// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS // Note on Mips implementation: // // The result_register() for mips is the 'v0' register, which is defined // by the ABI to contain function return values. However, the first // parameter to a function is defined to be 'a0'. So there are many // places where we have to move a previous result in v0 to a0 for the // next call: mov(a0, v0). This is not needed on the other architectures. #include "src/full-codegen/full-codegen.h" #include "src/ast/compile-time-value.h" #include "src/ast/scopes.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compilation-info.h" #include "src/compiler.h" #include "src/debug/debug.h" #include "src/ic/ic.h" #include "src/mips/code-stubs-mips.h" #include "src/mips/macro-assembler-mips.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm()) // A patch site is a location in the code which it is possible to patch. This // class has a number of methods to emit the code which is patchable and the // method EmitPatchInfo to record a marker back to the patchable code. This // marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy // (raw 16 bit immediate value is used) is the delta from the pc to the first // instruction of the patchable code. // The marker instruction is effectively a NOP (dest is zero_reg) and will // never be emitted by normal code. class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); } // When initially emitting this ensure that a jump is always generated to skip // the inlined smi code. void EmitJumpIfNotSmi(Register reg, Label* target) { DCHECK(!patch_site_.is_bound() && !info_emitted_); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ bind(&patch_site_); __ andi(at, reg, 0); // Always taken before patched. __ BranchShort(target, eq, at, Operand(zero_reg)); } // When initially emitting this ensure that a jump is never generated to skip // the inlined smi code. void EmitJumpIfSmi(Register reg, Label* target) { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); DCHECK(!patch_site_.is_bound() && !info_emitted_); __ bind(&patch_site_); __ andi(at, reg, 0); // Never taken before patched. __ BranchShort(target, ne, at, Operand(zero_reg)); } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); Register reg = Register::from_code(delta_to_patch_site / kImm16Mask); __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: MacroAssembler* masm() { return masm_; } MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // o a1: the JS function object being called (i.e. ourselves) // o a3: the new target value // o cp: our context // o fp: our caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-mips.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; profiling_counter_ = isolate()->factory()->NewCell( Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(literal()); Comment cmnt(masm_, "[ function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) { int receiver_offset = info->scope()->num_parameters() * kPointerSize; __ lw(a2, MemOperand(sp, receiver_offset)); __ AssertNotSmi(a2); __ GetObjectType(a2, a2, a2); __ Check(ge, kSloppyFunctionExpectsJSReceiverReceiver, a2, Operand(FIRST_JS_RECEIVER_TYPE)); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->GeneratePreagedPrologue()); // Increment invocation count for the function. { Comment cmnt(masm_, "[ Increment invocation count"); __ lw(a0, FieldMemOperand(a1, JSFunction::kLiteralsOffset)); __ lw(a0, FieldMemOperand(a0, LiteralsArray::kFeedbackVectorOffset)); __ lw(t0, FieldMemOperand( a0, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize)); __ Addu(t0, t0, Operand(Smi::FromInt(1))); __ sw(t0, FieldMemOperand( a0, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize)); } { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0); OperandStackDepthIncrement(locals_count); if (locals_count > 0) { if (locals_count >= 128) { Label ok; __ Subu(t5, sp, Operand(locals_count * kPointerSize)); __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); __ Branch(&ok, hs, t5, Operand(a2)); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); } __ LoadRoot(t5, Heap::kUndefinedValueRootIndex); int kMaxPushes = FLAG_optimize_for_size ? 4 : 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ li(a2, Operand(loop_iterations)); Label loop_header; __ bind(&loop_header); // Do pushes. __ Subu(sp, sp, Operand(kMaxPushes * kPointerSize)); for (int i = 0; i < kMaxPushes; i++) { __ sw(t5, MemOperand(sp, i * kPointerSize)); } // Continue loop if not done. __ Subu(a2, a2, Operand(1)); __ Branch(&loop_header, ne, a2, Operand(zero_reg)); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. __ Subu(sp, sp, Operand(remaining * kPointerSize)); for (int i = 0; i < remaining; i++) { __ sw(t5, MemOperand(sp, i * kPointerSize)); } } } bool function_in_register_a1 = true; // Possibly allocate a local context. if (info->scope()->NeedsContext()) { Comment cmnt(masm_, "[ Allocate context"); // Argument to NewContext is the function, which is still in a1. bool need_write_barrier = true; int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (info->scope()->is_script_scope()) { __ push(a1); __ Push(info->scope()->scope_info()); __ CallRuntime(Runtime::kNewScriptContext); PrepareForBailoutForId(BailoutId::ScriptContext(), BailoutState::TOS_REGISTER); // The new target value is not used, clobbering is safe. DCHECK_NULL(info->scope()->new_target_var()); } else { if (info->scope()->new_target_var() != nullptr) { __ push(a3); // Preserve new target. } if (slots <= FastNewFunctionContextStub::kMaximumSlots) { FastNewFunctionContextStub stub(isolate()); __ li(FastNewFunctionContextDescriptor::SlotsRegister(), Operand(slots)); __ CallStub(&stub); // Result of FastNewFunctionContextStub is always in new space. need_write_barrier = false; } else { __ push(a1); __ CallRuntime(Runtime::kNewFunctionContext); } if (info->scope()->new_target_var() != nullptr) { __ pop(a3); // Restore new target. } } function_in_register_a1 = false; // Context is returned in v0. It replaces the context passed to us. // It's saved in the stack and kept live in cp. __ mov(cp, v0); __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); int first_parameter = info->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info->scope()->receiver() : info->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ lw(a0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ sw(a0, target); // Update the write barrier. if (need_write_barrier) { __ RecordWriteContextSlot(cp, target.offset(), a0, a2, kRAHasBeenSaved, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, a0, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } // Register holding this function and new target are both trashed in case we // bailout here. But since that can happen only when new target is not used // and we allocate a context, the value of |function_in_register| is correct. PrepareForBailoutForId(BailoutId::FunctionContext(), BailoutState::NO_REGISTERS); // Possibly set up a local binding to the this function which is used in // derived constructors with super calls. Variable* this_function_var = info->scope()->this_function_var(); if (this_function_var != nullptr) { Comment cmnt(masm_, "[ This function"); if (!function_in_register_a1) { __ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // The write barrier clobbers register again, keep it marked as such. } SetVar(this_function_var, a1, a0, a2); } // Possibly set up a local binding to the new target value. Variable* new_target_var = info->scope()->new_target_var(); if (new_target_var != nullptr) { Comment cmnt(masm_, "[ new.target"); SetVar(new_target_var, a3, a0, a2); } // Possibly allocate RestParameters Variable* rest_param = info->scope()->rest_parameter(); if (rest_param != nullptr) { Comment cmnt(masm_, "[ Allocate rest parameter array"); if (!function_in_register_a1) { __ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } FastNewRestParameterStub stub(isolate()); __ CallStub(&stub); function_in_register_a1 = false; SetVar(rest_param, v0, a1, a2); } Variable* arguments = info->scope()->arguments(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register_a1) { // Load this again, if it's used by the local context below. __ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } if (is_strict(language_mode()) || !has_simple_parameters()) { FastNewStrictArgumentsStub stub(isolate()); __ CallStub(&stub); } else if (literal()->has_duplicate_parameters()) { __ Push(a1); __ CallRuntime(Runtime::kNewSloppyArguments_Generic); } else { FastNewSloppyArgumentsStub stub(isolate()); __ CallStub(&stub); } SetVar(arguments, v0, a1, a2); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter); } // Visit the declarations and body unless there is an illegal // redeclaration. PrepareForBailoutForId(BailoutId::FunctionEntry(), BailoutState::NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope()->declarations()); } // Assert that the declarations do not use ICs. Otherwise the debugger // won't be able to redirect a PC at an IC to the correct IC in newly // recompiled code. DCHECK_EQ(0, ic_total_count_); { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), BailoutState::NO_REGISTERS); Label ok; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(at)); Handle<Code> stack_check = isolate()->builtins()->StackCheck(); PredictableCodeSizeScope predictable( masm_, masm_->CallSize(stack_check, RelocInfo::CODE_TARGET)); __ Call(stack_check, RelocInfo::CODE_TARGET); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(literal()->body()); DCHECK(loop_depth() == 0); } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return <undefined>;"); __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(); } void FullCodeGenerator::ClearAccumulator() { DCHECK(Smi::kZero == 0); __ mov(v0, zero_reg); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ li(a2, Operand(profiling_counter_)); __ lw(a3, FieldMemOperand(a2, Cell::kValueOffset)); __ Subu(a3, a3, Operand(Smi::FromInt(delta))); __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; if (info_->is_debug()) { // Detect debug break requests as soon as possible. reset_value = FLAG_interrupt_budget >> 4; } __ li(a2, Operand(profiling_counter_)); __ li(a3, Operand(Smi::FromInt(reset_value))); __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset)); } void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need // to make sure it is constant. Branch may emit a skip-or-jump sequence // instead of the normal Branch. It seems that the "skip" part of that // sequence is about as long as this Branch would be so it is safe to ignore // that. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Comment cmnt(masm_, "[ Back edge bookkeeping"); Label ok; DCHECK(back_edge_target->is_bound()); int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ slt(at, a3, zero_reg); __ beq(at, zero_reg, &ok); // Call will emit a li t9 first, so it is safe to use the delay slot. __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence( bool is_tail_call) { // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset(); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ Branch(&ok, ge, a3, Operand(zero_reg)); // Don't need to save result register if we are going to do a tail call. if (!is_tail_call) { __ push(v0); } __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); if (!is_tail_call) { __ pop(v0); } EmitProfilingCounterReset(); __ bind(&ok); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ Branch(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in v0. __ push(v0); __ CallRuntime(Runtime::kTraceExit); } EmitProfilingCounterHandlingForReturnSequence(false); // Make sure that the constant pool is not emitted inside of the return // sequence. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); int32_t arg_count = info_->scope()->num_parameters() + 1; int32_t sp_delta = arg_count * kPointerSize; SetReturnPosition(literal()); __ mov(sp, fp); __ MultiPop(static_cast<RegList>(fp.bit() | ra.bit())); __ Addu(sp, sp, Operand(sp_delta)); __ Jump(ra); } } } void FullCodeGenerator::RestoreContext() { __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); codegen()->PushOperand(result_register()); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); codegen()->PushOperand(result_register()); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ Branch(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ Branch(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle<Object> lit) const { __ li(result_register(), Operand(lit)); } void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { // Immediates cannot be pushed directly. __ li(result_register(), Operand(lit)); codegen()->PushOperand(result_register()); } void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(lit->IsNull(isolate()) || lit->IsUndefined(isolate()) || !lit->IsUndetectable()); if (lit->IsUndefined(isolate()) || lit->IsNull(isolate()) || lit->IsFalse(isolate())) { if (false_label_ != fall_through_) __ Branch(false_label_); } else if (lit->IsTrue(isolate()) || lit->IsJSObject()) { if (true_label_ != fall_through_) __ Branch(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ Branch(false_label_); } else { if (true_label_ != fall_through_) __ Branch(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ Branch(false_label_); } else { if (true_label_ != fall_through_) __ Branch(true_label_); } } else { // For simplicity we always test the accumulator register. __ li(result_register(), Operand(lit)); codegen()->DoTest(this); } } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) codegen()->DropOperands(count - 1); __ sw(reg, MemOperand(sp, 0)); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ Branch(&done); __ bind(materialize_false); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { codegen()->OperandStackDepthIncrement(1); Label done; __ bind(materialize_true); __ LoadRoot(at, Heap::kTrueValueRootIndex); // Push the value as the following branch can clobber at in long branch mode. __ push(at); __ Branch(&done); __ bind(materialize_false); __ LoadRoot(at, Heap::kFalseValueRootIndex); __ push(at); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(at, value_root_index); codegen()->PushOperand(at); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ Branch(true_label_); } else { if (false_label_ != fall_through_) __ Branch(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { __ mov(a0, result_register()); Handle<Code> ic = ToBooleanICStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ LoadRoot(at, Heap::kTrueValueRootIndex); Split(eq, result_register(), Operand(at), if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Register lhs, const Operand& rhs, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ Branch(if_true, cc, lhs, rhs); } else if (if_true == fall_through) { __ Branch(if_false, NegateCondition(cc), lhs, rhs); } else { __ Branch(if_true, cc, lhs, rhs); __ Branch(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { DCHECK(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return MemOperand(fp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextMemOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { // Use destination as scratch. MemOperand location = VarOperand(var, dest); __ lw(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!scratch0.is(src)); DCHECK(!scratch0.is(scratch1)); DCHECK(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ sw(src, location); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1, kRAHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest()) return; Label skip; if (should_normalize) __ Branch(&skip); PrepareForBailout(expr, BailoutState::TOS_REGISTER); if (should_normalize) { __ LoadRoot(t0, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(t0), if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current function // context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check that we're not inside a with or catch context. __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset)); __ LoadRoot(t0, Heap::kWithContextMapRootIndex); __ Check(ne, kDeclarationInWithContext, a1, Operand(t0)); __ LoadRoot(t0, Heap::kCatchContextMapRootIndex); __ Check(ne, kDeclarationInCatchContext, a1, Operand(t0)); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::UNALLOCATED: { DCHECK(!variable->binding_needs_init()); FeedbackVectorSlot slot = proxy->VariableFeedbackSlot(); DCHECK(!slot.IsInvalid()); globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone()); globals_->Add(isolate()->factory()->undefined_value(), zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: if (variable->binding_needs_init()) { Comment cmnt(masm_, "[ VariableDeclaration"); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ sw(t0, StackOperand(variable)); } break; case VariableLocation::CONTEXT: if (variable->binding_needs_init()) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ sw(at, ContextMemOperand(cp, variable->index())); // No write barrier since the_hole_value is in old space. PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); } break; case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); DCHECK_EQ(VAR, variable->mode()); DCHECK(!variable->binding_needs_init()); __ li(a2, Operand(variable->name())); __ Push(a2); __ CallRuntime(Runtime::kDeclareEvalVar); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::UNALLOCATED: { FeedbackVectorSlot slot = proxy->VariableFeedbackSlot(); DCHECK(!slot.IsInvalid()); globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone()); Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { Comment cmnt(masm_, "[ FunctionDeclaration"); VisitForAccumulatorValue(declaration->fun()); __ sw(result_register(), StackOperand(variable)); break; } case VariableLocation::CONTEXT: { Comment cmnt(masm_, "[ FunctionDeclaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ sw(result_register(), ContextMemOperand(cp, variable->index())); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(cp, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ FunctionDeclaration"); __ li(a2, Operand(variable->name())); PushOperand(a2); // Push initial value for function declaration. VisitForStackValue(declaration->fun()); CallRuntimeWithOperands(Runtime::kDeclareEvalFunction); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. __ li(a1, Operand(pairs)); __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); __ EmitLoadTypeFeedbackVector(a2); __ Push(a1, a0, a2); __ CallRuntime(Runtime::kDeclareGlobals); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); ZoneList<CaseClause*>* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); __ mov(a0, result_register()); // CompareStub requires args in a0, a1. // Perform the comparison as if via '==='. __ lw(a1, MemOperand(sp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ or_(a2, a1, a0); patch_site.EmitJumpIfNotSmi(a2, &slow_case); __ Branch(&next_test, ne, a1, Operand(a0)); __ Drop(1); // Switch value is no longer needed. __ Branch(clause->body_target()); __ bind(&slow_case); } // Record position before stub call for type feedback. SetExpressionPosition(clause); Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ Branch(&skip); PrepareForBailout(clause, BailoutState::TOS_REGISTER); __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(&next_test, ne, v0, Operand(at)); __ Drop(1); __ Branch(clause->body_target()); __ bind(&skip); __ Branch(&next_test, ne, v0, Operand(zero_reg)); __ Drop(1); // Switch value is no longer needed. __ Branch(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); DropOperands(1); // Switch value is no longer needed. if (default_clause == NULL) { __ Branch(nested_statement.break_label()); } else { __ Branch(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), BailoutState::NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt, SKIP_BREAK); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); // Get the object to enumerate over. SetExpressionAsStatementPosition(stmt->enumerable()); VisitForAccumulatorValue(stmt->enumerable()); __ mov(a0, result_register()); OperandStackDepthIncrement(5); Label loop, exit; Iteration loop_statement(this, stmt); increment_loop_depth(); // If the object is null or undefined, skip over the loop, otherwise convert // it to a JS receiver. See ECMA-262 version 5, section 12.6.4. Label convert, done_convert; __ JumpIfSmi(a0, &convert); __ GetObjectType(a0, a1, a1); __ Branch(USE_DELAY_SLOT, &done_convert, ge, a1, Operand(FIRST_JS_RECEIVER_TYPE)); __ LoadRoot(at, Heap::kNullValueRootIndex); // In delay slot. __ Branch(USE_DELAY_SLOT, &exit, eq, a0, Operand(at)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); // In delay slot. __ Branch(&exit, eq, a0, Operand(at)); __ bind(&convert); __ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET); RestoreContext(); __ mov(a0, v0); __ bind(&done_convert); PrepareForBailoutForId(stmt->ToObjectId(), BailoutState::TOS_REGISTER); __ push(a0); // Check cache validity in generated code. If we cannot guarantee cache // validity, call the runtime system to check cache validity or get the // property names in a fixed array. Note: Proxies never have an enum cache, // so will always take the slow path. Label call_runtime; __ CheckEnumCache(&call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ Branch(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(a0); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kForInEnumerate); PrepareForBailoutForId(stmt->EnumId(), BailoutState::TOS_REGISTER); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kMetaMapRootIndex); __ Branch(&fixed_array, ne, a2, Operand(at)); // We got a map in register v0. Get the enumeration cache from it. Label no_descriptors; __ bind(&use_cache); __ EnumLength(a1, v0); __ Branch(&no_descriptors, eq, a1, Operand(Smi::kZero)); __ LoadInstanceDescriptors(v0, a2); __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheOffset)); __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ li(a0, Operand(Smi::kZero)); // Push map, enumeration cache, enumeration cache length (as smi) and zero. __ Push(v0, a2, a1, a0); __ jmp(&loop); __ bind(&no_descriptors); __ Drop(1); __ jmp(&exit); // We got a fixed array in register v0. Iterate through that. __ bind(&fixed_array); __ li(a1, Operand(Smi::FromInt(1))); // Smi(1) indicates slow check __ Push(a1, v0); // Smi and array __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset)); __ Push(a1); // Fixed array length (as smi). PrepareForBailoutForId(stmt->PrepareId(), BailoutState::NO_REGISTERS); __ li(a0, Operand(Smi::kZero)); __ Push(a0); // Initial index. // Generate code for doing the condition check. __ bind(&loop); SetExpressionAsStatementPosition(stmt->each()); // Load the current count to a0, load the length to a1. __ lw(a0, MemOperand(sp, 0 * kPointerSize)); __ lw(a1, MemOperand(sp, 1 * kPointerSize)); __ Branch(loop_statement.break_label(), hs, a0, Operand(a1)); // Get the current entry of the array into result_register. __ lw(a2, MemOperand(sp, 2 * kPointerSize)); __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ Lsa(t0, a2, a0, kPointerSizeLog2 - kSmiTagSize); __ lw(result_register(), MemOperand(t0)); // Current entry. // Get the expected map from the stack or a smi in the // permanent slow case into register a2. __ lw(a2, MemOperand(sp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ lw(a1, MemOperand(sp, 4 * kPointerSize)); __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Branch(&update_each, eq, t0, Operand(a2)); // We need to filter the key, record slow-path here. int const vector_index = SmiFromSlot(slot)->value(); __ EmitLoadTypeFeedbackVector(a3); __ li(a2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate()))); __ sw(a2, FieldMemOperand(a3, FixedArray::OffsetOfElementAt(vector_index))); __ mov(a0, result_register()); // a0 contains the key. The receiver in a1 is the second argument to the // ForInFilter. ForInFilter returns undefined if the receiver doesn't // have the key or returns the name-converted key. __ Call(isolate()->builtins()->ForInFilter(), RelocInfo::CODE_TARGET); RestoreContext(); PrepareForBailoutForId(stmt->FilterId(), BailoutState::TOS_REGISTER); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(loop_statement.continue_label(), eq, result_register(), Operand(at)); // Update the 'each' property or variable from the possibly filtered // entry in the result_register. __ bind(&update_each); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each(), stmt->EachFeedbackSlot()); PrepareForBailoutForId(stmt->AssignmentId(), BailoutState::NO_REGISTERS); } // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body(). PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS); // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for the going to the next element by incrementing // the index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); PrepareForBailoutForId(stmt->IncrementId(), BailoutState::NO_REGISTERS); __ pop(a0); __ Addu(a0, a0, Operand(Smi::FromInt(1))); __ push(a0); EmitBackEdgeBookkeeping(stmt, &loop); __ Branch(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); DropOperands(5); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp)); __ lw(StoreDescriptor::ValueRegister(), MemOperand(sp, offset * kPointerSize)); CallStoreIC(slot, isolate()->factory()->home_object_symbol()); } void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ Move(StoreDescriptor::ReceiverRegister(), v0); __ lw(StoreDescriptor::ValueRegister(), MemOperand(sp, offset * kPointerSize)); CallStoreIC(slot, isolate()->factory()->home_object_symbol()); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow) { Register current = cp; Register next = a1; Register temp = a2; int to_check = scope()->ContextChainLengthUntilOutermostSloppyEval(); for (Scope* s = scope(); to_check > 0; s = s->outer_scope()) { if (!s->NeedsContext()) continue; if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ lw(temp, ContextMemOperand(current, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); } // Load next context in chain. __ lw(next, ContextMemOperand(current, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. current = next; to_check--; } // All extension objects were empty and it is safe to use a normal global // load machinery. EmitGlobalVariableLoad(proxy, typeof_mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = cp; Register next = a3; Register temp = t0; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->NeedsContext()) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ lw(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); } __ lw(next, ContextMemOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. context = next; } } // Check that last extension is "the hole". __ lw(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); // This function is used only for loads, not stores, so it's safe to // return an cp-based operand (the write barrier cannot be allowed to // destroy the cp register). return ContextMemOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow); __ Branch(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ lw(v0, ContextSlotOperandCheckExtensions(local, slow)); if (local->binding_needs_init()) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ subu(at, v0, at); // Sub as compare: at == 0 on eq. __ Branch(done, ne, at, Operand(zero_reg)); __ li(a0, Operand(var->name())); __ push(a0); __ CallRuntime(Runtime::kThrowReferenceError); } else { __ Branch(done); } } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { // Record position before possible IC call. SetExpressionPosition(proxy); PrepareForBailoutForId(proxy->BeforeId(), BailoutState::NO_REGISTERS); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case VariableLocation::UNALLOCATED: { Comment cmnt(masm_, "[ Global variable"); EmitGlobalVariableLoad(proxy, typeof_mode); context()->Plug(v0); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::CONTEXT: { DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode); Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable" : "[ Stack variable"); if (proxy->hole_check_mode() == HoleCheckMode::kRequired) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. Label done; GetVar(v0, var); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ subu(at, v0, at); // Sub as compare: at == 0 on eq. __ Branch(&done, ne, at, Operand(zero_reg)); __ li(a0, Operand(var->name())); __ push(a0); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&done); context()->Plug(v0); break; } context()->Plug(var); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ Lookup variable"); Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done); __ bind(&slow); __ Push(var->name()); Runtime::FunctionId function_id = typeof_mode == NOT_INSIDE_TYPEOF ? Runtime::kLoadLookupSlot : Runtime::kLoadLookupSlotInsideTypeof; __ CallRuntime(function_id); __ bind(&done); context()->Plug(v0); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) { Expression* expression = (property == NULL) ? NULL : property->value(); if (expression == NULL) { __ LoadRoot(a1, Heap::kNullValueRootIndex); PushOperand(a1); } else { VisitForStackValue(expression); if (NeedsHomeObject(expression)) { DCHECK(property->kind() == ObjectLiteral::Property::GETTER || property->kind() == ObjectLiteral::Property::SETTER); int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3; EmitSetHomeObject(expression, offset, property->GetSlot()); } } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle<FixedArray> constant_properties = expr->constant_properties(); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(constant_properties)); __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags()))); if (MustCreateObjectLiteralWithRuntime(expr)) { __ Push(a3, a2, a1, a0); __ CallRuntime(Runtime::kCreateObjectLiteral); } else { FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); __ CallStub(&stub); RestoreContext(); } PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER); // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in v0. bool result_saved = false; AccessorTable accessor_table(zone()); int property_index = 0; for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; Literal* key = property->key()->AsLiteral(); Expression* value = property->value(); if (!result_saved) { PushOperand(v0); // Save result on stack. result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (key->IsStringLiteral()) { DCHECK(key->IsPropertyName()); if (property->emit_store()) { VisitForAccumulatorValue(value); __ mov(StoreDescriptor::ValueRegister(), result_register()); DCHECK(StoreDescriptor::ValueRegister().is(a0)); __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp)); CallStoreIC(property->GetSlot(0), key->value()); PrepareForBailoutForId(key->id(), BailoutState::NO_REGISTERS); if (NeedsHomeObject(value)) { EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1)); } } else { VisitForEffect(value); } break; } // Duplicate receiver on stack. __ lw(a0, MemOperand(sp)); PushOperand(a0); VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } __ li(a0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes. PushOperand(a0); CallRuntimeWithOperands(Runtime::kSetProperty); } else { DropOperands(3); } break; case ObjectLiteral::Property::PROTOTYPE: // Duplicate receiver on stack. __ lw(a0, MemOperand(sp)); PushOperand(a0); VisitForStackValue(value); DCHECK(property->emit_store()); CallRuntimeWithOperands(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); break; case ObjectLiteral::Property::GETTER: if (property->emit_store()) { AccessorTable::Iterator it = accessor_table.lookup(key); it->second->bailout_id = expr->GetIdForPropertySet(property_index); it->second->getter = property; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { AccessorTable::Iterator it = accessor_table.lookup(key); it->second->bailout_id = expr->GetIdForPropertySet(property_index); it->second->setter = property; } break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ lw(a0, MemOperand(sp)); // Duplicate receiver. PushOperand(a0); VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ li(a0, Operand(Smi::FromInt(NONE))); PushOperand(a0); CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked); PrepareForBailoutForId(it->second->bailout_id, BailoutState::NO_REGISTERS); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part // starts with the first computed property name, and continues with all // properties to its right. All the code from above initializes the static // component of the object literal, and arranges for the map of the result to // reflect the static order in which the keys appear. For the dynamic // properties, we compile them into a series of "SetOwnProperty" runtime // calls. This will preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); Expression* value = property->value(); if (!result_saved) { PushOperand(v0); // Save result on the stack result_saved = true; } __ lw(a0, MemOperand(sp)); // Duplicate receiver. PushOperand(a0); if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(!property->is_computed_name()); VisitForStackValue(value); DCHECK(property->emit_store()); CallRuntimeWithOperands(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); } else { EmitPropertyKey(property, expr->GetIdForPropertyName(property_index)); VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::COMPUTED: if (property->emit_store()) { PushOperand(Smi::FromInt(NONE)); PushOperand(Smi::FromInt(property->NeedsSetFunctionName())); CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); } else { DropOperands(3); } break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); break; case ObjectLiteral::Property::GETTER: PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked); break; } } } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(v0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Handle<FixedArray> constant_elements = expr->constant_elements(); bool has_fast_elements = IsFastObjectElementsKind(expr->constant_elements_kind()); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } __ mov(a0, result_register()); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(constant_elements)); if (MustCreateArrayLiteralWithRuntime(expr)) { __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags()))); __ Push(a3, a2, a1, a0); __ CallRuntime(Runtime::kCreateArrayLiteral); } else { FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); RestoreContext(); } PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER); bool result_saved = false; // Is the result saved to the stack? ZoneList<Expression*>* subexprs = expr->values(); int length = subexprs->length(); // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int array_index = 0; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); DCHECK(!subexpr->IsSpread()); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { PushOperand(v0); // array literal result_saved = true; } VisitForAccumulatorValue(subexpr); __ li(StoreDescriptor::NameRegister(), Operand(Smi::FromInt(array_index))); __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp, 0)); __ mov(StoreDescriptor::ValueRegister(), result_register()); CallKeyedStoreIC(expr->LiteralFeedbackSlot()); PrepareForBailoutForId(expr->GetIdForElement(array_index), BailoutState::NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(v0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ Assignment"); Property* property = expr->target()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); } else { VisitForStackValue(property->obj()); } break; case NAMED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( property->obj()->AsSuperPropertyReference()->home_object()); PushOperand(result_register()); if (expr->is_compound()) { const Register scratch = a1; __ lw(scratch, MemOperand(sp, kPointerSize)); PushOperands(scratch, result_register()); } break; case KEYED_SUPER_PROPERTY: { VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( property->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(property->key()); PushOperand(result_register()); if (expr->is_compound()) { const Register scratch1 = t0; const Register scratch2 = a1; __ lw(scratch1, MemOperand(sp, 2 * kPointerSize)); __ lw(scratch2, MemOperand(sp, 1 * kPointerSize)); PushOperands(scratch1, scratch2, result_register()); } break; } case KEYED_PROPERTY: // We need the key and receiver on both the stack and in v0 and a1. if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); __ lw(LoadDescriptor::NameRegister(), MemOperand(sp, 0)); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), BailoutState::TOS_REGISTER); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; } } Token::Value op = expr->binary_op(); PushOperand(v0); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), BailoutState::TOS_REGISTER); } else { VisitForAccumulatorValue(expr->value()); } SetExpressionPosition(expr); // Store the value. switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->target()->AsVariableProxy(); EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(v0); break; } case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyStore(property); context()->Plug(v0); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyStore(property); context()->Plug(v0); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); SetExpressionPosition(expr); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); Label suspend, continuation, post_runtime, resume, exception; __ jmp(&suspend); __ bind(&continuation); // When we arrive here, v0 holds the generator object. __ RecordGeneratorContinuation(); __ lw(a1, FieldMemOperand(v0, JSGeneratorObject::kResumeModeOffset)); __ lw(v0, FieldMemOperand(v0, JSGeneratorObject::kInputOrDebugPosOffset)); __ Branch(&resume, eq, a1, Operand(Smi::FromInt(JSGeneratorObject::kNext))); __ Push(result_register()); __ Branch(&exception, eq, a1, Operand(Smi::FromInt(JSGeneratorObject::kThrow))); EmitCreateIteratorResult(true); EmitUnwindAndReturn(); __ bind(&exception); __ CallRuntime(expr->rethrow_on_exception() ? Runtime::kReThrow : Runtime::kThrow); __ bind(&suspend); OperandStackDepthIncrement(1); // Not popped on this path. VisitForAccumulatorValue(expr->generator_object()); DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); __ li(a1, Operand(Smi::FromInt(continuation.pos()))); __ sw(a1, FieldMemOperand(v0, JSGeneratorObject::kContinuationOffset)); __ sw(cp, FieldMemOperand(v0, JSGeneratorObject::kContextOffset)); __ mov(a1, cp); __ RecordWriteField(v0, JSGeneratorObject::kContextOffset, a1, a2, kRAHasBeenSaved, kDontSaveFPRegs); __ Addu(a1, fp, Operand(StandardFrameConstants::kExpressionsOffset)); __ Branch(&post_runtime, eq, sp, Operand(a1)); __ push(v0); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); RestoreContext(); __ bind(&post_runtime); PopOperand(result_register()); EmitReturnSequence(); __ bind(&resume); context()->Plug(result_register()); } void FullCodeGenerator::PushOperands(Register reg1, Register reg2) { OperandStackDepthIncrement(2); __ Push(reg1, reg2); } void FullCodeGenerator::PushOperands(Register reg1, Register reg2, Register reg3) { OperandStackDepthIncrement(3); __ Push(reg1, reg2, reg3); } void FullCodeGenerator::PushOperands(Register reg1, Register reg2, Register reg3, Register reg4) { OperandStackDepthIncrement(4); __ Push(reg1, reg2, reg3, reg4); } void FullCodeGenerator::PopOperands(Register reg1, Register reg2) { OperandStackDepthDecrement(2); __ Pop(reg1, reg2); } void FullCodeGenerator::EmitOperandStackDepthCheck() { if (FLAG_debug_code) { int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp + operand_stack_depth_ * kPointerSize; __ Subu(v0, fp, sp); __ Assert(eq, kUnexpectedStackDepth, v0, Operand(expected_diff)); } } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label allocate, done_allocate; __ Allocate(JSIteratorResult::kSize, v0, a2, a3, &allocate, NO_ALLOCATION_FLAGS); __ jmp(&done_allocate); __ bind(&allocate); __ Push(Smi::FromInt(JSIteratorResult::kSize)); __ CallRuntime(Runtime::kAllocateInNewSpace); __ bind(&done_allocate); __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1); PopOperand(a2); __ LoadRoot(a3, done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ LoadRoot(t0, Heap::kEmptyFixedArrayRootIndex); __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset)); __ sw(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, Expression* left_expr, Expression* right_expr) { Label done, smi_case, stub_call; Register scratch1 = a2; Register scratch2 = a3; // Get the arguments. Register left = a1; Register right = a0; PopOperand(left); __ mov(a0, result_register()); // Perform combined smi check on both operands. __ Or(scratch1, left, Operand(right)); STATIC_ASSERT(kSmiTag == 0); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(scratch1, &smi_case); __ bind(&stub_call); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); __ jmp(&done); __ bind(&smi_case); // Smi case. This code works the same way as the smi-smi case in the type // recording binary operation stub, see switch (op) { case Token::SAR: __ GetLeastBitsFromSmi(scratch1, right, 5); __ srav(right, left, scratch1); __ And(v0, right, Operand(~kSmiTagMask)); break; case Token::SHL: { __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ sllv(scratch1, scratch1, scratch2); __ Addu(scratch2, scratch1, Operand(0x40000000)); __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); break; } case Token::SHR: { __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ srlv(scratch1, scratch1, scratch2); __ And(scratch2, scratch1, 0xc0000000); __ Branch(&stub_call, ne, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); break; } case Token::ADD: __ AddBranchOvf(v0, left, Operand(right), &stub_call); break; case Token::SUB: __ SubBranchOvf(v0, left, Operand(right), &stub_call); break; case Token::MUL: { __ SmiUntag(scratch1, right); __ Mul(scratch2, v0, left, scratch1); __ sra(scratch1, v0, 31); __ Branch(&stub_call, ne, scratch1, Operand(scratch2)); __ Branch(&done, ne, v0, Operand(zero_reg)); __ Addu(scratch2, right, left); __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); DCHECK(Smi::kZero == 0); __ mov(v0, zero_reg); break; } case Token::BIT_OR: __ Or(v0, left, Operand(right)); break; case Token::BIT_AND: __ And(v0, left, Operand(right)); break; case Token::BIT_XOR: __ Xor(v0, left, Operand(right)); break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) { for (int i = 0; i < lit->properties()->length(); i++) { ClassLiteral::Property* property = lit->properties()->at(i); Expression* value = property->value(); Register scratch = a1; if (property->is_static()) { __ lw(scratch, MemOperand(sp, kPointerSize)); // constructor } else { __ lw(scratch, MemOperand(sp, 0)); // prototype } PushOperand(scratch); EmitPropertyKey(property, lit->GetIdForProperty(i)); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { __ CallRuntime(Runtime::kThrowIfStaticPrototype); __ push(v0); } VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ClassLiteral::Property::METHOD: PushOperand(Smi::FromInt(DONT_ENUM)); PushOperand(Smi::FromInt(property->NeedsSetFunctionName())); CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral); break; case ClassLiteral::Property::GETTER: PushOperand(Smi::FromInt(DONT_ENUM)); CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked); break; case ClassLiteral::Property::SETTER: PushOperand(Smi::FromInt(DONT_ENUM)); CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked); break; case ClassLiteral::Property::FIELD: default: UNREACHABLE(); } } } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { __ mov(a0, result_register()); PopOperand(a1); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); context()->Plug(v0); } void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackVectorSlot slot) { DCHECK(expr->IsValidReferenceExpressionOrThis()); Property* prop = expr->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->AsVariableProxy(); EffectContext context(this); EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot, proxy->hole_check_mode()); break; } case NAMED_PROPERTY: { PushOperand(result_register()); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ mov(StoreDescriptor::ReceiverRegister(), result_register()); PopOperand(StoreDescriptor::ValueRegister()); // Restore value. CallStoreIC(slot, prop->key()->AsLiteral()->value()); break; } case NAMED_SUPER_PROPERTY: { PushOperand(v0); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); // stack: value, this; v0: home_object Register scratch = a2; Register scratch2 = a3; __ mov(scratch, result_register()); // home_object __ lw(v0, MemOperand(sp, kPointerSize)); // value __ lw(scratch2, MemOperand(sp, 0)); // this __ sw(scratch2, MemOperand(sp, kPointerSize)); // this __ sw(scratch, MemOperand(sp, 0)); // home_object // stack: this, home_object; v0: value EmitNamedSuperPropertyStore(prop); break; } case KEYED_SUPER_PROPERTY: { PushOperand(v0); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); Register scratch = a2; Register scratch2 = a3; __ lw(scratch2, MemOperand(sp, 2 * kPointerSize)); // value // stack: value, this, home_object; v0: key, a3: value __ lw(scratch, MemOperand(sp, kPointerSize)); // this __ sw(scratch, MemOperand(sp, 2 * kPointerSize)); __ lw(scratch, MemOperand(sp, 0)); // home_object __ sw(scratch, MemOperand(sp, kPointerSize)); __ sw(v0, MemOperand(sp, 0)); __ Move(v0, scratch2); // stack: this, home_object, key; v0: value. EmitKeyedSuperPropertyStore(prop); break; } case KEYED_PROPERTY: { PushOperand(result_register()); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ mov(StoreDescriptor::NameRegister(), result_register()); PopOperands(StoreDescriptor::ValueRegister(), StoreDescriptor::ReceiverRegister()); CallKeyedStoreIC(slot); break; } } context()->Plug(v0); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ sw(result_register(), location); if (var->IsContextSlot()) { // RecordWrite may destroy all its register arguments. __ Move(a3, result_register()); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot( a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, FeedbackVectorSlot slot, HoleCheckMode hole_check_mode) { if (var->IsUnallocated()) { // Global var, const, or let. __ mov(StoreDescriptor::ValueRegister(), result_register()); __ LoadGlobalObject(StoreDescriptor::ReceiverRegister()); CallStoreIC(slot, var->name()); } else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) { DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, a1); // Perform an initialization check for lexically declared variables. if (hole_check_mode == HoleCheckMode::kRequired) { Label assign; __ lw(a3, location); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Branch(&assign, ne, a3, Operand(t0)); __ li(a3, Operand(var->name())); __ push(a3); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&assign); } if (var->mode() != CONST) { EmitStoreToStackLocalOrContextSlot(var, location); } else if (var->throw_on_const_assignment(language_mode())) { __ CallRuntime(Runtime::kThrowConstAssignError); } } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) { // Initializing assignment to const {this} needs a write barrier. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label uninitialized_this; MemOperand location = VarOperand(var, a1); __ lw(a3, location); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&uninitialized_this, eq, a3, Operand(at)); __ li(a0, Operand(var->name())); __ Push(a0); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&uninitialized_this); EmitStoreToStackLocalOrContextSlot(var, location); } else { DCHECK(var->mode() != CONST || op == Token::INIT); if (var->IsLookupSlot()) { // Assignment to var. __ Push(var->name()); __ Push(v0); __ CallRuntime(is_strict(language_mode()) ? Runtime::kStoreLookupSlot_Strict : Runtime::kStoreLookupSlot_Sloppy); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK((var->IsStackAllocated() || var->IsContextSlot())); MemOperand location = VarOperand(var, a1); if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) { // Check for an uninitialized let binding. __ lw(a2, location); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Check(eq, kLetBindingReInitialization, a2, Operand(t0)); } EmitStoreToStackLocalOrContextSlot(var, location); } } } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); __ mov(StoreDescriptor::ValueRegister(), result_register()); PopOperand(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(v0); } void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // v0 : value // stack : receiver ('this'), home_object DCHECK(prop != NULL); Literal* key = prop->key()->AsLiteral(); DCHECK(key != NULL); PushOperand(key->value()); PushOperand(v0); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy); } void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // v0 : value // stack : receiver ('this'), home_object, key DCHECK(prop != NULL); PushOperand(v0); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // Call keyed store IC. // The arguments are: // - a0 is the value, // - a1 is the key, // - a2 is the receiver. __ mov(StoreDescriptor::ValueRegister(), result_register()); PopOperands(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister()); DCHECK(StoreDescriptor::ValueRegister().is(a0)); CallKeyedStoreIC(expr->AssignmentSlot()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(v0); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); // Get the target function. ConvertReceiverMode convert_mode; if (callee->IsVariableProxy()) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, BailoutState::NO_REGISTERS); } // Push undefined as receiver. This is patched in the method prologue if it // is a sloppy mode method. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); PushOperand(at); convert_mode = ConvertReceiverMode::kNullOrUndefined; } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), BailoutState::TOS_REGISTER); // Push the target function under the receiver. __ lw(at, MemOperand(sp, 0)); PushOperand(at); __ sw(v0, MemOperand(sp, kPointerSize)); convert_mode = ConvertReceiverMode::kNotNullOrUndefined; } EmitCall(expr, convert_mode); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { SetExpressionPosition(expr); Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. const Register scratch = a1; SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForAccumulatorValue(super_ref->home_object()); __ mov(scratch, v0); VisitForAccumulatorValue(super_ref->this_var()); PushOperands(scratch, v0, v0, scratch); PushOperand(key->value()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadFromSuper will pop here and below. // - home_object // - key CallRuntimeWithOperands(Runtime::kLoadFromSuper); PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); // Replace home_object with target function. __ sw(v0, MemOperand(sp, kPointerSize)); // Stack here: // - target function // - this (receiver) EmitCall(expr); } // Code common for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); __ Move(LoadDescriptor::NameRegister(), v0); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), BailoutState::TOS_REGISTER); // Push the target function under the receiver. __ lw(at, MemOperand(sp, 0)); PushOperand(at); __ sw(v0, MemOperand(sp, kPointerSize)); EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined); } void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); // Load the function from the receiver. const Register scratch = a1; SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForAccumulatorValue(super_ref->home_object()); __ Move(scratch, v0); VisitForAccumulatorValue(super_ref->this_var()); PushOperands(scratch, v0, v0, scratch); VisitForStackValue(prop->key()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. // - home_object // - key CallRuntimeWithOperands(Runtime::kLoadKeyedFromSuper); PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); // Replace home_object with target function. __ sw(v0, MemOperand(sp, kPointerSize)); // Stack here: // - target function // - this (receiver) EmitCall(expr); } void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) { // Load the arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); // Record source position of the IC call. SetCallPosition(expr, expr->tail_call_mode()); if (expr->tail_call_mode() == TailCallMode::kAllow) { if (FLAG_trace) { __ CallRuntime(Runtime::kTraceTailCall); } // Update profiling counters before the tail call since we will // not return to this function. EmitProfilingCounterHandlingForReturnSequence(true); } Handle<Code> code = CodeFactory::CallIC(isolate(), mode, expr->tail_call_mode()).code(); __ li(a3, Operand(SmiFromSlot(expr->CallFeedbackICSlot()))); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ li(a0, Operand(arg_count)); CallIC(code); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->DropAndPlug(1, v0); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(Call* expr) { int arg_count = expr->arguments()->length(); // t4: copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ lw(t4, MemOperand(sp, arg_count * kPointerSize)); } else { __ LoadRoot(t4, Heap::kUndefinedValueRootIndex); } // t3: the receiver of the enclosing function. __ lw(t3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // t2: the language mode. __ li(t2, Operand(Smi::FromInt(language_mode()))); // t1: the start position of the scope the calls resides in. __ li(t1, Operand(Smi::FromInt(scope()->start_position()))); // t0: the source position of the eval call. __ li(t0, Operand(Smi::FromInt(expr->position()))); // Do the runtime call. __ Push(t4, t3, t2, t1, t0); __ CallRuntime(Runtime::kResolvePossiblyDirectEval); } // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls. void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) { VariableProxy* callee = expr->expression()->AsVariableProxy(); if (callee->var()->IsLookupSlot()) { Label slow, done; SetExpressionPosition(callee); // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); // Call the runtime to find the function to call (returned in v0) // and the object holding it (returned in v1). __ Push(callee->name()); __ CallRuntime(Runtime::kLoadLookupSlotForCall); PushOperands(v0, v1); // Function, receiver. PrepareForBailoutForId(expr->LookupId(), BailoutState::NO_REGISTERS); // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { Label call; __ Branch(&call); __ bind(&done); // Push function. __ push(v0); // The receiver is implicitly the global receiver. Indicate this // by passing the hole to the call function stub. __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); __ push(a1); __ bind(&call); } } else { VisitForStackValue(callee); // refEnv.WithBaseObject() __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); PushOperand(a2); // Reserved receiver slot. } } void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) { // In a call to eval, we first call Runtime_ResolvePossiblyDirectEval // to resolve the function we need to call. Then we call the resolved // function using the given arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); PushCalleeAndWithBaseObject(expr); // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and // resolve eval. __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ push(a1); EmitResolvePossiblyDirectEval(expr); // Touch up the stack with the resolved function. __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize)); PrepareForBailoutForId(expr->EvalId(), BailoutState::NO_REGISTERS); // Record source position for debugger. SetCallPosition(expr); Handle<Code> code = CodeFactory::CallIC(isolate(), ConvertReceiverMode::kAny, expr->tail_call_mode()) .code(); __ li(a3, Operand(SmiFromSlot(expr->CallFeedbackICSlot()))); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ li(a0, Operand(arg_count)); __ Call(code, RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->DropAndPlug(1, v0); } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored.g DCHECK(!expr->expression()->IsSuperPropertyReference()); VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load function and argument count into a1 and a0. __ li(a0, Operand(arg_count)); __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); // Record call targets in unoptimized code. __ EmitLoadTypeFeedbackVector(a2); __ li(a3, Operand(SmiFromSlot(expr->CallNewFeedbackSlot()))); CallConstructStub stub(isolate()); CallIC(stub.GetCode()); OperandStackDepthDecrement(arg_count + 1); PrepareForBailoutForId(expr->ReturnId(), BailoutState::TOS_REGISTER); RestoreContext(); context()->Plug(v0); } void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { SuperCallReference* super_call_ref = expr->expression()->AsSuperCallReference(); DCHECK_NOT_NULL(super_call_ref); // Push the super constructor target on the stack (may be null, // but the Construct builtin can deal with that properly). VisitForAccumulatorValue(super_call_ref->this_function_var()); __ AssertFunction(result_register()); __ lw(result_register(), FieldMemOperand(result_register(), HeapObject::kMapOffset)); __ lw(result_register(), FieldMemOperand(result_register(), Map::kPrototypeOffset)); PushOperand(result_register()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load new target into a3. VisitForAccumulatorValue(super_call_ref->new_target_var()); __ mov(a3, result_register()); // Load function and argument count into a1 and a0. __ li(a0, Operand(arg_count)); __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->Plug(v0); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ SmiTst(v0, t0); Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ge, a1, Operand(FIRST_JS_RECEIVER_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_ARRAY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_TYPED_ARRAY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_PROXY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is not a JSReceiver, we return null. __ JumpIfSmi(v0, &null); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(v0, v0, a1); // Map is now in v0. __ Branch(&null, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE)); // Return 'Function' for JSFunction and JSBoundFunction objects. STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); __ Branch(&function, hs, a1, Operand(FIRST_FUNCTION_TYPE)); // Check if the constructor in the map is a JS function. Register instance_type = a2; __ GetMapConstructor(v0, v0, a1, instance_type); __ Branch(&non_function_constructor, ne, instance_type, Operand(JS_FUNCTION_TYPE)); // v0 now contains the constructor function. Grab the // instance class name from there. __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset)); __ Branch(&done); // Functions have class 'Function'. __ bind(&function); __ LoadRoot(v0, Heap::kFunction_stringRootIndex); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ LoadRoot(v0, Heap::kObject_stringRootIndex); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(v0, Heap::kNullValueRootIndex); // All done. __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ mov(a0, result_register()); Register object = a1; Register index = a0; Register result = v0; PopOperand(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Load the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitCall(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_LE(2, args->length()); // Push target, receiver and arguments onto the stack. for (Expression* const arg : *args) { VisitForStackValue(arg); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); // Move target to a1. int const argc = args->length() - 2; __ lw(a1, MemOperand(sp, (argc + 1) * kPointerSize)); // Call the target. __ li(a0, Operand(argc)); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(argc + 1); RestoreContext(); // Discard the function left on TOS. context()->DropAndPlug(1, v0); } void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); __ AssertFunction(v0); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lw(v0, FieldMemOperand(v0, Map::kPrototypeOffset)); context()->Plug(v0); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ li(at, Operand(debug_is_active)); __ lb(v0, MemOperand(at)); __ SmiTag(v0); context()->Plug(v0); } void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); Label runtime, done; __ Allocate(JSIteratorResult::kSize, v0, a2, a3, &runtime, NO_ALLOCATION_FLAGS); __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1); __ Pop(a2, a3); __ LoadRoot(t0, Heap::kEmptyFixedArrayRootIndex); __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset)); __ sw(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); __ jmp(&done); __ bind(&runtime); CallRuntimeWithOperands(Runtime::kCreateIterResultObject); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) { // Push function. __ LoadNativeContextSlot(expr->context_index(), v0); PushOperand(v0); // Push undefined as the receiver. __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); PushOperand(v0); } void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); SetCallPosition(expr); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ li(a0, Operand(arg_count)); __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RestoreContext(); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kDeleteProperty_Strict : Runtime::kDeleteProperty_Sloppy); context()->Plug(v0); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode but // "delete this" is allowed. bool is_this = var->is_this(); DCHECK(is_sloppy(language_mode()) || is_this); if (var->IsUnallocated()) { __ LoadGlobalObject(a2); __ li(a1, Operand(var->name())); __ Push(a2, a1); __ CallRuntime(Runtime::kDeleteProperty_Sloppy); context()->Plug(v0); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(is_this); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ Push(var->name()); __ CallRuntime(Runtime::kDeleteLookupSlot); context()->Plug(v0); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), BailoutState::NO_REGISTERS); __ LoadRoot(v0, Heap::kTrueValueRootIndex); if (context()->IsStackValue()) __ push(v0); __ jmp(&done); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), BailoutState::NO_REGISTERS); __ LoadRoot(v0, Heap::kFalseValueRootIndex); if (context()->IsStackValue()) __ push(v0); __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { AccumulatorValueContext context(this); VisitForTypeofValue(expr->expression()); } __ mov(a3, v0); __ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET); context()->Plug(v0); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ CountOperation"); Property* prop = expr->expression()->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ li(at, Operand(Smi::kZero)); PushOperand(at); } switch (assign_type) { case NAMED_PROPERTY: { // Put the object both on the stack and in the register. VisitForStackValue(prop->obj()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); EmitNamedPropertyLoad(prop); break; } case NAMED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); const Register scratch = a1; __ lw(scratch, MemOperand(sp, 0)); // this PushOperands(result_register(), scratch, result_register()); EmitNamedSuperPropertyLoad(prop); break; } case KEYED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); const Register scratch1 = a1; const Register scratch2 = t0; __ lw(scratch1, MemOperand(sp, 1 * kPointerSize)); // this __ lw(scratch2, MemOperand(sp, 0 * kPointerSize)); // home object PushOperands(result_register(), scratch1, scratch2, result_register()); EmitKeyedSuperPropertyLoad(prop); break; } case KEYED_PROPERTY: { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); __ lw(LoadDescriptor::NameRegister(), MemOperand(sp, 0)); EmitKeyedPropertyLoad(prop); break; } case VARIABLE: UNREACHABLE(); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), BailoutState::TOS_REGISTER); } else { PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); } // Inline smi case if we are in a loop. Label stub_call, done; JumpPatchSite patch_site(masm_); int count_value = expr->op() == Token::INC ? 1 : -1; __ mov(a0, v0); if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(v0, &slow); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(v0); break; case NAMED_PROPERTY: __ sw(v0, MemOperand(sp, kPointerSize)); break; case NAMED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 3 * kPointerSize)); break; } } } Register scratch1 = a1; __ li(scratch1, Operand(Smi::FromInt(count_value))); __ AddBranchNoOvf(v0, v0, Operand(scratch1), &done); // Call stub. Undo operation first. __ Move(v0, a0); __ jmp(&stub_call); __ bind(&slow); } // Convert old value into a number. __ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); RestoreContext(); PrepareForBailoutForId(expr->ToNumberId(), BailoutState::TOS_REGISTER); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: PushOperand(v0); break; case NAMED_PROPERTY: __ sw(v0, MemOperand(sp, kPointerSize)); break; case NAMED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 3 * kPointerSize)); break; } } } __ bind(&stub_call); __ mov(a1, v0); __ li(a0, Operand(Smi::FromInt(count_value))); SetExpressionPosition(expr); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); __ bind(&done); // Store the value returned in v0. switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (expr->is_postfix()) { { EffectContext context(this); EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context.Plug(v0); } // For all contexts except EffectConstant we have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(v0); } break; } case NAMED_PROPERTY: { __ mov(StoreDescriptor::ValueRegister(), result_register()); PopOperand(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case NAMED_SUPER_PROPERTY: { EmitNamedSuperPropertyStore(prop); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case KEYED_SUPER_PROPERTY: { EmitKeyedSuperPropertyStore(prop); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case KEYED_PROPERTY: { __ mov(StoreDescriptor::ValueRegister(), result_register()); PopOperands(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister()); CallKeyedStoreIC(expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle<String> check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { __ JumpIfSmi(v0, if_true); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, v0, a1); Split(lt, a1, Operand(FIRST_NONSTRING_TYPE), if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, v0, a1); Split(eq, a1, Operand(SYMBOL_TYPE), if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); __ LoadRoot(at, Heap::kFalseValueRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(if_false, eq, v0, Operand(at)); __ JumpIfSmi(v0, if_false); // Check for undetectable objects => true. __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); } else if (String::Equals(check, factory->function_string())) { __ JumpIfSmi(v0, if_false); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); Split(eq, a1, Operand(1 << Map::kIsCallable), if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { __ JumpIfSmi(v0, if_false); __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(v0, v0, a1); __ Branch(if_false, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE)); // Check for callable or undetectable objects => false. __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); // clang-format off #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ } else if (String::Equals(check, factory->type##_string())) { \ __ JumpIfSmi(v0, if_false); \ __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); \ __ LoadRoot(at, Heap::k##Type##MapRootIndex); \ Split(eq, v0, Operand(at), if_true, if_false, fall_through); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE // clang-format on } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); SetExpressionPosition(expr); EmitHasProperty(); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ LoadRoot(t0, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(t0), if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForAccumulatorValue(expr->right()); SetExpressionPosition(expr); __ mov(a0, result_register()); PopOperand(a1); __ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ LoadRoot(at, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); SetExpressionPosition(expr); Condition cc = CompareIC::ComputeCondition(op); __ mov(a0, result_register()); PopOperand(a1); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ Or(a2, a0, Operand(a1)); patch_site.EmitJumpIfNotSmi(a2, &slow_case); Split(cc, a1, Operand(a0), if_true, if_false, NULL); __ bind(&slow_case); } Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (expr->op() == Token::EQ_STRICT) { Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ LoadRoot(a1, nil_value); Split(eq, v0, Operand(a1), if_true, if_false, fall_through); } else { __ JumpIfSmi(v0, if_false); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } Register FullCodeGenerator::result_register() { return v0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) { DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ lw(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ sw(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ lw(dst, ContextMemOperand(cp, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { DeclarationScope* closure_scope = scope()->GetClosureScope(); if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. __ LoadNativeContextSlot(Context::CLOSURE_INDEX, at); } else if (closure_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ lw(at, ContextMemOperand(cp, Context::CLOSURE_INDEX)); } else { DCHECK(closure_scope->is_function_scope()); __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } PushOperand(at); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { DCHECK(!result_register().is(a1)); // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ li(at, Operand(pending_message_obj)); __ lw(a1, MemOperand(at)); PushOperand(a1); ClearPendingMessage(); } void FullCodeGenerator::ExitFinallyBlock() { DCHECK(!result_register().is(a1)); // Restore pending message from stack. PopOperand(a1); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ li(at, Operand(pending_message_obj)); __ sw(a1, MemOperand(at)); } void FullCodeGenerator::ClearPendingMessage() { DCHECK(!result_register().is(a1)); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); __ li(at, Operand(pending_message_obj)); __ sw(a1, MemOperand(at)); } void FullCodeGenerator::DeferredCommands::EmitCommands() { DCHECK(!result_register().is(a1)); __ Pop(result_register()); // Restore the accumulator. __ Pop(a1); // Get the token. for (DeferredCommand cmd : commands_) { Label skip; __ li(at, Operand(Smi::FromInt(cmd.token))); __ Branch(&skip, ne, a1, Operand(at)); switch (cmd.command) { case kReturn: codegen_->EmitUnwindAndReturn(); break; case kThrow: __ Push(result_register()); __ CallRuntime(Runtime::kReThrow); break; case kContinue: codegen_->EmitContinue(cmd.target); break; case kBreak: codegen_->EmitBreak(cmd.target); break; } __ bind(&skip); } } #undef __ void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { static const int kInstrSize = Assembler::kInstrSize; Address pc_immediate_load_address = Assembler::target_address_from_return_address(pc); Address branch_address = pc_immediate_load_address - 2 * kInstrSize; Isolate* isolate = unoptimized_code->GetIsolate(); CodePatcher patcher(isolate, branch_address, 1); switch (target_state) { case INTERRUPT: // slt at, a3, zero_reg (in case of count based interrupts) // beq at, zero_reg, ok // lui t9, <interrupt stub address> upper // ori t9, <interrupt stub address> lower // jalr t9 // nop // ok-label ----- pc_after points here patcher.masm()->slt(at, a3, zero_reg); break; case ON_STACK_REPLACEMENT: // addiu at, zero_reg, 1 // beq at, zero_reg, ok ;; Not changed // lui t9, <on-stack replacement address> upper // ori t9, <on-stack replacement address> lower // jalr t9 ;; Not changed // nop ;; Not changed // ok-label ----- pc_after points here patcher.masm()->addiu(at, zero_reg, 1); break; } // Replace the stack check address in the load-immediate (lui/ori pair) // with the entry address of the replacement code. Assembler::set_target_address_at(isolate, pc_immediate_load_address, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, pc_immediate_load_address, replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { static const int kInstrSize = Assembler::kInstrSize; Address pc_immediate_load_address = Assembler::target_address_from_return_address(pc); Address branch_address = pc_immediate_load_address - 2 * kInstrSize; DCHECK(Assembler::IsBeq(Assembler::instr_at(branch_address + kInstrSize))); if (!Assembler::IsAddImmediate(Assembler::instr_at(branch_address))) { DCHECK(reinterpret_cast<uint32_t>( Assembler::target_address_at(pc_immediate_load_address)) == reinterpret_cast<uint32_t>( isolate->builtins()->InterruptCheck()->entry())); return INTERRUPT; } DCHECK(Assembler::IsAddImmediate(Assembler::instr_at(branch_address))); DCHECK(reinterpret_cast<uint32_t>( Assembler::target_address_at(pc_immediate_load_address)) == reinterpret_cast<uint32_t>( isolate->builtins()->OnStackReplacement()->entry())); return ON_STACK_REPLACEMENT; } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS