // Loads the type into the second argument register. // Returns a condition that will be enabled if the object was a string. Condition IsObjectStringType(Register obj, Register type) { LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset)); lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); andi(r0, type, Operand(kIsNotStringMask)); DCHECK_EQ(0u, kStringTag); return eq; } // Get the number of least significant bits from a register void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits); // Load the value of a smi object into a double register. void SmiToDouble(DoubleRegister value, Register smi); // Check if a double can be exactly represented as a signed 32-bit integer. // CR_EQ in cr7 is set if true. void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1, Register scratch2, DoubleRegister double_scratch); // Check if a double is equal to -0.0. // CR_EQ in cr7 holds the result. void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1, Register scratch2); // Check the sign of a double. // CR_LT in cr7 holds the result. void TestDoubleSign(DoubleRegister input, Register scratch); void TestHeapNumberSign(Register input, Register scratch); // Try to convert a double to a signed 32-bit integer. // CR_EQ in cr7 is set and result assigned if the conversion is exact. void TryDoubleToInt32Exact(Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch); // Floor a double and writes the value to the result register. // Go to exact if the conversion is exact (to be able to test -0), // fall through calling code if an overflow occurred, else go to done. // In return, input_high is loaded with high bits of input. void TryInt32Floor(Register result, DoubleRegister double_input, Register input_high, Register scratch, DoubleRegister double_scratch, Label* done, Label* exact); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it // succeeds, otherwise falls through if result is saturated. On return // 'result' either holds answer, or is clobbered on fall through. // // Only public for the test code in test-code-stubs-arm.cc. void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, Label* done); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. // Exits with 'result' holding the answer. void TruncateDoubleToI(Register result, DoubleRegister double_input); // Performs a truncating conversion of a heap number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input' // must be different registers. Exits with 'result' holding the answer. void TruncateHeapNumberToI(Register result, Register object); // Converts the smi or heap number in object to an int32 using the rules // for ToInt32 as described in ECMAScript 9.5.: the value is truncated // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be // different registers. void TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch1, Label* not_int32); // Overflow handling functions. // Usage: call the appropriate arithmetic function and then call one of the // flow control functions with the corresponding label. // Compute dst = left + right, setting condition codes. dst may be same as // either left or right (or a unique register). left and right must not be // the same register. void AddAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch = r0); void AddAndCheckForOverflow(Register dst, Register left, intptr_t right, Register overflow_dst, Register scratch = r0); // Compute dst = left - right, setting condition codes. dst may be same as // either left or right (or a unique register). left and right must not be // the same register. void SubAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch = r0); void BranchOnOverflow(Label* label) { blt(label, cr0); } void BranchOnNoOverflow(Label* label) { bge(label, cr0); } void RetOnOverflow(void) { Ret(lt, cr0); } void RetOnNoOverflow(void) { Ret(ge, cr0); } // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al); // Call a code stub. void TailCallStub(CodeStub* stub, Condition cond = al); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, kSaveFPRegs); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: call an external reference. void CallExternalReference(const ExternalReference& ext, int num_arguments); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); int CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, non-register arguments must be stored in // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments // are word sized. If double arguments are used, this function assumes that // all double arguments are stored before core registers; otherwise the // correct alignment of the double values is not guaranteed. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch); void PrepareCallCFunction(int num_reg_arguments, Register scratch); // There are two ways of passing double arguments on ARM, depending on // whether soft or hard floating point ABI is used. These functions // abstract parameter passing for the three different ways we call // C functions from generated code. void MovToFloatParameter(DoubleRegister src); void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); void MovToFloatResult(DoubleRegister src); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments); void CallCFunction(Register function, int num_reg_arguments, int num_double_arguments); void MovFromFloatParameter(DoubleRegister dst); void MovFromFloatResult(DoubleRegister dst); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame = false); Handle<Object> CodeObject() { DCHECK(!code_object_.is_null()); return code_object_; } // Emit code for a truncating division by a constant. The dividend register is // unchanged and ip gets clobbered. Dividend and result must be different. void TruncatingDiv(Register result, Register dividend, int32_t divisor); // --------------------------------------------------------------------------- // StatsCounter support void SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cond is not satisfied. // Use --debug_code to enable. void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7); void AssertFastElements(Register elements); // Like Assert(), but always enabled. void Check(Condition cond, BailoutReason reason, CRegister cr = cr7); // Print a message to stdout and abort execution. void Abort(BailoutReason reason); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_has_frame(bool value) { has_frame_ = value; } bool has_frame() { return has_frame_; } inline bool AllowThisStubCall(CodeStub* stub); // --------------------------------------------------------------------------- // Number utilities // Check whether the value of reg is a power of two and not zero. If not // control continues at the label not_power_of_two. If reg is a power of two // the register scratch contains the value of (reg - 1) when control falls // through. void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch, Label* not_power_of_two_or_zero); // Check whether the value of reg is a power of two and not zero. // Control falls through if it is, with scratch containing the mask // value (reg - 1). // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is // zero or negative, or jumps to the 'not_power_of_two' label if the value is // strictly positive but not a power of two. void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch, Label* zero_and_neg, Label* not_power_of_two); // --------------------------------------------------------------------------- // Bit testing/extraction // // Bit numbering is such that the least significant bit is bit 0 // (for consistency between 32/64-bit). // Extract consecutive bits (defined by rangeStart - rangeEnd) from src // and, if !test, shift them into the least significant bits of dst. inline void ExtractBitRange(Register dst, Register src, int rangeStart, int rangeEnd, RCBit rc = LeaveRC, bool test = false) { DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer); int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd; int width = rangeStart - rangeEnd + 1; if (rc == SetRC && rangeStart < 16 && (rangeEnd == 0 || test)) { // Prefer faster andi when applicable. andi(dst, src, Operand(((1 << width) - 1) << rangeEnd)); } else { #if V8_TARGET_ARCH_PPC64 rldicl(dst, src, rotate, kBitsPerPointer - width, rc); #else rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1, rc); #endif } } inline void ExtractBit(Register dst, Register src, uint32_t bitNumber, RCBit rc = LeaveRC, bool test = false) { ExtractBitRange(dst, src, bitNumber, bitNumber, rc, test); } // Extract consecutive bits (defined by mask) from src and place them // into the least significant bits of dst. inline void ExtractBitMask(Register dst, Register src, uintptr_t mask, RCBit rc = LeaveRC, bool test = false) { int start = kBitsPerPointer - 1; int end; uintptr_t bit = (1L << start); while (bit && (mask & bit) == 0) { start--; bit >>= 1; } end = start; bit >>= 1; while (bit && (mask & bit)) { end--; bit >>= 1; } // 1-bits in mask must be contiguous DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0); ExtractBitRange(dst, src, start, end, rc, test); } // Test single bit in value. inline void TestBit(Register value, int bitNumber, Register scratch = r0) { ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC, true); } // Test consecutive bit range in value. Range is defined by // rangeStart - rangeEnd. inline void TestBitRange(Register value, int rangeStart, int rangeEnd, Register scratch = r0) { ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC, true); } // Test consecutive bit range in value. Range is defined by mask. inline void TestBitMask(Register value, uintptr_t mask, Register scratch = r0) { ExtractBitMask(scratch, value, mask, SetRC, true); } // --------------------------------------------------------------------------- // Smi utilities // Shift left by kSmiShift void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); } void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) { ShiftLeftImm(dst, src, Operand(kSmiShift), rc); } #if !V8_TARGET_ARCH_PPC64 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow(). void SmiTagCheckOverflow(Register reg, Register overflow); void SmiTagCheckOverflow(Register dst, Register src, Register overflow); inline void JumpIfNotSmiCandidate(Register value, Register scratch, Label* not_smi_label) { // High bits must be identical to fit into an Smi STATIC_ASSERT(kSmiShift == 1); addis(scratch, value, Operand(0x40000000u >> 16)); cmpi(scratch, Operand::Zero()); blt(not_smi_label); } #endif inline void TestUnsignedSmiCandidate(Register value, Register scratch) { // The test is different for unsigned int values. Since we need // the value to be in the range of a positive smi, we can't // handle any of the high bits being set in the value. TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift, scratch); } inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch, Label* not_smi_label) { TestUnsignedSmiCandidate(value, scratch); bne(not_smi_label, cr0); } void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); } void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) { ShiftRightArithImm(dst, src, kSmiShift, rc); } void SmiToPtrArrayOffset(Register dst, Register src) { #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2); ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2); #else STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2); ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift)); #endif } void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); } void SmiToShortArrayOffset(Register dst, Register src) { #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1); ShiftRightArithImm(dst, src, kSmiShift - 1); #else STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1); if (!dst.is(src)) { mr(dst, src); } #endif } void SmiToIntArrayOffset(Register dst, Register src) { #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2); ShiftRightArithImm(dst, src, kSmiShift - 2); #else STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2); ShiftLeftImm(dst, src, Operand(2 - kSmiShift)); #endif } #define SmiToFloatArrayOffset SmiToIntArrayOffset void SmiToDoubleArrayOffset(Register dst, Register src) { #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2); ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2); #else STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2); ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift)); #endif } void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) { if (kSmiShift < elementSizeLog2) { ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift)); } else if (kSmiShift > elementSizeLog2) { ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2); } else if (!dst.is(src)) { mr(dst, src); } } void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2, bool isSmi) { if (isSmi) { SmiToArrayOffset(dst, src, elementSizeLog2); } else { ShiftLeftImm(dst, src, Operand(elementSizeLog2)); } } // Untag the source value into destination and jump if source is a smi. // Souce and destination can be the same register. void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); // Untag the source value into destination and jump if source is not a smi. // Souce and destination can be the same register. void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case); inline void TestIfSmi(Register value, Register scratch) { TestBitRange(value, kSmiTagSize - 1, 0, scratch); } inline void TestIfPositiveSmi(Register value, Register scratch) { #if V8_TARGET_ARCH_PPC64 rldicl(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), SetRC); #else rlwinm(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), kBitsPerPointer - 1, SetRC); #endif } // Jump the register contains a smi. inline void JumpIfSmi(Register value, Label* smi_label) { TestIfSmi(value, r0); beq(smi_label, cr0); // branch if SMI } // Jump if either of the registers contain a non-smi. inline void JumpIfNotSmi(Register value, Label* not_smi_label) { TestIfSmi(value, r0); bne(not_smi_label, cr0); } // Jump if either of the registers contain a non-smi. void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); // Jump if either of the registers contain a smi. void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); // Abort execution if argument is a number, enabled via --debug-code. void AssertNotNumber(Register object); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); void AssertSmi(Register object); #if V8_TARGET_ARCH_PPC64 inline void TestIfInt32(Register value, Register scratch, CRegister cr = cr7) { // High bits must be identical to fit into an 32-bit integer extsw(scratch, value); cmp(scratch, value, cr); } #else inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch, CRegister cr = cr7) { // High bits must be identical to fit into an 32-bit integer srawi(scratch, lo_word, 31); cmp(scratch, hi_word, cr); } #endif #if V8_TARGET_ARCH_PPC64 // Ensure it is permissable to read/write int value directly from // upper half of the smi. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32); #endif #if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN #define SmiWordOffset(offset) (offset + kPointerSize / 2) #else #define SmiWordOffset(offset) offset #endif // Abort execution if argument is not a string, enabled via --debug-code. void AssertString(Register object); // Abort execution if argument is not a name, enabled via --debug-code. void AssertName(Register object); void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject, // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not a JSReceiver, enabled via --debug-code. void AssertReceiver(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object, Register scratch); // Abort execution if reg is not the root value with the given index, // enabled via --debug-code. void AssertIsRoot(Register reg, Heap::RootListIndex index); // --------------------------------------------------------------------------- // HeapNumber utilities void JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number); // --------------------------------------------------------------------------- // String utilities // Checks if both objects are sequential one-byte strings and jumps to label // if either is not. Assumes that neither object is a smi. void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1, Register object2, Register scratch1, Register scratch2, Label* failure); // Checks if both objects are sequential one-byte strings and jumps to label // if either is not. void JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* not_flat_one_byte_strings); // Checks if both instance types are sequential one-byte strings and jumps to // label if either is not. void JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label* failure); // Check if instance type is sequential one-byte string and jump to label if // it is not. void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure); void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name); void EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask); // --------------------------------------------------------------------------- // Patching helpers. // Decode offset from constant pool load instruction(s). // Caller must place the instruction word at <location> in <result>. void DecodeConstantPoolOffset(Register result, Register location); void ClampUint8(Register output_reg, Register input_reg); // Saturate a value into 8-bit unsigned integer // if input_value < 0, output_value is 0 // if input_value > 255, output_value is 255 // otherwise output_value is the (int)input_value (round to nearest) void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg); void LoadInstanceDescriptors(Register map, Register descriptors); void EnumLength(Register dst, Register map); void NumberOfOwnDescriptors(Register dst, Register map); void LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor); template <typename Field> void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) { ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift, rc); } template <typename Field> void DecodeField(Register reg, RCBit rc = LeaveRC) { DecodeField<Field>(reg, reg, rc); } template <typename Field> void DecodeFieldToSmi(Register dst, Register src) { #if V8_TARGET_ARCH_PPC64 DecodeField<Field>(dst, src); SmiTag(dst); #else // 32-bit can do this in one instruction: int start = Field::kSize + kSmiShift - 1; int end = kSmiShift; int rotate = kSmiShift - Field::kShift; if (rotate < 0) { rotate += kBitsPerPointer; } rlwinm(dst, src, rotate, kBitsPerPointer - start - 1, kBitsPerPointer - end - 1); #endif } template <typename Field> void DecodeFieldToSmi(Register reg) { DecodeFieldToSmi<Field>(reg, reg); } // Load the type feedback vector from a JavaScript frame. void EmitLoadTypeFeedbackVector(Register vector); // Activation support. void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg = false); // Returns the pc offset at which the frame ends. int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0); void EnterBuiltinFrame(Register context, Register target, Register argc); void LeaveBuiltinFrame(Register context, Register target, Register argc); // Expects object in r3 and returns map with validated enum cache // in r3. Assumes that any other register can be used as a scratch. void CheckEnumCache(Label* call_runtime); // AllocationMemento support. Arrays may have an associated // AllocationMemento object that can be checked for in order to pretransition // to another type. // On entry, receiver_reg should point to the array object. // scratch_reg gets clobbered. // If allocation info is present, condition flags are set to eq. void TestJSArrayForAllocationMemento(Register receiver_reg, Register scratch_reg, Register scratch2_reg, Label* no_memento_found); void JumpIfJSArrayHasAllocationMemento(Register receiver_reg, Register scratch_reg, Register scratch2_reg, Label* memento_found) { Label no_memento_found; TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg, &no_memento_found); beq(memento_found); bind(&no_memento_found); } // Jumps to found label if a prototype map has dictionary elements. void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, Register scratch1, Label* found); // Loads the constant pool pointer (kConstantPoolRegister). void LoadConstantPoolPointerRegisterFromCodeTargetAddress( Register code_target_address); void LoadConstantPoolPointerRegister(); void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0); void AbortConstantPoolBuilding() { #ifdef DEBUG // Avoid DCHECK(!is_linked()) failure in ~Label() bind(ConstantPoolPosition()); #endif } private: static const int kSmiShift = kSmiTagSize + kSmiShiftSize; void CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments); void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al, CRegister cr = cr7); // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper); void InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cond, // eq for new space, ne otherwise. Label* branch); // Helper for finding the mark bits for an address. Afterwards, the // bitmap register points at the word with the mark bits and the mask // the position of the first bit. Leaves addr_reg unchanged. inline void GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg); static const RegList kSafepointSavedRegisters; static const int kNumSafepointSavedRegisters; // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); MemOperand SafepointRegisterSlot(Register reg); MemOperand SafepointRegistersAndDoublesSlot(Register reg); bool generating_stub_; bool has_frame_; // This handle will be patched with the code object on installation. Handle<Object> code_object_; // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. It is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion to fail. class CodePatcher { public: enum FlushICache { FLUSH, DONT_FLUSH }; CodePatcher(Isolate* isolate, byte* address, int instructions, FlushICache flush_cache = FLUSH); ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } // Emit an instruction directly. void Emit(Instr instr); // Emit the condition part of an instruction leaving the rest of the current // instruction unchanged. void EmitCondition(Condition cond); private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. FlushICache flush_cache_; // Whether to flush the I cache after patching. }; // ----------------------------------------------------------------------------- // Static helper functions. inline MemOperand ContextMemOperand(Register context, int index = 0) { return MemOperand(context, Context::SlotOffset(index)); } inline MemOperand NativeContextMemOperand() { return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_PPC_MACRO_ASSEMBLER_PPC_H_