// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_SLOT_SET_H #define V8_SLOT_SET_H #include <map> #include <stack> #include "src/allocation.h" #include "src/base/atomic-utils.h" #include "src/base/bits.h" #include "src/utils.h" namespace v8 { namespace internal { enum SlotCallbackResult { KEEP_SLOT, REMOVE_SLOT }; // Data structure for maintaining a set of slots in a standard (non-large) // page. The base address of the page must be set with SetPageStart before any // operation. // The data structure assumes that the slots are pointer size aligned and // splits the valid slot offset range into kBuckets buckets. // Each bucket is a bitmap with a bit corresponding to a single slot offset. class SlotSet : public Malloced { public: enum EmptyBucketMode { FREE_EMPTY_BUCKETS, // An empty bucket will be deallocated immediately. PREFREE_EMPTY_BUCKETS, // An empty bucket will be unlinked from the slot // set, but deallocated on demand by a sweeper // thread. KEEP_EMPTY_BUCKETS // An empty bucket will be kept. }; SlotSet() { for (int i = 0; i < kBuckets; i++) { bucket[i].SetValue(nullptr); } } ~SlotSet() { for (int i = 0; i < kBuckets; i++) { ReleaseBucket(i); } FreeToBeFreedBuckets(); } void SetPageStart(Address page_start) { page_start_ = page_start; } // The slot offset specifies a slot at address page_start_ + slot_offset. // This method should only be called on the main thread because concurrent // allocation of the bucket is not thread-safe. void Insert(int slot_offset) { int bucket_index, cell_index, bit_index; SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index); base::AtomicValue<uint32_t>* current_bucket = bucket[bucket_index].Value(); if (current_bucket == nullptr) { current_bucket = AllocateBucket(); bucket[bucket_index].SetValue(current_bucket); } if (!(current_bucket[cell_index].Value() & (1u << bit_index))) { current_bucket[cell_index].SetBit(bit_index); } } // The slot offset specifies a slot at address page_start_ + slot_offset. void Remove(int slot_offset) { int bucket_index, cell_index, bit_index; SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index); base::AtomicValue<uint32_t>* current_bucket = bucket[bucket_index].Value(); if (current_bucket != nullptr) { uint32_t cell = current_bucket[cell_index].Value(); if (cell) { uint32_t bit_mask = 1u << bit_index; if (cell & bit_mask) { current_bucket[cell_index].ClearBit(bit_index); } } } } // The slot offsets specify a range of slots at addresses: // [page_start_ + start_offset ... page_start_ + end_offset). void RemoveRange(int start_offset, int end_offset, EmptyBucketMode mode) { CHECK_LE(end_offset, 1 << kPageSizeBits); DCHECK_LE(start_offset, end_offset); int start_bucket, start_cell, start_bit; SlotToIndices(start_offset, &start_bucket, &start_cell, &start_bit); int end_bucket, end_cell, end_bit; SlotToIndices(end_offset, &end_bucket, &end_cell, &end_bit); uint32_t start_mask = (1u << start_bit) - 1; uint32_t end_mask = ~((1u << end_bit) - 1); if (start_bucket == end_bucket && start_cell == end_cell) { ClearCell(start_bucket, start_cell, ~(start_mask | end_mask)); return; } int current_bucket = start_bucket; int current_cell = start_cell; ClearCell(current_bucket, current_cell, ~start_mask); current_cell++; base::AtomicValue<uint32_t>* bucket_ptr = bucket[current_bucket].Value(); if (current_bucket < end_bucket) { if (bucket_ptr != nullptr) { ClearBucket(bucket_ptr, current_cell, kCellsPerBucket); } // The rest of the current bucket is cleared. // Move on to the next bucket. current_bucket++; current_cell = 0; } DCHECK(current_bucket == end_bucket || (current_bucket < end_bucket && current_cell == 0)); while (current_bucket < end_bucket) { if (mode == PREFREE_EMPTY_BUCKETS) { PreFreeEmptyBucket(current_bucket); } else if (mode == FREE_EMPTY_BUCKETS) { ReleaseBucket(current_bucket); } else { DCHECK(mode == KEEP_EMPTY_BUCKETS); bucket_ptr = bucket[current_bucket].Value(); if (bucket_ptr) { ClearBucket(bucket_ptr, 0, kCellsPerBucket); } } current_bucket++; } // All buckets between start_bucket and end_bucket are cleared. bucket_ptr = bucket[current_bucket].Value(); DCHECK(current_bucket == end_bucket && current_cell <= end_cell); if (current_bucket == kBuckets || bucket_ptr == nullptr) { return; } while (current_cell < end_cell) { bucket_ptr[current_cell].SetValue(0); current_cell++; } // All cells between start_cell and end_cell are cleared. DCHECK(current_bucket == end_bucket && current_cell == end_cell); ClearCell(end_bucket, end_cell, ~end_mask); } // The slot offset specifies a slot at address page_start_ + slot_offset. bool Lookup(int slot_offset) { int bucket_index, cell_index, bit_index; SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index); if (bucket[bucket_index].Value() != nullptr) { uint32_t cell = bucket[bucket_index].Value()[cell_index].Value(); return (cell & (1u << bit_index)) != 0; } return false; } // Iterate over all slots in the set and for each slot invoke the callback. // If the callback returns REMOVE_SLOT then the slot is removed from the set. // Returns the new number of slots. // This method should only be called on the main thread. // // Sample usage: // Iterate([](Address slot_address) { // if (good(slot_address)) return KEEP_SLOT; // else return REMOVE_SLOT; // }); template <typename Callback> int Iterate(Callback callback, EmptyBucketMode mode) { int new_count = 0; for (int bucket_index = 0; bucket_index < kBuckets; bucket_index++) { base::AtomicValue<uint32_t>* current_bucket = bucket[bucket_index].Value(); if (current_bucket != nullptr) { int in_bucket_count = 0; int cell_offset = bucket_index * kBitsPerBucket; for (int i = 0; i < kCellsPerBucket; i++, cell_offset += kBitsPerCell) { if (current_bucket[i].Value()) { uint32_t cell = current_bucket[i].Value(); uint32_t old_cell = cell; uint32_t mask = 0; while (cell) { int bit_offset = base::bits::CountTrailingZeros32(cell); uint32_t bit_mask = 1u << bit_offset; uint32_t slot = (cell_offset + bit_offset) << kPointerSizeLog2; if (callback(page_start_ + slot) == KEEP_SLOT) { ++in_bucket_count; } else { mask |= bit_mask; } cell ^= bit_mask; } uint32_t new_cell = old_cell & ~mask; if (old_cell != new_cell) { while (!current_bucket[i].TrySetValue(old_cell, new_cell)) { // If TrySetValue fails, the cell must have changed. We just // have to read the current value of the cell, & it with the // computed value, and retry. We can do this, because this // method will only be called on the main thread and filtering // threads will only remove slots. old_cell = current_bucket[i].Value(); new_cell = old_cell & ~mask; } } } } if (mode == PREFREE_EMPTY_BUCKETS && in_bucket_count == 0) { PreFreeEmptyBucket(bucket_index); } new_count += in_bucket_count; } } return new_count; } void FreeToBeFreedBuckets() { base::LockGuard<base::Mutex> guard(&to_be_freed_buckets_mutex_); while (!to_be_freed_buckets_.empty()) { base::AtomicValue<uint32_t>* top = to_be_freed_buckets_.top(); to_be_freed_buckets_.pop(); DeleteArray<base::AtomicValue<uint32_t>>(top); } } private: static const int kMaxSlots = (1 << kPageSizeBits) / kPointerSize; static const int kCellsPerBucket = 32; static const int kCellsPerBucketLog2 = 5; static const int kBitsPerCell = 32; static const int kBitsPerCellLog2 = 5; static const int kBitsPerBucket = kCellsPerBucket * kBitsPerCell; static const int kBitsPerBucketLog2 = kCellsPerBucketLog2 + kBitsPerCellLog2; static const int kBuckets = kMaxSlots / kCellsPerBucket / kBitsPerCell; base::AtomicValue<uint32_t>* AllocateBucket() { base::AtomicValue<uint32_t>* result = NewArray<base::AtomicValue<uint32_t>>(kCellsPerBucket); for (int i = 0; i < kCellsPerBucket; i++) { result[i].SetValue(0); } return result; } void ClearBucket(base::AtomicValue<uint32_t>* bucket, int start_cell, int end_cell) { DCHECK_GE(start_cell, 0); DCHECK_LE(end_cell, kCellsPerBucket); int current_cell = start_cell; while (current_cell < kCellsPerBucket) { bucket[current_cell].SetValue(0); current_cell++; } } void PreFreeEmptyBucket(int bucket_index) { base::AtomicValue<uint32_t>* bucket_ptr = bucket[bucket_index].Value(); if (bucket_ptr != nullptr) { base::LockGuard<base::Mutex> guard(&to_be_freed_buckets_mutex_); to_be_freed_buckets_.push(bucket_ptr); bucket[bucket_index].SetValue(nullptr); } } void ReleaseBucket(int bucket_index) { DeleteArray<base::AtomicValue<uint32_t>>(bucket[bucket_index].Value()); bucket[bucket_index].SetValue(nullptr); } void ClearCell(int bucket_index, int cell_index, uint32_t mask) { if (bucket_index < kBuckets) { base::AtomicValue<uint32_t>* cells = bucket[bucket_index].Value(); if (cells != nullptr) { uint32_t cell = cells[cell_index].Value(); if (cell) cells[cell_index].SetBits(0, mask); } } else { // GCC bug 59124: Emits wrong warnings // "array subscript is above array bounds" UNREACHABLE(); } } // Converts the slot offset into bucket/cell/bit index. void SlotToIndices(int slot_offset, int* bucket_index, int* cell_index, int* bit_index) { DCHECK_EQ(slot_offset % kPointerSize, 0); int slot = slot_offset >> kPointerSizeLog2; DCHECK(slot >= 0 && slot <= kMaxSlots); *bucket_index = slot >> kBitsPerBucketLog2; *cell_index = (slot >> kBitsPerCellLog2) & (kCellsPerBucket - 1); *bit_index = slot & (kBitsPerCell - 1); } base::AtomicValue<base::AtomicValue<uint32_t>*> bucket[kBuckets]; Address page_start_; base::Mutex to_be_freed_buckets_mutex_; std::stack<base::AtomicValue<uint32_t>*> to_be_freed_buckets_; }; enum SlotType { EMBEDDED_OBJECT_SLOT, OBJECT_SLOT, CELL_TARGET_SLOT, CODE_TARGET_SLOT, CODE_ENTRY_SLOT, DEBUG_TARGET_SLOT, CLEARED_SLOT }; // Data structure for maintaining a multiset of typed slots in a page. // Typed slots can only appear in Code and JSFunction objects, so // the maximum possible offset is limited by the LargePage::kMaxCodePageSize. // The implementation is a chain of chunks, where each chunks is an array of // encoded (slot type, slot offset) pairs. // There is no duplicate detection and we do not expect many duplicates because // typed slots contain V8 internal pointers that are not directly exposed to JS. class TypedSlotSet { public: enum IterationMode { PREFREE_EMPTY_CHUNKS, KEEP_EMPTY_CHUNKS }; typedef std::pair<SlotType, uint32_t> TypeAndOffset; struct TypedSlot { TypedSlot() { type_and_offset_.SetValue(0); host_offset_.SetValue(0); } TypedSlot(SlotType type, uint32_t host_offset, uint32_t offset) { type_and_offset_.SetValue(TypeField::encode(type) | OffsetField::encode(offset)); host_offset_.SetValue(host_offset); } bool operator==(const TypedSlot other) { return type_and_offset_.Value() == other.type_and_offset_.Value() && host_offset_.Value() == other.host_offset_.Value(); } bool operator!=(const TypedSlot other) { return !(*this == other); } SlotType type() { return TypeField::decode(type_and_offset_.Value()); } uint32_t offset() { return OffsetField::decode(type_and_offset_.Value()); } TypeAndOffset GetTypeAndOffset() { uint32_t type_and_offset = type_and_offset_.Value(); return std::make_pair(TypeField::decode(type_and_offset), OffsetField::decode(type_and_offset)); } uint32_t host_offset() { return host_offset_.Value(); } void Set(TypedSlot slot) { type_and_offset_.SetValue(slot.type_and_offset_.Value()); host_offset_.SetValue(slot.host_offset_.Value()); } void Clear() { type_and_offset_.SetValue(TypeField::encode(CLEARED_SLOT) | OffsetField::encode(0)); host_offset_.SetValue(0); } base::AtomicValue<uint32_t> type_and_offset_; base::AtomicValue<uint32_t> host_offset_; }; static const int kMaxOffset = 1 << 29; explicit TypedSlotSet(Address page_start) : page_start_(page_start) { chunk_.SetValue(new Chunk(nullptr, kInitialBufferSize)); } ~TypedSlotSet() { Chunk* chunk = chunk_.Value(); while (chunk != nullptr) { Chunk* next = chunk->next.Value(); delete chunk; chunk = next; } FreeToBeFreedChunks(); } // The slot offset specifies a slot at address page_start_ + offset. // This method can only be called on the main thread. void Insert(SlotType type, uint32_t host_offset, uint32_t offset) { TypedSlot slot(type, host_offset, offset); Chunk* top_chunk = chunk_.Value(); if (!top_chunk) { top_chunk = new Chunk(nullptr, kInitialBufferSize); chunk_.SetValue(top_chunk); } if (!top_chunk->AddSlot(slot)) { Chunk* new_top_chunk = new Chunk(top_chunk, NextCapacity(top_chunk->capacity.Value())); bool added = new_top_chunk->AddSlot(slot); chunk_.SetValue(new_top_chunk); DCHECK(added); USE(added); } } // Iterate over all slots in the set and for each slot invoke the callback. // If the callback returns REMOVE_SLOT then the slot is removed from the set. // Returns the new number of slots. // // Sample usage: // Iterate([](SlotType slot_type, Address slot_address) { // if (good(slot_type, slot_address)) return KEEP_SLOT; // else return REMOVE_SLOT; // }); template <typename Callback> int Iterate(Callback callback, IterationMode mode) { STATIC_ASSERT(CLEARED_SLOT < 8); Chunk* chunk = chunk_.Value(); Chunk* previous = nullptr; int new_count = 0; while (chunk != nullptr) { TypedSlot* buffer = chunk->buffer.Value(); int count = chunk->count.Value(); bool empty = true; for (int i = 0; i < count; i++) { // Order is important here. We have to read out the slot type last to // observe the concurrent removal case consistently. Address host_addr = page_start_ + buffer[i].host_offset(); TypeAndOffset type_and_offset = buffer[i].GetTypeAndOffset(); SlotType type = type_and_offset.first; if (type != CLEARED_SLOT) { Address addr = page_start_ + type_and_offset.second; if (callback(type, host_addr, addr) == KEEP_SLOT) { new_count++; empty = false; } else { buffer[i].Clear(); } } } Chunk* next = chunk->next.Value(); if (mode == PREFREE_EMPTY_CHUNKS && empty) { // We remove the chunk from the list but let it still point its next // chunk to allow concurrent iteration. if (previous) { previous->next.SetValue(next); } else { chunk_.SetValue(next); } base::LockGuard<base::Mutex> guard(&to_be_freed_chunks_mutex_); to_be_freed_chunks_.push(chunk); } else { previous = chunk; } chunk = next; } return new_count; } void FreeToBeFreedChunks() { base::LockGuard<base::Mutex> guard(&to_be_freed_chunks_mutex_); while (!to_be_freed_chunks_.empty()) { Chunk* top = to_be_freed_chunks_.top(); to_be_freed_chunks_.pop(); delete top; } } void RemoveInvaldSlots(std::map<uint32_t, uint32_t>& invalid_ranges) { Chunk* chunk = chunk_.Value(); while (chunk != nullptr) { TypedSlot* buffer = chunk->buffer.Value(); int count = chunk->count.Value(); for (int i = 0; i < count; i++) { uint32_t host_offset = buffer[i].host_offset(); std::map<uint32_t, uint32_t>::iterator upper_bound = invalid_ranges.upper_bound(host_offset); if (upper_bound == invalid_ranges.begin()) continue; // upper_bounds points to the invalid range after the given slot. Hence, // we have to go to the previous element. upper_bound--; DCHECK_LE(upper_bound->first, host_offset); if (upper_bound->second > host_offset) { buffer[i].Clear(); } } chunk = chunk->next.Value(); } } private: static const int kInitialBufferSize = 100; static const int kMaxBufferSize = 16 * KB; static int NextCapacity(int capacity) { return Min(kMaxBufferSize, capacity * 2); } class OffsetField : public BitField<int, 0, 29> {}; class TypeField : public BitField<SlotType, 29, 3> {}; struct Chunk : Malloced { explicit Chunk(Chunk* next_chunk, int chunk_capacity) { count.SetValue(0); capacity.SetValue(chunk_capacity); buffer.SetValue(NewArray<TypedSlot>(chunk_capacity)); next.SetValue(next_chunk); } bool AddSlot(TypedSlot slot) { int current_count = count.Value(); if (current_count == capacity.Value()) return false; TypedSlot* current_buffer = buffer.Value(); // Order is important here. We have to write the slot first before // increasing the counter to guarantee that a consistent state is // observed by concurrent threads. current_buffer[current_count].Set(slot); count.SetValue(current_count + 1); return true; } ~Chunk() { DeleteArray(buffer.Value()); } base::AtomicValue<Chunk*> next; base::AtomicValue<int> count; base::AtomicValue<int> capacity; base::AtomicValue<TypedSlot*> buffer; }; Address page_start_; base::AtomicValue<Chunk*> chunk_; base::Mutex to_be_freed_chunks_mutex_; std::stack<Chunk*> to_be_freed_chunks_; }; } // namespace internal } // namespace v8 #endif // V8_SLOT_SET_H