// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <assert.h> // For assert #include <limits.h> // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_PPC #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/register-configuration.h" #include "src/runtime/runtime.h" #include "src/ppc/macro-assembler-ppc.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size, CodeObjectRequired create_code_object) : Assembler(arg_isolate, buffer, size), generating_stub_(false), has_frame_(false) { if (create_code_object == CodeObjectRequired::kYes) { code_object_ = Handle<Object>::New(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::Jump(Register target) { mtctr(target); bctr(); } void MacroAssembler::JumpToJSEntry(Register target) { Move(ip, target); Jump(ip); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, CRegister cr) { Label skip; if (cond != al) b(NegateCondition(cond), &skip, cr); DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY); mov(ip, Operand(target, rmode)); mtctr(ip); bctr(); bind(&skip); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, CRegister cr) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr); } void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); // 'code' is always generated ppc code, never THUMB code AllowDeferredHandleDereference embedding_raw_address; Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond); } int MacroAssembler::CallSize(Register target) { return 2 * kInstrSize; } void MacroAssembler::Call(Register target) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); // branch via link register and set LK bit for return point mtctr(target); bctrl(); DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::CallJSEntry(Register target) { DCHECK(target.is(ip)); Call(target); } int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode, Condition cond) { Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode); return (2 + instructions_required_for_mov(ip, mov_operand)) * kInstrSize; } int MacroAssembler::CallSizeNotPredictableCodeSize(Address target, RelocInfo::Mode rmode, Condition cond) { return (2 + kMovInstructionsNoConstantPool) * kInstrSize; } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(cond == al); #ifdef DEBUG // Check the expected size before generating code to ensure we assume the same // constant pool availability (e.g., whether constant pool is full or not). int expected_size = CallSize(target, rmode, cond); Label start; bind(&start); #endif // This can likely be optimized to make use of bc() with 24bit relative // // RecordRelocInfo(x.rmode_, x.imm_); // bc( BA, .... offset, LKset); // mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode)); mtctr(ip); bctrl(); DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond) { AllowDeferredHandleDereference using_raw_address; return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond); } void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(RelocInfo::IsCodeTarget(rmode)); #ifdef DEBUG // Check the expected size before generating code to ensure we assume the same // constant pool availability (e.g., whether constant pool is full or not). int expected_size = CallSize(code, rmode, ast_id, cond); Label start; bind(&start); #endif if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } AllowDeferredHandleDereference using_raw_address; Call(reinterpret_cast<Address>(code.location()), rmode, cond); DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::Drop(int count) { if (count > 0) { Add(sp, sp, count * kPointerSize, r0); } } void MacroAssembler::Drop(Register count, Register scratch) { ShiftLeftImm(scratch, count, Operand(kPointerSizeLog2)); add(sp, sp, scratch); } void MacroAssembler::Call(Label* target) { b(target, SetLK); } void MacroAssembler::Push(Handle<Object> handle) { mov(r0, Operand(handle)); push(r0); } void MacroAssembler::Move(Register dst, Handle<Object> value) { mov(dst, Operand(value)); } void MacroAssembler::Move(Register dst, Register src, Condition cond) { DCHECK(cond == al); if (!dst.is(src)) { mr(dst, src); } } void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) { if (!dst.is(src)) { fmr(dst, src); } } void MacroAssembler::MultiPush(RegList regs, Register location) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kPointerSize; subi(location, location, Operand(stack_offset)); for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; StoreP(ToRegister(i), MemOperand(location, stack_offset)); } } } void MacroAssembler::MultiPop(RegList regs, Register location) { int16_t stack_offset = 0; for (int16_t i = 0; i < Register::kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { LoadP(ToRegister(i), MemOperand(location, stack_offset)); stack_offset += kPointerSize; } } addi(location, location, Operand(stack_offset)); } void MacroAssembler::MultiPushDoubles(RegList dregs, Register location) { int16_t num_to_push = NumberOfBitsSet(dregs); int16_t stack_offset = num_to_push * kDoubleSize; subi(location, location, Operand(stack_offset)); for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) { if ((dregs & (1 << i)) != 0) { DoubleRegister dreg = DoubleRegister::from_code(i); stack_offset -= kDoubleSize; stfd(dreg, MemOperand(location, stack_offset)); } } } void MacroAssembler::MultiPopDoubles(RegList dregs, Register location) { int16_t stack_offset = 0; for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) { if ((dregs & (1 << i)) != 0) { DoubleRegister dreg = DoubleRegister::from_code(i); lfd(dreg, MemOperand(location, stack_offset)); stack_offset += kDoubleSize; } } addi(location, location, Operand(stack_offset)); } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition cond) { DCHECK(cond == al); LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, Condition cond) { DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); DCHECK(cond == al); StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cond, Label* branch) { DCHECK(cond == eq || cond == ne); CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cond, branch); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); Add(dst, object, offset - kHeapObjectTag, r0); if (emit_debug_code()) { Label ok; andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1)); beq(&ok, cr0); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4))); mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8))); } } // Will clobber 4 registers: object, map, dst, ip. The // register 'object' contains a heap object pointer. void MacroAssembler::RecordWriteForMap(Register object, Register map, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode) { if (emit_debug_code()) { LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset)); Cmpi(dst, Operand(isolate()->factory()->meta_map()), r0); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (!FLAG_incremental_marking) { return; } if (emit_debug_code()) { LoadP(ip, FieldMemOperand(object, HeapObject::kMapOffset)); cmp(ip, map); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } Label done; // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. CheckPageFlag(map, map, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); addi(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1)); beq(&ok, cr0); stop("Unaligned cell in write barrier"); bind(&ok); } // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { mflr(r0); push(r0); } RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(r0); mtlr(r0); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12))); mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16))); } } // Will clobber 4 registers: object, address, scratch, ip. The // register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite( Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(!object.is(value)); if (emit_debug_code()) { LoadP(r0, MemOperand(address)); cmp(r0, value); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); } CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { mflr(r0); push(r0); } RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(r0); mtlr(r0); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, value); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12))); mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16))); } } void MacroAssembler::RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch) { const int offset = JSFunction::kCodeEntryOffset; // Since a code entry (value) is always in old space, we don't need to update // remembered set. If incremental marking is off, there is nothing for us to // do. if (!FLAG_incremental_marking) return; DCHECK(js_function.is(r4)); DCHECK(code_entry.is(r7)); DCHECK(scratch.is(r8)); AssertNotSmi(js_function); if (emit_debug_code()) { addi(scratch, js_function, Operand(offset - kHeapObjectTag)); LoadP(ip, MemOperand(scratch)); cmp(ip, code_entry); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; CheckPageFlag(code_entry, scratch, MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(js_function, scratch, MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); const Register dst = scratch; addi(dst, js_function, Operand(offset - kHeapObjectTag)); // Save caller-saved registers. js_function and code_entry are in the // caller-saved register list. DCHECK(kJSCallerSaved & js_function.bit()); DCHECK(kJSCallerSaved & code_entry.bit()); mflr(r0); MultiPush(kJSCallerSaved | r0.bit()); int argument_count = 3; PrepareCallCFunction(argument_count, code_entry); mr(r3, js_function); mr(r4, dst); mov(r5, Operand(ExternalReference::isolate_address(isolate()))); { AllowExternalCallThatCantCauseGC scope(this); CallCFunction( ExternalReference::incremental_marking_record_write_code_entry_function( isolate()), argument_count); } // Restore caller-saved registers (including js_function and code_entry). MultiPop(kJSCallerSaved | r0.bit()); mtlr(r0); bind(&done); } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok); stop("Remembered set pointer is in new space"); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); mov(ip, Operand(store_buffer)); LoadP(scratch, MemOperand(ip)); // Store pointer to buffer and increment buffer top. StoreP(address, MemOperand(scratch)); addi(scratch, scratch, Operand(kPointerSize)); // Write back new top of buffer. StoreP(scratch, MemOperand(ip)); // Call stub on end of buffer. // Check for end of buffer. TestBitMask(scratch, StoreBuffer::kStoreBufferMask, r0); if (and_then == kFallThroughAtEnd) { bne(&done, cr0); } else { DCHECK(and_then == kReturnAtEnd); Ret(ne, cr0); } mflr(r0); push(r0); StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); CallStub(&store_buffer_overflow); pop(r0); mtlr(r0); bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } void MacroAssembler::PushCommonFrame(Register marker_reg) { int fp_delta = 0; mflr(r0); if (FLAG_enable_embedded_constant_pool) { if (marker_reg.is_valid()) { Push(r0, fp, kConstantPoolRegister, marker_reg); fp_delta = 2; } else { Push(r0, fp, kConstantPoolRegister); fp_delta = 1; } } else { if (marker_reg.is_valid()) { Push(r0, fp, marker_reg); fp_delta = 1; } else { Push(r0, fp); fp_delta = 0; } } addi(fp, sp, Operand(fp_delta * kPointerSize)); } void MacroAssembler::PopCommonFrame(Register marker_reg) { if (FLAG_enable_embedded_constant_pool) { if (marker_reg.is_valid()) { Pop(r0, fp, kConstantPoolRegister, marker_reg); } else { Pop(r0, fp, kConstantPoolRegister); } } else { if (marker_reg.is_valid()) { Pop(r0, fp, marker_reg); } else { Pop(r0, fp); } } mtlr(r0); } void MacroAssembler::PushStandardFrame(Register function_reg) { int fp_delta = 0; mflr(r0); if (FLAG_enable_embedded_constant_pool) { if (function_reg.is_valid()) { Push(r0, fp, kConstantPoolRegister, cp, function_reg); fp_delta = 3; } else { Push(r0, fp, kConstantPoolRegister, cp); fp_delta = 2; } } else { if (function_reg.is_valid()) { Push(r0, fp, cp, function_reg); fp_delta = 2; } else { Push(r0, fp, cp); fp_delta = 1; } } addi(fp, sp, Operand(fp_delta * kPointerSize)); } void MacroAssembler::RestoreFrameStateForTailCall() { if (FLAG_enable_embedded_constant_pool) { LoadP(kConstantPoolRegister, MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); set_constant_pool_available(false); } LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); mtlr(r0); } const RegList MacroAssembler::kSafepointSavedRegisters = Register::kAllocatable; const int MacroAssembler::kNumSafepointSavedRegisters = Register::kNumAllocatable; // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK(num_unsaved >= 0); if (num_unsaved > 0) { subi(sp, sp, Operand(num_unsaved * kPointerSize)); } MultiPush(kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; MultiPop(kSafepointSavedRegisters); if (num_unsaved > 0) { addi(sp, sp, Operand(num_unsaved * kPointerSize)); } } void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { StoreP(src, SafepointRegisterSlot(dst)); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { LoadP(dst, SafepointRegisterSlot(src)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. RegList regs = kSafepointSavedRegisters; int index = 0; DCHECK(reg_code >= 0 && reg_code < kNumRegisters); for (int16_t i = 0; i < reg_code; i++) { if ((regs & (1 << i)) != 0) { index++; } } return index; } MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { // General purpose registers are pushed last on the stack. const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); int doubles_size = config->num_allocatable_double_registers() * kDoubleSize; int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; return MemOperand(sp, doubles_size + register_offset); } void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src) { // Turn potential sNaN into qNaN. fsub(dst, src, kDoubleRegZero); } void MacroAssembler::ConvertIntToDouble(Register src, DoubleRegister dst) { MovIntToDouble(dst, src, r0); fcfid(dst, dst); } void MacroAssembler::ConvertUnsignedIntToDouble(Register src, DoubleRegister dst) { MovUnsignedIntToDouble(dst, src, r0); fcfid(dst, dst); } void MacroAssembler::ConvertIntToFloat(Register src, DoubleRegister dst) { MovIntToDouble(dst, src, r0); fcfids(dst, dst); } void MacroAssembler::ConvertUnsignedIntToFloat(Register src, DoubleRegister dst) { MovUnsignedIntToDouble(dst, src, r0); fcfids(dst, dst); } #if V8_TARGET_ARCH_PPC64 void MacroAssembler::ConvertInt64ToDouble(Register src, DoubleRegister double_dst) { MovInt64ToDouble(double_dst, src); fcfid(double_dst, double_dst); } void MacroAssembler::ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst) { MovInt64ToDouble(double_dst, src); fcfidus(double_dst, double_dst); } void MacroAssembler::ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst) { MovInt64ToDouble(double_dst, src); fcfidu(double_dst, double_dst); } void MacroAssembler::ConvertInt64ToFloat(Register src, DoubleRegister double_dst) { MovInt64ToDouble(double_dst, src); fcfids(double_dst, double_dst); } #endif void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input, #if !V8_TARGET_ARCH_PPC64 const Register dst_hi, #endif const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { if (rounding_mode == kRoundToZero) { fctidz(double_dst, double_input); } else { SetRoundingMode(rounding_mode); fctid(double_dst, double_input); ResetRoundingMode(); } MovDoubleToInt64( #if !V8_TARGET_ARCH_PPC64 dst_hi, #endif dst, double_dst); } #if V8_TARGET_ARCH_PPC64 void MacroAssembler::ConvertDoubleToUnsignedInt64( const DoubleRegister double_input, const Register dst, const DoubleRegister double_dst, FPRoundingMode rounding_mode) { if (rounding_mode == kRoundToZero) { fctiduz(double_dst, double_input); } else { SetRoundingMode(rounding_mode); fctidu(double_dst, double_input); ResetRoundingMode(); } MovDoubleToInt64(dst, double_dst); } #endif #if !V8_TARGET_ARCH_PPC64 void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { DCHECK(!AreAliased(dst_low, src_high, shift)); DCHECK(!AreAliased(dst_high, src_low, shift)); Label less_than_32; Label done; cmpi(shift, Operand(32)); blt(&less_than_32); // If shift >= 32 andi(scratch, shift, Operand(0x1f)); slw(dst_high, src_low, scratch); li(dst_low, Operand::Zero()); b(&done); bind(&less_than_32); // If shift < 32 subfic(scratch, shift, Operand(32)); slw(dst_high, src_high, shift); srw(scratch, src_low, scratch); orx(dst_high, dst_high, scratch); slw(dst_low, src_low, shift); bind(&done); } void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_high, src_low)); if (shift == 32) { Move(dst_high, src_low); li(dst_low, Operand::Zero()); } else if (shift > 32) { shift &= 0x1f; slwi(dst_high, src_low, Operand(shift)); li(dst_low, Operand::Zero()); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { slwi(dst_high, src_high, Operand(shift)); rlwimi(dst_high, src_low, shift, 32 - shift, 31); slwi(dst_low, src_low, Operand(shift)); } } void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { DCHECK(!AreAliased(dst_low, src_high, shift)); DCHECK(!AreAliased(dst_high, src_low, shift)); Label less_than_32; Label done; cmpi(shift, Operand(32)); blt(&less_than_32); // If shift >= 32 andi(scratch, shift, Operand(0x1f)); srw(dst_low, src_high, scratch); li(dst_high, Operand::Zero()); b(&done); bind(&less_than_32); // If shift < 32 subfic(scratch, shift, Operand(32)); srw(dst_low, src_low, shift); slw(scratch, src_high, scratch); orx(dst_low, dst_low, scratch); srw(dst_high, src_high, shift); bind(&done); } void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_high, src_low)); if (shift == 32) { Move(dst_low, src_high); li(dst_high, Operand::Zero()); } else if (shift > 32) { shift &= 0x1f; srwi(dst_low, src_high, Operand(shift)); li(dst_high, Operand::Zero()); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { srwi(dst_low, src_low, Operand(shift)); rlwimi(dst_low, src_high, 32 - shift, 0, shift - 1); srwi(dst_high, src_high, Operand(shift)); } } void MacroAssembler::ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift) { DCHECK(!AreAliased(dst_low, src_high, shift)); DCHECK(!AreAliased(dst_high, src_low, shift)); Label less_than_32; Label done; cmpi(shift, Operand(32)); blt(&less_than_32); // If shift >= 32 andi(scratch, shift, Operand(0x1f)); sraw(dst_low, src_high, scratch); srawi(dst_high, src_high, 31); b(&done); bind(&less_than_32); // If shift < 32 subfic(scratch, shift, Operand(32)); srw(dst_low, src_low, shift); slw(scratch, src_high, scratch); orx(dst_low, dst_low, scratch); sraw(dst_high, src_high, shift); bind(&done); } void MacroAssembler::ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_high, src_low)); if (shift == 32) { Move(dst_low, src_high); srawi(dst_high, src_high, 31); } else if (shift > 32) { shift &= 0x1f; srawi(dst_low, src_high, shift); srawi(dst_high, src_high, 31); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { srwi(dst_low, src_low, Operand(shift)); rlwimi(dst_low, src_high, 32 - shift, 0, shift - 1); srawi(dst_high, src_high, shift); } } #endif void MacroAssembler::LoadConstantPoolPointerRegisterFromCodeTargetAddress( Register code_target_address) { lwz(kConstantPoolRegister, MemOperand(code_target_address, Code::kConstantPoolOffset - Code::kHeaderSize)); add(kConstantPoolRegister, kConstantPoolRegister, code_target_address); } void MacroAssembler::LoadConstantPoolPointerRegister(Register base, int code_start_delta) { add_label_offset(kConstantPoolRegister, base, ConstantPoolPosition(), code_start_delta); } void MacroAssembler::LoadConstantPoolPointerRegister() { mov_label_addr(kConstantPoolRegister, ConstantPoolPosition()); } void MacroAssembler::StubPrologue(StackFrame::Type type, Register base, int prologue_offset) { { ConstantPoolUnavailableScope constant_pool_unavailable(this); LoadSmiLiteral(r11, Smi::FromInt(type)); PushCommonFrame(r11); } if (FLAG_enable_embedded_constant_pool) { if (!base.is(no_reg)) { // base contains prologue address LoadConstantPoolPointerRegister(base, -prologue_offset); } else { LoadConstantPoolPointerRegister(); } set_constant_pool_available(true); } } void MacroAssembler::Prologue(bool code_pre_aging, Register base, int prologue_offset) { DCHECK(!base.is(no_reg)); { PredictableCodeSizeScope predictible_code_size_scope( this, kNoCodeAgeSequenceLength); Assembler::BlockTrampolinePoolScope block_trampoline_pool(this); // The following instructions must remain together and unmodified // for code aging to work properly. if (code_pre_aging) { // Pre-age the code. // This matches the code found in PatchPlatformCodeAge() Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); // Don't use Call -- we need to preserve ip and lr nop(); // marker to detect sequence (see IsOld) mov(r3, Operand(target)); Jump(r3); for (int i = 0; i < kCodeAgingSequenceNops; i++) { nop(); } } else { // This matches the code found in GetNoCodeAgeSequence() PushStandardFrame(r4); for (int i = 0; i < kNoCodeAgeSequenceNops; i++) { nop(); } } } if (FLAG_enable_embedded_constant_pool) { // base contains prologue address LoadConstantPoolPointerRegister(base, -prologue_offset); set_constant_pool_available(true); } } void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) { LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); LoadP(vector, FieldMemOperand(vector, JSFunction::kLiteralsOffset)); LoadP(vector, FieldMemOperand(vector, LiteralsArray::kFeedbackVectorOffset)); } void MacroAssembler::EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { if (FLAG_enable_embedded_constant_pool && load_constant_pool_pointer_reg) { // Push type explicitly so we can leverage the constant pool. // This path cannot rely on ip containing code entry. PushCommonFrame(); LoadConstantPoolPointerRegister(); LoadSmiLiteral(ip, Smi::FromInt(type)); push(ip); } else { LoadSmiLiteral(ip, Smi::FromInt(type)); PushCommonFrame(ip); } if (type == StackFrame::INTERNAL) { mov(r0, Operand(CodeObject())); push(r0); } } int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) { ConstantPoolUnavailableScope constant_pool_unavailable(this); // r3: preserved // r4: preserved // r5: preserved // Drop the execution stack down to the frame pointer and restore // the caller's state. int frame_ends; LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); LoadP(ip, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); if (FLAG_enable_embedded_constant_pool) { LoadP(kConstantPoolRegister, MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); } mtlr(r0); frame_ends = pc_offset(); Add(sp, fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment, r0); mr(fp, ip); return frame_ends; } void MacroAssembler::EnterBuiltinFrame(Register context, Register target, Register argc) { int fp_delta = 0; mflr(r0); if (FLAG_enable_embedded_constant_pool) { if (target.is_valid()) { Push(r0, fp, kConstantPoolRegister, context, target); fp_delta = 3; } else { Push(r0, fp, kConstantPoolRegister, context); fp_delta = 2; } } else { if (target.is_valid()) { Push(r0, fp, context, target); fp_delta = 2; } else { Push(r0, fp, context); fp_delta = 1; } } addi(fp, sp, Operand(fp_delta * kPointerSize)); Push(argc); } void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, Register argc) { Pop(argc); if (FLAG_enable_embedded_constant_pool) { if (target.is_valid()) { Pop(r0, fp, kConstantPoolRegister, context, target); } else { Pop(r0, fp, kConstantPoolRegister, context); } } else { if (target.is_valid()) { Pop(r0, fp, context, target); } else { Pop(r0, fp, context); } } mtlr(r0); } // ExitFrame layout (probably wrongish.. needs updating) // // SP -> previousSP // LK reserved // code // sp_on_exit (for debug?) // oldSP->prev SP // LK // <parameters on stack> // Prior to calling EnterExitFrame, we've got a bunch of parameters // on the stack that we need to wrap a real frame around.. so first // we reserve a slot for LK and push the previous SP which is captured // in the fp register (r31) // Then - we buy a new frame void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); DCHECK(stack_space > 0); // This is an opportunity to build a frame to wrap // all of the pushes that have happened inside of V8 // since we were called from C code LoadSmiLiteral(ip, Smi::FromInt(frame_type)); PushCommonFrame(ip); // Reserve room for saved entry sp and code object. subi(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); if (emit_debug_code()) { li(r8, Operand::Zero()); StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset)); } if (FLAG_enable_embedded_constant_pool) { StoreP(kConstantPoolRegister, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset)); } mov(r8, Operand(CodeObject())); StoreP(r8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); StoreP(fp, MemOperand(r8)); mov(r8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); StoreP(cp, MemOperand(r8)); // Optionally save all volatile double registers. if (save_doubles) { MultiPushDoubles(kCallerSavedDoubles); // Note that d0 will be accessible at // fp - ExitFrameConstants::kFrameSize - // kNumCallerSavedDoubles * kDoubleSize, // since the sp slot and code slot were pushed after the fp. } addi(sp, sp, Operand(-stack_space * kPointerSize)); // Allocate and align the frame preparing for calling the runtime // function. const int frame_alignment = ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); } li(r0, Operand::Zero()); StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); // Set the exit frame sp value to point just before the return address // location. addi(r8, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { SmiTag(scratch1, length); LoadRoot(scratch2, map_index); StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset), r0); li(scratch1, Operand(String::kEmptyHashField)); StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset), r0); StoreP(scratch1, FieldMemOperand(string, String::kHashFieldSlot), r0); } int MacroAssembler::ActivationFrameAlignment() { #if !defined(USE_SIMULATOR) // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one PPC // platform for another PPC platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // Simulated // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool restore_context, bool argument_count_is_length) { ConstantPoolUnavailableScope constant_pool_unavailable(this); // Optionally restore all double registers. if (save_doubles) { // Calculate the stack location of the saved doubles and restore them. const int kNumRegs = kNumCallerSavedDoubles; const int offset = (ExitFrameConstants::kFixedFrameSizeFromFp + kNumRegs * kDoubleSize); addi(r6, fp, Operand(-offset)); MultiPopDoubles(kCallerSavedDoubles, r6); } // Clear top frame. li(r6, Operand::Zero()); mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); StoreP(r6, MemOperand(ip)); // Restore current context from top and clear it in debug mode. if (restore_context) { mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); LoadP(cp, MemOperand(ip)); } #ifdef DEBUG mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); StoreP(r6, MemOperand(ip)); #endif // Tear down the exit frame, pop the arguments, and return. LeaveFrame(StackFrame::EXIT); if (argument_count.is_valid()) { if (!argument_count_is_length) { ShiftLeftImm(argument_count, argument_count, Operand(kPointerSizeLog2)); } add(sp, sp, argument_count); } } void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) { Move(dst, d1); } void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) { Move(dst, d1); } void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } #endif // Calculate the end of destination area where we will put the arguments // after we drop current frame. We add kPointerSize to count the receiver // argument which is not included into formal parameters count. Register dst_reg = scratch0; ShiftLeftImm(dst_reg, caller_args_count_reg, Operand(kPointerSizeLog2)); add(dst_reg, fp, dst_reg); addi(dst_reg, dst_reg, Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); Register src_reg = caller_args_count_reg; // Calculate the end of source area. +kPointerSize is for the receiver. if (callee_args_count.is_reg()) { ShiftLeftImm(src_reg, callee_args_count.reg(), Operand(kPointerSizeLog2)); add(src_reg, sp, src_reg); addi(src_reg, src_reg, Operand(kPointerSize)); } else { Add(src_reg, sp, (callee_args_count.immediate() + 1) * kPointerSize, r0); } if (FLAG_debug_code) { cmpl(src_reg, dst_reg); Check(lt, kStackAccessBelowStackPointer); } // Restore caller's frame pointer and return address now as they will be // overwritten by the copying loop. RestoreFrameStateForTailCall(); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). // Both src_reg and dst_reg are pointing to the word after the one to copy, // so they must be pre-decremented in the loop. Register tmp_reg = scratch1; Label loop; if (callee_args_count.is_reg()) { addi(tmp_reg, callee_args_count.reg(), Operand(1)); // +1 for receiver } else { mov(tmp_reg, Operand(callee_args_count.immediate() + 1)); } mtctr(tmp_reg); bind(&loop); LoadPU(tmp_reg, MemOperand(src_reg, -kPointerSize)); StorePU(tmp_reg, MemOperand(dst_reg, -kPointerSize)); bdnz(&loop); // Leave current frame. mr(sp, dst_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // r3: actual arguments count // r4: function (passed through to callee) // r5: expected arguments count // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. // ARM has some sanity checks as per below, considering add them for PPC // DCHECK(actual.is_immediate() || actual.reg().is(r3)); // DCHECK(expected.is_immediate() || expected.reg().is(r5)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); mov(r3, Operand(actual.immediate())); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(r5, Operand(expected.immediate())); } } } else { if (actual.is_immediate()) { mov(r3, Operand(actual.immediate())); cmpi(expected.reg(), Operand(actual.immediate())); beq(®ular_invoke); } else { cmp(expected.reg(), actual.reg()); beq(®ular_invoke); } } if (!definitely_matches) { Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { b(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_flooding; ExternalReference last_step_action = ExternalReference::debug_last_step_action_address(isolate()); STATIC_ASSERT(StepFrame > StepIn); mov(r7, Operand(last_step_action)); LoadByte(r7, MemOperand(r7), r0); extsb(r7, r7); cmpi(r7, Operand(StepIn)); blt(&skip_flooding); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun, fun); CallRuntime(Runtime::kDebugPrepareStepInIfStepping); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_flooding); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(r4)); DCHECK_IMPLIES(new_target.is_valid(), new_target.is(r6)); if (call_wrapper.NeedsDebugStepCheck()) { FloodFunctionIfStepping(function, new_target, expected, actual); } // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(r6, Heap::kUndefinedValueRootIndex); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, call_wrapper); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = ip; LoadP(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); CallJSEntry(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); JumpToJSEntry(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r4. DCHECK(fun.is(r4)); Register expected_reg = r5; Register temp_reg = r7; LoadP(temp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); LoadWordArith(expected_reg, FieldMemOperand( temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); #if !defined(V8_TARGET_ARCH_PPC64) SmiUntag(expected_reg); #endif ParameterCount expected(expected_reg); InvokeFunctionCode(fun, new_target, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r4. DCHECK(function.is(r4)); // Get the function and setup the context. LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); InvokeFunctionCode(r4, no_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { Move(r4, function); InvokeFunction(r4, expected, actual, flag, call_wrapper); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { DCHECK(kNotStringTag != 0); LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); andi(r0, scratch, Operand(kIsNotStringMask)); bne(fail, cr0); } void MacroAssembler::IsObjectNameType(Register object, Register scratch, Label* fail) { LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); cmpi(scratch, Operand(LAST_NAME_TYPE)); bgt(fail); } void MacroAssembler::DebugBreak() { li(r3, Operand::Zero()); mov(r4, Operand(ExternalReference(Runtime::kHandleDebuggerStatement, isolate()))); CEntryStub ces(isolate(), 1); DCHECK(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT); } void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); // Link the current handler as the next handler. // Preserve r3-r7. mov(r8, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); LoadP(r0, MemOperand(r8)); push(r0); // Set this new handler as the current one. StoreP(sp, MemOperand(r8)); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(r4); mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); StoreP(r4, MemOperand(ip)); } // Compute the hash code from the untagged key. This must be kept in sync with // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in // code-stub-hydrogen.cc void MacroAssembler::GetNumberHash(Register t0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiUntag(scratch); // Xor original key with a seed. xor_(t0, t0, scratch); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); notx(scratch, t0); slwi(t0, t0, Operand(15)); add(t0, scratch, t0); // hash = hash ^ (hash >> 12); srwi(scratch, t0, Operand(12)); xor_(t0, t0, scratch); // hash = hash + (hash << 2); slwi(scratch, t0, Operand(2)); add(t0, t0, scratch); // hash = hash ^ (hash >> 4); srwi(scratch, t0, Operand(4)); xor_(t0, t0, scratch); // hash = hash * 2057; mr(r0, t0); slwi(scratch, t0, Operand(3)); add(t0, t0, scratch); slwi(scratch, r0, Operand(11)); add(t0, t0, scratch); // hash = hash ^ (hash >> 16); srwi(scratch, t0, Operand(16)); xor_(t0, t0, scratch); // hash & 0x3fffffff ExtractBitRange(t0, t0, 29, 0); } void MacroAssembler::Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. li(result, Operand(0x7091)); li(scratch1, Operand(0x7191)); li(scratch2, Operand(0x7291)); } b(gc_required); return; } DCHECK(!AreAliased(result, scratch1, scratch2, ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask)); // Check relative positions of allocation top and limit addresses. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address register. Register top_address = scratch1; // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. Register alloc_limit = ip; Register result_end = scratch2; mov(top_address, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into ip. LoadP(result, MemOperand(top_address)); LoadP(alloc_limit, MemOperand(top_address, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. LoadP(alloc_limit, MemOperand(top_address)); cmp(result, alloc_limit); Check(eq, kUnexpectedAllocationTop); } // Load allocation limit. Result already contains allocation top. LoadP(alloc_limit, MemOperand(top_address, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); andi(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned, cr0); if ((flags & PRETENURE) != 0) { cmpl(result, alloc_limit); bge(gc_required); } mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); stw(result_end, MemOperand(result)); addi(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. sub(r0, alloc_limit, result); if (is_int16(object_size)) { cmpi(r0, Operand(object_size)); blt(gc_required); addi(result_end, result, Operand(object_size)); } else { Cmpi(r0, Operand(object_size), result_end); blt(gc_required); add(result_end, result, result_end); } if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. StoreP(result_end, MemOperand(top_address)); } // Tag object. addi(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & ALLOCATION_FOLDED) == 0); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. li(result, Operand(0x7091)); li(scratch, Operand(0x7191)); li(result_end, Operand(0x7291)); } b(gc_required); return; } // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag // is not specified. Other registers must not overlap. DCHECK(!AreAliased(object_size, result, scratch, ip)); DCHECK(!AreAliased(result_end, result, scratch, ip)); DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end)); // Check relative positions of allocation top and limit addresses. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address and allocation limit registers. Register top_address = scratch; // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. Register alloc_limit = ip; mov(top_address, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into alloc_limit.. LoadP(result, MemOperand(top_address)); LoadP(alloc_limit, MemOperand(top_address, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. LoadP(alloc_limit, MemOperand(top_address)); cmp(result, alloc_limit); Check(eq, kUnexpectedAllocationTop); } // Load allocation limit. Result already contains allocation top. LoadP(alloc_limit, MemOperand(top_address, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); andi(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned, cr0); if ((flags & PRETENURE) != 0) { cmpl(result, alloc_limit); bge(gc_required); } mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); stw(result_end, MemOperand(result)); addi(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size may be in words so a shift is // required to get the number of bytes. sub(r0, alloc_limit, result); if ((flags & SIZE_IN_WORDS) != 0) { ShiftLeftImm(result_end, object_size, Operand(kPointerSizeLog2)); cmp(r0, result_end); blt(gc_required); add(result_end, result, result_end); } else { cmp(r0, object_size); blt(gc_required); add(result_end, result, object_size); } // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { andi(r0, result_end, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace, cr0); } if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) { // The top pointer is not updated for allocation folding dominators. StoreP(result_end, MemOperand(top_address)); } // Tag object. addi(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::FastAllocate(Register object_size, Register result, Register result_end, Register scratch, AllocationFlags flags) { // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag // is not specified. Other registers must not overlap. DCHECK(!AreAliased(object_size, result, scratch, ip)); DCHECK(!AreAliased(result_end, result, scratch, ip)); DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end)); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); Register top_address = scratch; mov(top_address, Operand(allocation_top)); LoadP(result, MemOperand(top_address)); if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else DCHECK(kPointerAlignment * 2 == kDoubleAlignment); andi(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned); mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); stw(result_end, MemOperand(result)); addi(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top using result. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { ShiftLeftImm(result_end, object_size, Operand(kPointerSizeLog2)); add(result_end, result, result_end); } else { add(result_end, result, object_size); } // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { andi(r0, result_end, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace, cr0); } StoreP(result_end, MemOperand(top_address)); // Tag object. addi(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::FastAllocate(int object_size, Register result, Register scratch1, Register scratch2, AllocationFlags flags) { DCHECK(object_size <= kMaxRegularHeapObjectSize); DCHECK(!AreAliased(result, scratch1, scratch2, ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, object_size & kObjectAlignmentMask); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Set up allocation top address register. Register top_address = scratch1; Register result_end = scratch2; mov(top_address, Operand(allocation_top)); LoadP(result, MemOperand(top_address)); if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. #if V8_TARGET_ARCH_PPC64 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); #else DCHECK(kPointerAlignment * 2 == kDoubleAlignment); andi(result_end, result, Operand(kDoubleAlignmentMask)); Label aligned; beq(&aligned); mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map())); stw(result_end, MemOperand(result)); addi(result, result, Operand(kDoubleSize / 2)); bind(&aligned); #endif } // Calculate new top using result. Add(result_end, result, object_size, r0); // The top pointer is not updated for allocation folding dominators. StoreP(result_end, MemOperand(top_address)); // Tag object. addi(result, result, Operand(kHeapObjectTag)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); slwi(scratch1, length, Operand(1)); // Length in bytes, not chars. addi(scratch1, scratch1, Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); mov(r0, Operand(~kObjectAlignmentMask)); and_(scratch1, scratch1, r0); // Allocate two-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); DCHECK(kCharSize == 1); addi(scratch1, length, Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize)); li(r0, Operand(~kObjectAlignmentMask)); and_(scratch1, scratch1, r0); // Allocate one-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, NO_ALLOCATION_FLAGS); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { const Register temp = type_reg.is(no_reg) ? r0 : type_reg; LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, temp, type); } void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); STATIC_ASSERT(LAST_TYPE < 256); lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); cmpi(type_reg, Operand(type)); } void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { DCHECK(!obj.is(r0)); LoadRoot(r0, index); cmp(obj, r0); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); ble(fail); cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); bgt(fail); } void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); bgt(fail); } void MacroAssembler::StoreNumberToDoubleElements( Register value_reg, Register key_reg, Register elements_reg, Register scratch1, DoubleRegister double_scratch, Label* fail, int elements_offset) { DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1)); Label smi_value, store; // Handle smi values specially. JumpIfSmi(value_reg, &smi_value); // Ensure that the object is a heap number CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail, DONT_DO_SMI_CHECK); lfd(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); // Double value, turn potential sNaN into qNaN. CanonicalizeNaN(double_scratch); b(&store); bind(&smi_value); SmiToDouble(double_scratch, value_reg); bind(&store); SmiToDoubleArrayOffset(scratch1, key_reg); add(scratch1, elements_reg, scratch1); stfd(double_scratch, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset)); } void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); DCHECK(!overflow_dst.is(right)); bool left_is_right = left.is(right); RCBit xorRC = left_is_right ? SetRC : LeaveRC; // C = A+B; C overflows if A/B have same sign and C has diff sign than A if (dst.is(left)) { mr(scratch, left); // Preserve left. add(dst, left, right); // Left is overwritten. xor_(overflow_dst, dst, scratch, xorRC); // Original left. if (!left_is_right) xor_(scratch, dst, right); } else if (dst.is(right)) { mr(scratch, right); // Preserve right. add(dst, left, right); // Right is overwritten. xor_(overflow_dst, dst, left, xorRC); if (!left_is_right) xor_(scratch, dst, scratch); // Original right. } else { add(dst, left, right); xor_(overflow_dst, dst, left, xorRC); if (!left_is_right) xor_(scratch, dst, right); } if (!left_is_right) and_(overflow_dst, scratch, overflow_dst, SetRC); } void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left, intptr_t right, Register overflow_dst, Register scratch) { Register original_left = left; DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); // C = A+B; C overflows if A/B have same sign and C has diff sign than A if (dst.is(left)) { // Preserve left. original_left = overflow_dst; mr(original_left, left); } Add(dst, left, right, scratch); xor_(overflow_dst, dst, original_left); if (right >= 0) { and_(overflow_dst, overflow_dst, dst, SetRC); } else { andc(overflow_dst, overflow_dst, dst, SetRC); } } void MacroAssembler::SubAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); DCHECK(!overflow_dst.is(right)); // C = A-B; C overflows if A/B have diff signs and C has diff sign than A if (dst.is(left)) { mr(scratch, left); // Preserve left. sub(dst, left, right); // Left is overwritten. xor_(overflow_dst, dst, scratch); xor_(scratch, scratch, right); and_(overflow_dst, overflow_dst, scratch, SetRC); } else if (dst.is(right)) { mr(scratch, right); // Preserve right. sub(dst, left, right); // Right is overwritten. xor_(overflow_dst, dst, left); xor_(scratch, left, scratch); and_(overflow_dst, overflow_dst, scratch, SetRC); } else { sub(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, left, right); and_(overflow_dst, scratch, overflow_dst, SetRC); } } void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map, Label* early_success) { LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMap(scratch, map, early_success); } void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map, Label* early_success) { mov(r0, Operand(map)); cmp(obj_map, r0); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMap(obj, scratch, map, &success); bne(fail); bind(&success); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); LoadRoot(r0, index); cmp(scratch, r0); bne(fail); } void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } LoadP(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset)); CmpWeakValue(scratch1, cell, scratch2); Jump(success, RelocInfo::CODE_TARGET, eq); bind(&fail); } void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch, CRegister cr) { mov(scratch, Operand(cell)); LoadP(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset)); cmp(value, scratch, cr); } void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) { mov(value, Operand(cell)); LoadP(value, FieldMemOperand(value, WeakCell::kValueOffset)); } void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss) { GetWeakValue(value, cell); JumpIfSmi(value, miss); } void MacroAssembler::GetMapConstructor(Register result, Register map, Register temp, Register temp2) { Label done, loop; LoadP(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset)); bind(&loop); JumpIfSmi(result, &done); CompareObjectType(result, temp, temp2, MAP_TYPE); bne(&done); LoadP(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset)); b(&loop); bind(&done); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss) { // Get the prototype or initial map from the function. LoadP(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. LoadRoot(r0, Heap::kTheHoleValueRootIndex); cmp(result, r0); beq(miss); // If the function does not have an initial map, we're done. Label done; CompareObjectType(result, scratch, scratch, MAP_TYPE); bne(&done); // Get the prototype from the initial map. LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id, Condition cond) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) { SmiUntag(ip, smi); ConvertIntToDouble(ip, value); } void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input, Register scratch1, Register scratch2, DoubleRegister double_scratch) { TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch); } void MacroAssembler::TestDoubleIsMinusZero(DoubleRegister input, Register scratch1, Register scratch2) { #if V8_TARGET_ARCH_PPC64 MovDoubleToInt64(scratch1, input); rotldi(scratch1, scratch1, 1); cmpi(scratch1, Operand(1)); #else MovDoubleToInt64(scratch1, scratch2, input); Label done; cmpi(scratch2, Operand::Zero()); bne(&done); lis(scratch2, Operand(SIGN_EXT_IMM16(0x8000))); cmp(scratch1, scratch2); bind(&done); #endif } void MacroAssembler::TestDoubleSign(DoubleRegister input, Register scratch) { #if V8_TARGET_ARCH_PPC64 MovDoubleToInt64(scratch, input); #else MovDoubleHighToInt(scratch, input); #endif cmpi(scratch, Operand::Zero()); } void MacroAssembler::TestHeapNumberSign(Register input, Register scratch) { #if V8_TARGET_ARCH_PPC64 LoadP(scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); #else lwz(scratch, FieldMemOperand(input, HeapNumber::kExponentOffset)); #endif cmpi(scratch, Operand::Zero()); } void MacroAssembler::TryDoubleToInt32Exact(Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch) { Label done; DCHECK(!double_input.is(double_scratch)); ConvertDoubleToInt64(double_input, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result, double_scratch); #if V8_TARGET_ARCH_PPC64 TestIfInt32(result, r0); #else TestIfInt32(scratch, result, r0); #endif bne(&done); // convert back and compare fcfid(double_scratch, double_scratch); fcmpu(double_scratch, double_input); bind(&done); } void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input, Register input_high, Register scratch, DoubleRegister double_scratch, Label* done, Label* exact) { DCHECK(!result.is(input_high)); DCHECK(!double_input.is(double_scratch)); Label exception; MovDoubleHighToInt(input_high, double_input); // Test for NaN/Inf ExtractBitMask(result, input_high, HeapNumber::kExponentMask); cmpli(result, Operand(0x7ff)); beq(&exception); // Convert (rounding to -Inf) ConvertDoubleToInt64(double_input, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result, double_scratch, kRoundToMinusInf); // Test for overflow #if V8_TARGET_ARCH_PPC64 TestIfInt32(result, r0); #else TestIfInt32(scratch, result, r0); #endif bne(&exception); // Test for exactness fcfid(double_scratch, double_scratch); fcmpu(double_scratch, double_input); beq(exact); b(done); bind(&exception); } void MacroAssembler::TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done) { DoubleRegister double_scratch = kScratchDoubleReg; #if !V8_TARGET_ARCH_PPC64 Register scratch = ip; #endif ConvertDoubleToInt64(double_input, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result, double_scratch); // Test for overflow #if V8_TARGET_ARCH_PPC64 TestIfInt32(result, r0); #else TestIfInt32(scratch, result, r0); #endif beq(done); } void MacroAssembler::TruncateDoubleToI(Register result, DoubleRegister double_input) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. mflr(r0); push(r0); // Put input on stack. stfdu(double_input, MemOperand(sp, -kDoubleSize)); DoubleToIStub stub(isolate(), sp, result, 0, true, true); CallStub(&stub); addi(sp, sp, Operand(kDoubleSize)); pop(r0); mtlr(r0); bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { Label done; DoubleRegister double_scratch = kScratchDoubleReg; DCHECK(!result.is(object)); lfd(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); TryInlineTruncateDoubleToI(result, double_scratch, &done); // If we fell through then inline version didn't succeed - call stub instead. mflr(r0); push(r0); DoubleToIStub stub(isolate(), object, result, HeapNumber::kValueOffset - kHeapObjectTag, true, true); CallStub(&stub); pop(r0); mtlr(r0); bind(&done); } void MacroAssembler::TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch1, Label* not_number) { Label done; DCHECK(!result.is(object)); UntagAndJumpIfSmi(result, object, &done); JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); TruncateHeapNumberToI(result, object); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { #if V8_TARGET_ARCH_PPC64 rldicl(dst, src, kBitsPerPointer - kSmiShift, kBitsPerPointer - num_least_bits); #else rlwinm(dst, src, kBitsPerPointer - kSmiShift, kBitsPerPointer - num_least_bits, 31); #endif } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { rlwinm(dst, src, 0, 32 - num_least_bits, 31); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All parameters are on the stack. r3 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r3, Operand(num_arguments)); mov(r4, Operand(ExternalReference(f, isolate()))); CEntryStub stub(isolate(), #if V8_TARGET_ARCH_PPC64 f->result_size, #else 1, #endif save_doubles); CallStub(&stub); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { mov(r3, Operand(num_arguments)); mov(r4, Operand(ext)); CEntryStub stub(isolate(), 1); CallStub(&stub); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { mov(r3, Operand(function->nargs)); } JumpToExternalReference(ExternalReference(fid, isolate())); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { mov(r4, Operand(builtin)); CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(value)); mov(scratch2, Operand(ExternalReference(counter))); stw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); lwz(scratch1, MemOperand(scratch2)); addi(scratch1, scratch1, Operand(value)); stw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); lwz(scratch1, MemOperand(scratch2)); subi(scratch1, scratch1, Operand(value)); stw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::Assert(Condition cond, BailoutReason reason, CRegister cr) { if (emit_debug_code()) Check(cond, reason, cr); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { DCHECK(!elements.is(r0)); Label ok; push(elements); LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); LoadRoot(r0, Heap::kFixedArrayMapRootIndex); cmp(elements, r0); beq(&ok); LoadRoot(r0, Heap::kFixedDoubleArrayMapRootIndex); cmp(elements, r0); beq(&ok); LoadRoot(r0, Heap::kFixedCOWArrayMapRootIndex); cmp(elements, r0); beq(&ok); Abort(kJSObjectWithFastElementsMapHasSlowElements); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) { Label L; b(cond, &L, cr); Abort(reason); // will not return here bind(&L); } void MacroAssembler::Abort(BailoutReason reason) { Label abort_start; bind(&abort_start); #ifdef DEBUG const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } if (FLAG_trap_on_abort) { stop(msg); return; } #endif // Check if Abort() has already been initialized. DCHECK(isolate()->builtins()->Abort()->IsHeapObject()); LoadSmiLiteral(r4, Smi::FromInt(static_cast<int>(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } else { Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET); } // will not return here } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). mr(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { DCHECK(IsFastElementsKind(expected_kind)); DCHECK(IsFastElementsKind(transitioned_kind)); // Check that the function's map is the same as the expected cached map. LoadP(scratch, NativeContextMemOperand()); LoadP(ip, ContextMemOperand(scratch, Context::ArrayMapIndex(expected_kind))); cmp(map_in_out, ip); bne(no_map_match); // Use the transitioned cached map. LoadP(map_in_out, ContextMemOperand(scratch, Context::ArrayMapIndex(transitioned_kind))); } void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { LoadP(dst, NativeContextMemOperand()); LoadP(dst, ContextMemOperand(dst, index)); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. LoadP(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); b(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { subi(scratch, reg, Operand(1)); cmpi(scratch, Operand::Zero()); blt(not_power_of_two_or_zero); and_(r0, scratch, reg, SetRC); bne(not_power_of_two_or_zero, cr0); } void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch, Label* zero_and_neg, Label* not_power_of_two) { subi(scratch, reg, Operand(1)); cmpi(scratch, Operand::Zero()); blt(zero_and_neg); and_(r0, scratch, reg, SetRC); bne(not_power_of_two, cr0); } #if !V8_TARGET_ARCH_PPC64 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { DCHECK(!reg.is(overflow)); mr(overflow, reg); // Save original value. SmiTag(reg); xor_(overflow, overflow, reg, SetRC); // Overflow if (value ^ 2 * value) < 0. } void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src, Register overflow) { if (dst.is(src)) { // Fall back to slower case. SmiTagCheckOverflow(dst, overflow); } else { DCHECK(!dst.is(src)); DCHECK(!dst.is(overflow)); DCHECK(!src.is(overflow)); SmiTag(dst, src); xor_(overflow, dst, src, SetRC); // Overflow if (value ^ 2 * value) < 0. } } #endif void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); orx(r0, reg1, reg2, LeaveRC); JumpIfNotSmi(r0, on_not_both_smi); } void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case) { STATIC_ASSERT(kSmiTag == 0); TestBitRange(src, kSmiTagSize - 1, 0, r0); SmiUntag(dst, src); beq(smi_case, cr0); } void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case) { STATIC_ASSERT(kSmiTag == 0); TestBitRange(src, kSmiTagSize - 1, 0, r0); SmiUntag(dst, src); bne(non_smi_case, cr0); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); JumpIfSmi(reg1, on_either_smi); JumpIfSmi(reg2, on_either_smi); } void MacroAssembler::AssertNotNumber(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsANumber, cr0); push(object); CompareObjectType(object, object, object, HEAP_NUMBER_TYPE); pop(object); Check(ne, kOperandIsANumber); } } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmi, cr0); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(eq, kOperandIsNotSmi, cr0); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmiAndNotAString, cr0); push(object); LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, FIRST_NONSTRING_TYPE); pop(object); Check(lt, kOperandIsNotAString); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmiAndNotAName, cr0); push(object); LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, LAST_NAME_TYPE); pop(object); Check(le, kOperandIsNotAName); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmiAndNotAFunction, cr0); push(object); CompareObjectType(object, object, object, JS_FUNCTION_TYPE); pop(object); Check(eq, kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmiAndNotABoundFunction, cr0); push(object); CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); pop(object); Check(eq, kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmiAndNotAGeneratorObject, cr0); push(object); CompareObjectType(object, object, object, JS_GENERATOR_OBJECT_TYPE); pop(object); Check(eq, kOperandIsNotAGeneratorObject); } } void MacroAssembler::AssertReceiver(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); TestIfSmi(object, r0); Check(ne, kOperandIsASmiAndNotAReceiver, cr0); push(object); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); CompareObjectType(object, object, object, FIRST_JS_RECEIVER_TYPE); pop(object); Check(ge, kOperandIsNotAReceiver); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); CompareRoot(object, Heap::kUndefinedValueRootIndex); beq(&done_checking); LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); Assert(eq, kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { CompareRoot(reg, index); Check(eq, kHeapNumberMapRegisterClobbered); } } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); cmp(scratch, heap_number_map); bne(on_not_heap_number); } void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential one-byte strings. // Assume that they are non-smis. LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); lbz(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. and_(scratch1, first, second); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; andi(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); beq(&succeed, cr0); cmpi(reg, Operand(SYMBOL_TYPE)); bne(not_unique_name); bind(&succeed); } // Allocates a heap number or jumps to the need_gc label if the young space // is full and a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required, MutableMode mode) { // Allocate an object in the heap for the heap number and tag it as a heap // object. Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); Heap::RootListIndex map_index = mode == MUTABLE ? Heap::kMutableHeapNumberMapRootIndex : Heap::kHeapNumberMapRootIndex; AssertIsRoot(heap_number_map, map_index); // Store heap number map in the allocated object. StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset), r0); } void MacroAssembler::AllocateHeapNumberWithValue( Register result, DoubleRegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required) { AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required); stfd(value, FieldMemOperand(result, HeapNumber::kValueOffset)); } void MacroAssembler::AllocateJSValue(Register result, Register constructor, Register value, Register scratch1, Register scratch2, Label* gc_required) { DCHECK(!result.is(constructor)); DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!result.is(value)); // Allocate JSValue in new space. Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); // Initialize the JSValue. LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2); StoreP(scratch1, FieldMemOperand(result, HeapObject::kMapOffset), r0); LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); StoreP(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset), r0); StoreP(scratch1, FieldMemOperand(result, JSObject::kElementsOffset), r0); StoreP(value, FieldMemOperand(result, JSValue::kValueOffset), r0); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); } void MacroAssembler::InitializeNFieldsWithFiller(Register current_address, Register count, Register filler) { Label loop; mtctr(count); bind(&loop); StoreP(filler, MemOperand(current_address)); addi(current_address, current_address, Operand(kPointerSize)); bdnz(&loop); } void MacroAssembler::InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler) { Label done; sub(r0, end_address, current_address, LeaveOE, SetRC); beq(&done, cr0); ShiftRightImm(r0, r0, Operand(kPointerSizeLog2)); InitializeNFieldsWithFiller(current_address, r0, filler); bind(&done); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; andi(scratch1, first, Operand(kFlatOneByteStringMask)); andi(scratch2, second, Operand(kFlatOneByteStringMask)); cmpi(scratch1, Operand(kFlatOneByteStringTag)); bne(failure); cmpi(scratch2, Operand(kFlatOneByteStringTag)); bne(failure); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; andi(scratch, type, Operand(kFlatOneByteStringMask)); cmpi(scratch, Operand(kFlatOneByteStringTag)); bne(failure); } static const int kRegisterPassedArguments = 8; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; if (num_double_arguments > DoubleRegister::kNumRegisters) { stack_passed_words += 2 * (num_double_arguments - DoubleRegister::kNumRegisters); } // Up to 8 simple arguments are passed in registers r3..r10. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } return stack_passed_words; } void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask) { Label is_object; TestIfSmi(string, r0); Check(ne, kNonObject, cr0); LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset)); lbz(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset)); andi(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask)); cmpi(ip, Operand(encoding_mask)); Check(eq, kUnexpectedStringType); // The index is assumed to be untagged coming in, tag it to compare with the // string length without using a temp register, it is restored at the end of // this function. #if !V8_TARGET_ARCH_PPC64 Label index_tag_ok, index_tag_bad; JumpIfNotSmiCandidate(index, r0, &index_tag_bad); #endif SmiTag(index, index); #if !V8_TARGET_ARCH_PPC64 b(&index_tag_ok); bind(&index_tag_bad); Abort(kIndexIsTooLarge); bind(&index_tag_ok); #endif LoadP(ip, FieldMemOperand(string, String::kLengthOffset)); cmp(index, ip); Check(lt, kIndexIsTooLarge); DCHECK(Smi::kZero == 0); cmpi(index, Operand::Zero()); Check(ge, kIndexIsNegative); SmiUntag(index, index); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); int stack_passed_arguments = CalculateStackPassedWords(num_reg_arguments, num_double_arguments); int stack_space = kNumRequiredStackFrameSlots; if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for stack arguments // -- preserving original value of sp. mr(scratch, sp); addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { // Make room for stack arguments stack_space += stack_passed_arguments; } // Allocate frame with required slots to make ABI work. li(r0, Operand::Zero()); StorePU(r0, MemOperand(sp, -stack_space * kPointerSize)); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d1, src); } void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d1, src); } void MacroAssembler::MovToFloatParameters(DoubleRegister src1, DoubleRegister src2) { if (src2.is(d1)) { DCHECK(!src1.is(d2)); Move(d2, src2); Move(d1, src1); } else { Move(d1, src1); Move(d2, src2); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { mov(ip, Operand(function)); CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK(has_frame()); // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. Register dest = function; if (ABI_USES_FUNCTION_DESCRIPTORS) { // AIX/PPC64BE Linux uses a function descriptor. When calling C code be // aware of this descriptor and pick up values from it LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(function, kPointerSize)); LoadP(ip, MemOperand(function, 0)); dest = ip; } else if (ABI_CALL_VIA_IP) { Move(ip, function); dest = ip; } Call(dest); // Remove frame bought in PrepareCallCFunction int stack_passed_arguments = CalculateStackPassedWords(num_reg_arguments, num_double_arguments); int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; if (ActivationFrameAlignment() > kPointerSize) { LoadP(sp, MemOperand(sp, stack_space * kPointerSize)); } else { addi(sp, sp, Operand(stack_space * kPointerSize)); } } void MacroAssembler::DecodeConstantPoolOffset(Register result, Register location) { Label overflow_access, done; DCHECK(!AreAliased(result, location, r0)); // Determine constant pool access type // Caller has already placed the instruction word at location in result. ExtractBitRange(r0, result, 31, 26); cmpi(r0, Operand(ADDIS >> 26)); beq(&overflow_access); // Regular constant pool access // extract the load offset andi(result, result, Operand(kImm16Mask)); b(&done); bind(&overflow_access); // Overflow constant pool access // shift addis immediate slwi(r0, result, Operand(16)); // sign-extend and add the load offset lwz(result, MemOperand(location, kInstrSize)); extsh(result, result); add(result, r0, result); bind(&done); } void MacroAssembler::CheckPageFlag( Register object, Register scratch, // scratch may be same register as object int mask, Condition cc, Label* condition_met) { DCHECK(cc == ne || cc == eq); ClearRightImm(scratch, object, Operand(kPageSizeBits)); LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); And(r0, scratch, Operand(mask), SetRC); if (cc == ne) { bne(condition_met, cr0); } if (cc == eq) { beq(condition_met, cr0); } } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { HasColor(object, scratch0, scratch1, on_black, 1, 1); // kBlackBitPattern. DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, int first_bit, int second_bit) { DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); // Test the first bit and_(r0, ip, mask_scratch, SetRC); b(first_bit == 1 ? eq : ne, &other_color, cr0); // Shift left 1 // May need to load the next cell slwi(mask_scratch, mask_scratch, Operand(1), SetRC); beq(&word_boundary, cr0); // Test the second bit and_(r0, ip, mask_scratch, SetRC); b(second_bit == 1 ? ne : eq, has_color, cr0); b(&other_color); bind(&word_boundary); lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize)); andi(r0, ip, Operand(1)); b(second_bit == 1 ? ne : eq, has_color, cr0); bind(&other_color); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0); lis(r0, Operand((~Page::kPageAlignmentMask >> 16))); and_(bitmap_reg, addr_reg, r0); const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2); ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits); ShiftLeftImm(ip, ip, Operand(Bitmap::kBytesPerCellLog2)); add(bitmap_reg, bitmap_reg, ip); li(ip, Operand(1)); slw(mask_reg, ip, mask_reg); } void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch, Register mask_scratch, Register load_scratch, Label* value_is_white) { DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. lwz(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); and_(r0, mask_scratch, load_scratch, SetRC); beq(value_is_white, cr0); } // Saturate a value into 8-bit unsigned integer // if input_value < 0, output_value is 0 // if input_value > 255, output_value is 255 // otherwise output_value is the input_value void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { int satval = (1 << 8) - 1; if (CpuFeatures::IsSupported(ISELECT)) { // set to 0 if negative cmpi(input_reg, Operand::Zero()); isel(lt, output_reg, r0, input_reg); // set to satval if > satval li(r0, Operand(satval)); cmpi(output_reg, Operand(satval)); isel(lt, output_reg, output_reg, r0); } else { Label done, negative_label, overflow_label; cmpi(input_reg, Operand::Zero()); blt(&negative_label); cmpi(input_reg, Operand(satval)); bgt(&overflow_label); if (!output_reg.is(input_reg)) { mr(output_reg, input_reg); } b(&done); bind(&negative_label); li(output_reg, Operand::Zero()); // set to 0 if negative b(&done); bind(&overflow_label); // set to satval if > satval li(output_reg, Operand(satval)); bind(&done); } } void MacroAssembler::SetRoundingMode(FPRoundingMode RN) { mtfsfi(7, RN); } void MacroAssembler::ResetRoundingMode() { mtfsfi(7, kRoundToNearest); // reset (default is kRoundToNearest) } void MacroAssembler::ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister double_scratch) { Label above_zero; Label done; Label in_bounds; LoadDoubleLiteral(double_scratch, 0.0, result_reg); fcmpu(input_reg, double_scratch); bgt(&above_zero); // Double value is less than zero, NaN or Inf, return 0. LoadIntLiteral(result_reg, 0); b(&done); // Double value is >= 255, return 255. bind(&above_zero); LoadDoubleLiteral(double_scratch, 255.0, result_reg); fcmpu(input_reg, double_scratch); ble(&in_bounds); LoadIntLiteral(result_reg, 255); b(&done); // In 0-255 range, round and truncate. bind(&in_bounds); // round to nearest (default rounding mode) fctiw(double_scratch, input_reg); MovDoubleLowToInt(result_reg, double_scratch); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { lwz(dst, FieldMemOperand(map, Map::kBitField3Offset)); DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); } void MacroAssembler::EnumLength(Register dst, Register map) { STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); lwz(dst, FieldMemOperand(map, Map::kBitField3Offset)); ExtractBitMask(dst, dst, Map::EnumLengthBits::kMask); SmiTag(dst); } void MacroAssembler::LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor) { LoadP(dst, FieldMemOperand(holder, HeapObject::kMapOffset)); LoadInstanceDescriptors(dst, dst); LoadP(dst, FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index))); const int getterOffset = AccessorPair::kGetterOffset; const int setterOffset = AccessorPair::kSetterOffset; int offset = ((accessor == ACCESSOR_GETTER) ? getterOffset : setterOffset); LoadP(dst, FieldMemOperand(dst, offset)); } void MacroAssembler::CheckEnumCache(Label* call_runtime) { Register null_value = r8; Register empty_fixed_array_value = r9; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Label next, start; mr(r5, r3); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); EnumLength(r6, r4); CmpSmiLiteral(r6, Smi::FromInt(kInvalidEnumCacheSentinel), r0); beq(call_runtime); LoadRoot(null_value, Heap::kNullValueRootIndex); b(&start); bind(&next); LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); // For all objects but the receiver, check that the cache is empty. EnumLength(r6, r4); CmpSmiLiteral(r6, Smi::kZero, r0); bne(call_runtime); bind(&start); // Check that there are no elements. Register r5 contains the current JS // object we've reached through the prototype chain. Label no_elements; LoadP(r5, FieldMemOperand(r5, JSObject::kElementsOffset)); cmp(r5, empty_fixed_array_value); beq(&no_elements); // Second chance, the object may be using the empty slow element dictionary. CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex); bne(call_runtime); bind(&no_elements); LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset)); cmp(r5, null_value); bne(&next); } //////////////////////////////////////////////////////////////////////////////// // // New MacroAssembler Interfaces added for PPC // //////////////////////////////////////////////////////////////////////////////// void MacroAssembler::LoadIntLiteral(Register dst, int value) { mov(dst, Operand(value)); } void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) { mov(dst, Operand(smi)); } void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value, Register scratch) { if (FLAG_enable_embedded_constant_pool && is_constant_pool_available() && !(scratch.is(r0) && ConstantPoolAccessIsInOverflow())) { ConstantPoolEntry::Access access = ConstantPoolAddEntry(value); if (access == ConstantPoolEntry::OVERFLOWED) { addis(scratch, kConstantPoolRegister, Operand::Zero()); lfd(result, MemOperand(scratch, 0)); } else { lfd(result, MemOperand(kConstantPoolRegister, 0)); } return; } // avoid gcc strict aliasing error using union cast union { double dval; #if V8_TARGET_ARCH_PPC64 intptr_t ival; #else intptr_t ival[2]; #endif } litVal; litVal.dval = value; #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mov(scratch, Operand(litVal.ival)); mtfprd(result, scratch); return; } #endif addi(sp, sp, Operand(-kDoubleSize)); #if V8_TARGET_ARCH_PPC64 mov(scratch, Operand(litVal.ival)); std(scratch, MemOperand(sp)); #else LoadIntLiteral(scratch, litVal.ival[0]); stw(scratch, MemOperand(sp, 0)); LoadIntLiteral(scratch, litVal.ival[1]); stw(scratch, MemOperand(sp, 4)); #endif nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(result, MemOperand(sp, 0)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovIntToDouble(DoubleRegister dst, Register src, Register scratch) { // sign-extend src to 64-bit #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mtfprwa(dst, src); return; } #endif DCHECK(!src.is(scratch)); subi(sp, sp, Operand(kDoubleSize)); #if V8_TARGET_ARCH_PPC64 extsw(scratch, src); std(scratch, MemOperand(sp, 0)); #else srawi(scratch, src, 31); stw(scratch, MemOperand(sp, Register::kExponentOffset)); stw(src, MemOperand(sp, Register::kMantissaOffset)); #endif nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(dst, MemOperand(sp, 0)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovUnsignedIntToDouble(DoubleRegister dst, Register src, Register scratch) { // zero-extend src to 64-bit #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mtfprwz(dst, src); return; } #endif DCHECK(!src.is(scratch)); subi(sp, sp, Operand(kDoubleSize)); #if V8_TARGET_ARCH_PPC64 clrldi(scratch, src, Operand(32)); std(scratch, MemOperand(sp, 0)); #else li(scratch, Operand::Zero()); stw(scratch, MemOperand(sp, Register::kExponentOffset)); stw(src, MemOperand(sp, Register::kMantissaOffset)); #endif nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(dst, MemOperand(sp, 0)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovInt64ToDouble(DoubleRegister dst, #if !V8_TARGET_ARCH_PPC64 Register src_hi, #endif Register src) { #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mtfprd(dst, src); return; } #endif subi(sp, sp, Operand(kDoubleSize)); #if V8_TARGET_ARCH_PPC64 std(src, MemOperand(sp, 0)); #else stw(src_hi, MemOperand(sp, Register::kExponentOffset)); stw(src, MemOperand(sp, Register::kMantissaOffset)); #endif nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(dst, MemOperand(sp, 0)); addi(sp, sp, Operand(kDoubleSize)); } #if V8_TARGET_ARCH_PPC64 void MacroAssembler::MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi, Register src_lo, Register scratch) { if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { sldi(scratch, src_hi, Operand(32)); rldimi(scratch, src_lo, 0, 32); mtfprd(dst, scratch); return; } subi(sp, sp, Operand(kDoubleSize)); stw(src_hi, MemOperand(sp, Register::kExponentOffset)); stw(src_lo, MemOperand(sp, Register::kMantissaOffset)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(dst, MemOperand(sp)); addi(sp, sp, Operand(kDoubleSize)); } #endif void MacroAssembler::InsertDoubleLow(DoubleRegister dst, Register src, Register scratch) { #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mffprd(scratch, dst); rldimi(scratch, src, 0, 32); mtfprd(dst, scratch); return; } #endif subi(sp, sp, Operand(kDoubleSize)); stfd(dst, MemOperand(sp)); stw(src, MemOperand(sp, Register::kMantissaOffset)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(dst, MemOperand(sp)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch) { #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mffprd(scratch, dst); rldimi(scratch, src, 32, 0); mtfprd(dst, scratch); return; } #endif subi(sp, sp, Operand(kDoubleSize)); stfd(dst, MemOperand(sp)); stw(src, MemOperand(sp, Register::kExponentOffset)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfd(dst, MemOperand(sp)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovDoubleLowToInt(Register dst, DoubleRegister src) { #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mffprwz(dst, src); return; } #endif subi(sp, sp, Operand(kDoubleSize)); stfd(src, MemOperand(sp)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lwz(dst, MemOperand(sp, Register::kMantissaOffset)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovDoubleHighToInt(Register dst, DoubleRegister src) { #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mffprd(dst, src); srdi(dst, dst, Operand(32)); return; } #endif subi(sp, sp, Operand(kDoubleSize)); stfd(src, MemOperand(sp)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lwz(dst, MemOperand(sp, Register::kExponentOffset)); addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovDoubleToInt64( #if !V8_TARGET_ARCH_PPC64 Register dst_hi, #endif Register dst, DoubleRegister src) { #if V8_TARGET_ARCH_PPC64 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { mffprd(dst, src); return; } #endif subi(sp, sp, Operand(kDoubleSize)); stfd(src, MemOperand(sp)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization #if V8_TARGET_ARCH_PPC64 ld(dst, MemOperand(sp, 0)); #else lwz(dst_hi, MemOperand(sp, Register::kExponentOffset)); lwz(dst, MemOperand(sp, Register::kMantissaOffset)); #endif addi(sp, sp, Operand(kDoubleSize)); } void MacroAssembler::MovIntToFloat(DoubleRegister dst, Register src) { subi(sp, sp, Operand(kFloatSize)); stw(src, MemOperand(sp, 0)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lfs(dst, MemOperand(sp, 0)); addi(sp, sp, Operand(kFloatSize)); } void MacroAssembler::MovFloatToInt(Register dst, DoubleRegister src) { subi(sp, sp, Operand(kFloatSize)); frsp(src, src); stfs(src, MemOperand(sp, 0)); nop(GROUP_ENDING_NOP); // LHS/RAW optimization lwz(dst, MemOperand(sp, 0)); addi(sp, sp, Operand(kFloatSize)); } void MacroAssembler::Add(Register dst, Register src, intptr_t value, Register scratch) { if (is_int16(value)) { addi(dst, src, Operand(value)); } else { mov(scratch, Operand(value)); add(dst, src, scratch); } } void MacroAssembler::Cmpi(Register src1, const Operand& src2, Register scratch, CRegister cr) { intptr_t value = src2.immediate(); if (is_int16(value)) { cmpi(src1, src2, cr); } else { mov(scratch, src2); cmp(src1, scratch, cr); } } void MacroAssembler::Cmpli(Register src1, const Operand& src2, Register scratch, CRegister cr) { intptr_t value = src2.immediate(); if (is_uint16(value)) { cmpli(src1, src2, cr); } else { mov(scratch, src2); cmpl(src1, scratch, cr); } } void MacroAssembler::Cmpwi(Register src1, const Operand& src2, Register scratch, CRegister cr) { intptr_t value = src2.immediate(); if (is_int16(value)) { cmpwi(src1, src2, cr); } else { mov(scratch, src2); cmpw(src1, scratch, cr); } } void MacroAssembler::Cmplwi(Register src1, const Operand& src2, Register scratch, CRegister cr) { intptr_t value = src2.immediate(); if (is_uint16(value)) { cmplwi(src1, src2, cr); } else { mov(scratch, src2); cmplw(src1, scratch, cr); } } void MacroAssembler::And(Register ra, Register rs, const Operand& rb, RCBit rc) { if (rb.is_reg()) { and_(ra, rs, rb.rm(), rc); } else { if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == SetRC) { andi(ra, rs, rb); } else { // mov handles the relocation. DCHECK(!rs.is(r0)); mov(r0, rb); and_(ra, rs, r0, rc); } } } void MacroAssembler::Or(Register ra, Register rs, const Operand& rb, RCBit rc) { if (rb.is_reg()) { orx(ra, rs, rb.rm(), rc); } else { if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) { ori(ra, rs, rb); } else { // mov handles the relocation. DCHECK(!rs.is(r0)); mov(r0, rb); orx(ra, rs, r0, rc); } } } void MacroAssembler::Xor(Register ra, Register rs, const Operand& rb, RCBit rc) { if (rb.is_reg()) { xor_(ra, rs, rb.rm(), rc); } else { if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) { xori(ra, rs, rb); } else { // mov handles the relocation. DCHECK(!rs.is(r0)); mov(r0, rb); xor_(ra, rs, r0, rc); } } } void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch, CRegister cr) { #if V8_TARGET_ARCH_PPC64 LoadSmiLiteral(scratch, smi); cmp(src1, scratch, cr); #else Cmpi(src1, Operand(smi), scratch, cr); #endif } void MacroAssembler::CmplSmiLiteral(Register src1, Smi* smi, Register scratch, CRegister cr) { #if V8_TARGET_ARCH_PPC64 LoadSmiLiteral(scratch, smi); cmpl(src1, scratch, cr); #else Cmpli(src1, Operand(smi), scratch, cr); #endif } void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch) { #if V8_TARGET_ARCH_PPC64 LoadSmiLiteral(scratch, smi); add(dst, src, scratch); #else Add(dst, src, reinterpret_cast<intptr_t>(smi), scratch); #endif } void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch) { #if V8_TARGET_ARCH_PPC64 LoadSmiLiteral(scratch, smi); sub(dst, src, scratch); #else Add(dst, src, -(reinterpret_cast<intptr_t>(smi)), scratch); #endif } void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch, RCBit rc) { #if V8_TARGET_ARCH_PPC64 LoadSmiLiteral(scratch, smi); and_(dst, src, scratch, rc); #else And(dst, src, Operand(smi), rc); #endif } // Load a "pointer" sized value from the memory location void MacroAssembler::LoadP(Register dst, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int16(offset)) { /* cannot use d-form */ DCHECK(!scratch.is(no_reg)); mov(scratch, Operand(offset)); LoadPX(dst, MemOperand(mem.ra(), scratch)); } else { #if V8_TARGET_ARCH_PPC64 int misaligned = (offset & 3); if (misaligned) { // adjust base to conform to offset alignment requirements // Todo: enhance to use scratch if dst is unsuitable DCHECK(!dst.is(r0)); addi(dst, mem.ra(), Operand((offset & 3) - 4)); ld(dst, MemOperand(dst, (offset & ~3) + 4)); } else { ld(dst, mem); } #else lwz(dst, mem); #endif } } void MacroAssembler::LoadPU(Register dst, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int16(offset)) { /* cannot use d-form */ DCHECK(!scratch.is(no_reg)); mov(scratch, Operand(offset)); LoadPUX(dst, MemOperand(mem.ra(), scratch)); } else { #if V8_TARGET_ARCH_PPC64 ldu(dst, mem); #else lwzu(dst, mem); #endif } } // Store a "pointer" sized value to the memory location void MacroAssembler::StoreP(Register src, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int16(offset)) { /* cannot use d-form */ DCHECK(!scratch.is(no_reg)); mov(scratch, Operand(offset)); StorePX(src, MemOperand(mem.ra(), scratch)); } else { #if V8_TARGET_ARCH_PPC64 int misaligned = (offset & 3); if (misaligned) { // adjust base to conform to offset alignment requirements // a suitable scratch is required here DCHECK(!scratch.is(no_reg)); if (scratch.is(r0)) { LoadIntLiteral(scratch, offset); stdx(src, MemOperand(mem.ra(), scratch)); } else { addi(scratch, mem.ra(), Operand((offset & 3) - 4)); std(src, MemOperand(scratch, (offset & ~3) + 4)); } } else { std(src, mem); } #else stw(src, mem); #endif } } void MacroAssembler::StorePU(Register src, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int16(offset)) { /* cannot use d-form */ DCHECK(!scratch.is(no_reg)); mov(scratch, Operand(offset)); StorePUX(src, MemOperand(mem.ra(), scratch)); } else { #if V8_TARGET_ARCH_PPC64 stdu(src, mem); #else stwu(src, mem); #endif } } void MacroAssembler::LoadWordArith(Register dst, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int16(offset)) { DCHECK(!scratch.is(no_reg)); mov(scratch, Operand(offset)); lwax(dst, MemOperand(mem.ra(), scratch)); } else { #if V8_TARGET_ARCH_PPC64 int misaligned = (offset & 3); if (misaligned) { // adjust base to conform to offset alignment requirements // Todo: enhance to use scratch if dst is unsuitable DCHECK(!dst.is(r0)); addi(dst, mem.ra(), Operand((offset & 3) - 4)); lwa(dst, MemOperand(dst, (offset & ~3) + 4)); } else { lwa(dst, mem); } #else lwz(dst, mem); #endif } } // Variable length depending on whether offset fits into immediate field // MemOperand currently only supports d-form void MacroAssembler::LoadWord(Register dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { LoadIntLiteral(scratch, offset); lwzx(dst, MemOperand(base, scratch)); } else { lwz(dst, mem); } } // Variable length depending on whether offset fits into immediate field // MemOperand current only supports d-form void MacroAssembler::StoreWord(Register src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { LoadIntLiteral(scratch, offset); stwx(src, MemOperand(base, scratch)); } else { stw(src, mem); } } void MacroAssembler::LoadHalfWordArith(Register dst, const MemOperand& mem, Register scratch) { int offset = mem.offset(); if (!is_int16(offset)) { DCHECK(!scratch.is(no_reg)); mov(scratch, Operand(offset)); lhax(dst, MemOperand(mem.ra(), scratch)); } else { lha(dst, mem); } } // Variable length depending on whether offset fits into immediate field // MemOperand currently only supports d-form void MacroAssembler::LoadHalfWord(Register dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { LoadIntLiteral(scratch, offset); lhzx(dst, MemOperand(base, scratch)); } else { lhz(dst, mem); } } // Variable length depending on whether offset fits into immediate field // MemOperand current only supports d-form void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { LoadIntLiteral(scratch, offset); sthx(src, MemOperand(base, scratch)); } else { sth(src, mem); } } // Variable length depending on whether offset fits into immediate field // MemOperand currently only supports d-form void MacroAssembler::LoadByte(Register dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { LoadIntLiteral(scratch, offset); lbzx(dst, MemOperand(base, scratch)); } else { lbz(dst, mem); } } // Variable length depending on whether offset fits into immediate field // MemOperand current only supports d-form void MacroAssembler::StoreByte(Register src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { LoadIntLiteral(scratch, offset); stbx(src, MemOperand(base, scratch)); } else { stb(src, mem); } } void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem, Representation r, Register scratch) { DCHECK(!r.IsDouble()); if (r.IsInteger8()) { LoadByte(dst, mem, scratch); extsb(dst, dst); } else if (r.IsUInteger8()) { LoadByte(dst, mem, scratch); } else if (r.IsInteger16()) { LoadHalfWordArith(dst, mem, scratch); } else if (r.IsUInteger16()) { LoadHalfWord(dst, mem, scratch); #if V8_TARGET_ARCH_PPC64 } else if (r.IsInteger32()) { LoadWordArith(dst, mem, scratch); #endif } else { LoadP(dst, mem, scratch); } } void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem, Representation r, Register scratch) { DCHECK(!r.IsDouble()); if (r.IsInteger8() || r.IsUInteger8()) { StoreByte(src, mem, scratch); } else if (r.IsInteger16() || r.IsUInteger16()) { StoreHalfWord(src, mem, scratch); #if V8_TARGET_ARCH_PPC64 } else if (r.IsInteger32()) { StoreWord(src, mem, scratch); #endif } else { if (r.IsHeapObject()) { AssertNotSmi(src); } else if (r.IsSmi()) { AssertSmi(src); } StoreP(src, mem, scratch); } } void MacroAssembler::LoadDouble(DoubleRegister dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); lfdx(dst, MemOperand(base, scratch)); } else { lfd(dst, mem); } } void MacroAssembler::LoadDoubleU(DoubleRegister dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); lfdux(dst, MemOperand(base, scratch)); } else { lfdu(dst, mem); } } void MacroAssembler::LoadSingle(DoubleRegister dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); lfsx(dst, MemOperand(base, scratch)); } else { lfs(dst, mem); } } void MacroAssembler::LoadSingleU(DoubleRegister dst, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); lfsux(dst, MemOperand(base, scratch)); } else { lfsu(dst, mem); } } void MacroAssembler::StoreDouble(DoubleRegister src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); stfdx(src, MemOperand(base, scratch)); } else { stfd(src, mem); } } void MacroAssembler::StoreDoubleU(DoubleRegister src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); stfdux(src, MemOperand(base, scratch)); } else { stfdu(src, mem); } } void MacroAssembler::StoreSingle(DoubleRegister src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); stfsx(src, MemOperand(base, scratch)); } else { stfs(src, mem); } } void MacroAssembler::StoreSingleU(DoubleRegister src, const MemOperand& mem, Register scratch) { Register base = mem.ra(); int offset = mem.offset(); if (!is_int16(offset)) { mov(scratch, Operand(offset)); stfsux(src, MemOperand(base, scratch)); } else { stfsu(src, mem); } } void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg, Register scratch_reg, Register scratch2_reg, Label* no_memento_found) { Label map_check; Label top_check; ExternalReference new_space_allocation_top_adr = ExternalReference::new_space_allocation_top_address(isolate()); const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; Register mask = scratch2_reg; DCHECK(!AreAliased(receiver_reg, scratch_reg, mask)); // Bail out if the object is not in new space. JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found); DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0); lis(mask, Operand((~Page::kPageAlignmentMask >> 16))); addi(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset)); // If the object is in new space, we need to check whether it is on the same // page as the current top. mov(ip, Operand(new_space_allocation_top_adr)); LoadP(ip, MemOperand(ip)); Xor(r0, scratch_reg, Operand(ip)); and_(r0, r0, mask, SetRC); beq(&top_check, cr0); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. xor_(r0, scratch_reg, receiver_reg); and_(r0, r0, mask, SetRC); bne(no_memento_found, cr0); // Continue with the actual map check. b(&map_check); // If top is on the same page as the current object, we need to check whether // we are below top. bind(&top_check); cmp(scratch_reg, ip); bge(no_memento_found); // Memento map check. bind(&map_check); LoadP(scratch_reg, MemOperand(receiver_reg, kMementoMapOffset)); Cmpi(scratch_reg, Operand(isolate()->factory()->allocation_memento_map()), r0); } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); Register candidate = Register::from_code(code); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); return no_reg; } void MacroAssembler::JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, Register scratch1, Label* found) { DCHECK(!scratch1.is(scratch0)); Register current = scratch0; Label loop_again, end; // scratch contained elements pointer. mr(current, object); LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset)); LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareRoot(current, Heap::kNullValueRootIndex); beq(&end); // Loop based on the map going up the prototype chain. bind(&loop_again); LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset)); STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE); STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE); lbz(scratch1, FieldMemOperand(current, Map::kInstanceTypeOffset)); cmpi(scratch1, Operand(JS_OBJECT_TYPE)); blt(found); lbz(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); DecodeField<Map::ElementsKindBits>(scratch1); cmpi(scratch1, Operand(DICTIONARY_ELEMENTS)); beq(found); LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareRoot(current, Heap::kNullValueRootIndex); bne(&loop_again); bind(&end); } #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6, Register reg7, Register reg8, Register reg9, Register reg10) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + reg7.is_valid() + reg8.is_valid() + reg9.is_valid() + reg10.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); if (reg7.is_valid()) regs |= reg7.bit(); if (reg8.is_valid()) regs |= reg8.bit(); if (reg9.is_valid()) regs |= reg9.bit(); if (reg10.is_valid()) regs |= reg10.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } #endif CodePatcher::CodePatcher(Isolate* isolate, byte* address, int instructions, FlushICache flush_cache) : address_(address), size_(instructions * Assembler::kInstrSize), masm_(isolate, address, size_ + Assembler::kGap, CodeObjectRequired::kNo), flush_cache_(flush_cache) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. if (flush_cache_ == FLUSH) { Assembler::FlushICache(masm_.isolate(), address_, size_); } // Check that the code was patched as expected. DCHECK(masm_.pc_ == address_ + size_); DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void CodePatcher::Emit(Instr instr) { masm()->emit(instr); } void CodePatcher::EmitCondition(Condition cond) { Instr instr = Assembler::instr_at(masm_.pc_); switch (cond) { case eq: instr = (instr & ~kCondMask) | BT; break; case ne: instr = (instr & ~kCondMask) | BF; break; default: UNIMPLEMENTED(); } masm_.emit(instr); } void MacroAssembler::TruncatingDiv(Register result, Register dividend, int32_t divisor) { DCHECK(!dividend.is(result)); DCHECK(!dividend.is(r0)); DCHECK(!result.is(r0)); base::MagicNumbersForDivision<uint32_t> mag = base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); mov(r0, Operand(mag.multiplier)); mulhw(result, dividend, r0); bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; if (divisor > 0 && neg) { add(result, result, dividend); } if (divisor < 0 && !neg && mag.multiplier > 0) { sub(result, result, dividend); } if (mag.shift > 0) srawi(result, result, mag.shift); ExtractBit(r0, dividend, 31); add(result, result, r0); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC